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Abstract. In this paper, we study a generalized bilevel optimal control problem that has a variational
inequality parametrized by the final state on the follower and pure state constraints on the leader. After
reducing the problem with a gap function to an analogous single-level optimal control problem, we focus
on the development of a necessary optimality condition of the Pontryagin type. We highlight some
significant issues originating from the generalized bilevel structure and its pure state constraints on the
leader, which give rise to a degenerated maximum principle in the absence of constraint qualifications. To
ensure the nondegeneracy of the derived maximum principle, we employ a partial penalization strategy
and a well-known regularity criterion for optimal control problems with pure state constraints.
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1. INTRODUCTION

Since 1950, optimal control problems have been studied with two goals. The maximum
principle, a set of necessary conditions for an optimal control function, was one of them. The
second method was called ”dynamic programming,” which simplifies the work of determining
the best control function for solving a Hamilton-Jacobi partial differential equation. In the
same vein, bilevel optimal control problems, which are bilevel optimization problems with
control at least one level, have been considered because of its numerous applications; see, e.g.,
[1, 2, 3, 4, 5, 6, 7] and the references therein. Many methods have been used to investigate such
problems, including theoretical studies [8, 9, 10] and numerical studies [4, 11, 12].

Finding Pontryagin optimality conditions is under the spotlight for addressing optimal con-
trol problems recently. In 1995, Hartl, Sethi, and Vickson [13] reviewed a number of max-
imum principle approaches via two basic strategies: direct adjoining and indirect adjoining.
Additionally, they also gave special attention to the connections between the various multi-
pliers that arise in these approaches and providing examples to support their claims. In [14],
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Hoehener suggested new second-order necessary optimality conditions via a variational ap-
proach. The approach enables to produce direct proofs, in contrast to the conventional method
of establishing second-order required conditions (by using an abstract infinite-dimensional op-
timization problem). The optimal controls need only be measurable, and there are no convexity
assumptions made for the constraints. For other second-order optimality conditions, we refer
to [15, 16, 17]. In terms of numerical resolution, Nikoobin and Moradi [18] examined two sig-
nificant problems with indirect techniques from a practical standpoint: the convergence issue
and constraint handling. More precisely, the homotopy continuation method was expanded to
include ordinary differential equations, equations dealing with boundary conditions, and perfor-
mance indexes in their study. Recently, Benita, Dempe, and Mehlitz [19] deduced Pontryagin
optimality conditions for an original optimistic bilevel programming problem, which consists
of a pure state-constrained optimal control problem in the leader and a parametric but convex
finite-dimensional optimization problem in the follower, whose parameter is the final state of
the leader’s state function. To ensure that the improved maximum principle does not degenerate,
the partial penalization principle and some enhanced assumptions were employed.

In this paper, we investigate a generalized bilevel optimal control problem (GBOCP) in which
the leader controls the state function (of the dynamic system) x and the control u; and contains
a pure state constraint. The follower, on the other hand, is a variational inequality constraint
parametrized by the final state of x. Our approach requires employing a gap function to con-
vert the parametric variational inequality into terminal constraints. The result is an optimal
control problem with non-smooth equality constraints. The essential constraint containing the
gap function was moved to the objective functional, leading to an exact penalization, using the
partial calmness regularity to identify the necessary optimality conditions.

The following is how the remainder of this article is structured: Section 2 goes over some
preliminaries and fundamental concepts. Section 3 is devoted to stating the problem under
consideration and reformulating it. In addition, some results on the exact penalization and the
principle uniform parametric error bound based on the R-regularity of the solution map solution
are presented. Furthermore, we develop several Pontryagin optimality conditions in Section 4.
After that, we provide an example to illustrate the results obtained. In Section 5, a discussion
on the Pontryagin optimality conditions is presented. Finally, Section 6 ends this paper.

2. PRELIMINARIES

2.1. Basic tools. In this paper, 〈·, ·〉Rn and ‖·‖∞ represent the scalar product and the maximum-
norm of Rn, respectively, and Rn

+ is a collection of vectors x∈Rn with nonnegative components.
For a subset Ω ⊂ Rn, the convex hull of Ω is denoted by co(Ω). In addition, we define the

function χΩ as follows: χΩ (Λ) = Ω∩Λ for any Λ ⊂ Rn. Let (E,‖ · ‖E) be a Banach space,
x ∈ E, and ε > 0. We denote the open ball around x with radius ε by Uε

E(x). For a subset ∆ of
E and a vector x of E, d∆(x) = inf{‖x− y‖E : y ∈ ∆} is the distance between ∆ and x. Given
scalars ti, t f > 0, we consider the following set:

C0
(
[ti, t f ],Rn) :=

{
continuous functions v with n components over [ti, t f ]

}
.

We denote by C ?
0
(
[ti, t f ],Rn) the dual space of C0

(
[ti, t f ],Rn). By C p

0
(
[ti, t f ]

)
, we refer to

the set of all elements of C ?
0
(
[ti, t f ],R

)
, which on nonnegative functions in C0

(
[ti, t f ],R

)
takes

nonnegative values. For any measure λ ∈ C p
0
(
[ti, t f ]

)
, supp(λ ) denotes the smallest closed set
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X ⊂ [ti, t f ] with λ (Y ) = 0 for any relatively open subset Y ⊂ [ti, t f ] \X . We denote by L the
sigma-algebra generated by [ti, t f ] and by Bn the Borelean sigma-algebra on Rn.

We indicate by M
(
[ti, t f ],Rn) the set of all functions ϕ1 : [ti, t f ]→Rn, which are measurable,

by L1 ([ti, t f ],Rn) the space of all functions ϕ2 : [ti, t f ]→ Rn, which are Lebesgue-integrable,
and by L∞

(
[ti, t f ],Rn) the space of all measurable functions ϕ3 : [ti, t f ]→Rn, which are bounded

almost everywhere on [ti, t f ], while the Sobolev space W [n] is described by

W [n] =
{

v : [ti, t f ]→ Rn : v ∈ L1 ([ti, t f ],Rn) and v̇ ∈ L1 ([ti, t f ],Rn)} ,
where v̇ denotes the (weak) derivative of v.

Lemma 2.1 ([20]). Let W [n] be a Sobolev space. Then, we can locate a scalar Cemb > 0 such
that, for any v ∈W [n], and for any t ∈

[
ti, t f

]
,

‖v(t)‖
∞
≤ ‖v‖C ([ti,t f ],Rn) ≤Cemb ‖v‖W [n] .

Let Q ⊂ Rn be a set, and q ∈Q. The Fréchet normal cone to Q at q is defined by

N̂ (Q,q) :=

{
η ∈ Rn : limsup

q→q,q∈Q

η>(q−q)
‖q−q‖

∞

≤ 0

}
,

while the basic (or Mordukhovich) normal cone to Q at q is given by

N (Q,q) := limsup
q→q,q∈Q

N̂ (Q,q) .

Consider F :Rn→Rd as a differentiable function. For x∈Rn, ∇F(x)∈Rd×n refers to the Ja-
cobian of F at x; when d = 1, we consider the gradient ∇F(x) as a vector of Rn, and ∇2F(x) :=
∇∇F(x). Given a function f : Rn → R := R∪{±∞}, dom( f ) := {x ∈ Rn : f (x)<+∞} and
epi( f ) := {(x,y) ∈ Rn×R : f (x)≤ y} denote the effective domain and the epigraph of f , re-
spectively. The basic (or Mordukhovich) subdifferential of f at a ∈ dom( f ) is given by

∂ f (a) := {α ∈ Rn : (α,−1) ∈ N (epi( f ),(a, f (a)))} .
If f is locally Lipschitz at a, the Clarke subdifferential is defined by ∂ c f (a) := co∂ f (a). There-
fore, when f is strictly differentiable at a, we have ∂ c f (a) = {∇ f (a)}. Besides, let ϕ : Rn→R
and ψ : Rn → Rq be Lipschitz continuous functions. Consider the following nonlinear opti-
mization problem:

min
x

ϕ (x) subject to ψ (x)≤ 0. (2.1)

Definition 2.2. [21] Let a be feasible to problem (2.1).
(D1): The set of abnormal multipliers corresponding to a is given by

A (a) :=
{

η ∈ Rq : 0 ∈ ∂
c
ψ (a)>η , 〈η ,ψ (a)〉Rq = 0, η ≥ 0

}
.

(D2): The set of normal multipliers corresponding to a is given by

B (a) :=
{

η ∈ Rq : 0 ∈ ∂
c
ϕ (a)+∂

c
ψ (a)>η , 〈η ,ψ (a)〉Rq = 0, η ≥ 0

}
.

Definition 2.3. Let a be a feasible point of problem (2.1), and let Iψ(a) := {k : ψk(a) = 0}.
Assume that ψ is a differentiable function at a. The Mangasarian Fromovitz constraint qualifi-
cation (MFCQ) is satisfied for a if there exists a vector η ∈ Rn that verifies 〈∇ψk (a) ,η〉Rn < 0
for any k ∈ Iψ (a).
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We point out that the Mangasarian Fromovitz constraint qualification is satisfied for a if and
only if the abnormal cone A (a) equals {0}. Finally, let Ψ : Rn ⇒ Rd be a set-valued mapping
with

dom(Ψ) := {a ∈ Rn : Ψ(a) 6=∅} ,
gph(Ψ) :=

{
(a,b) ∈ Rn×Rd : a ∈ dom(Ψ),b ∈Ψ(a)

}
.

Definition 2.4. (R-regular) Let g : Rn×Rd → Rl and h : Rn×Rd → Rq be two continuous
functions, and let Ξ : Rn ⇒ Rd defined by Ξ(a) :=

{
b ∈ Rd : g(a,b)≤ 0 and h(a,b) = 0

}
. We

say that Ξ is R-regular at a point
(
a,b
)
∈ gph(Ξ) with respect to a subset Ω of Rn if there exist

σ ,ε1,ε2 > 0 such that dΞ(a)(b)≤σ {0,max{gs(a,b) : s = 1, . . . , l} ,max{|hs(a,b)| : s = 1, . . . ,q}} ,
for any (a,b) ∈

(
Uε1
Rn (a)∩Ω

)
×Uε2

Rd

(
b
)
.

2.2. Optimal control problems with pure state inequality constraints. In this subsection,
we briefly discuss the maximum principle context, following the approaches stated in [22, The-
orem 9.3.1] and [23, Theorem 4.1].

To proceed, we consider a single-level optimal control problem with two state functions, x :[
ti, t f

]
→Rn and y :

[
ti, t f

]
→Rd . We suppose that the trajectory x has a fixed begin point x(ti) :=

x0 in Rn; furthermore, we suppose that it is controlled by a control function u ∈M
([

ti, t f
]
,Rm)

and it is influenced by a pure state constraint ψ :
[
ti, t f

]
×Rn→ R. For the second trajectory,

we assume that it is controlled by a control function v ∈ M
([

ti, t f
]
,Rl). Mathematically, the

body of the optimal control problem under consideration is as follows:

min
(x,u),(y,v)

J
(
x(t f ),y(t f )

)
ẋ(t) = φ1 (t,x(t),u(t)) a.e. t ∈

[
ti, t f

]
ẏ(t) = φ2 (t,y(t),v(t)) a.e. t ∈

[
ti, t f

]
x(ti) = x0

ψ (t,x(t))≤ 0 ∀t ∈
[
ti, t f

]
u(t) ∈ U a.e. t ∈

[
ti, t f

]
v(t) ∈ V a.e. t ∈

[
ti, t f

](
x(t f ),y(t f )

)
∈C,

(2.2)

where J : Rn×Rd → R is the objective function, φ1 :
[
ti, t f

]
×Rn×Rm→ Rn and φ2 :

[
ti, t f

]
×

Rd ×Rl → Rd represent the dynamic functions, U and V are nonemty and Borel measurable
subsets of Rm and Rl respectively, and C ⊂ Rn×Rd .

To continue, we consider the following definition.

Definition 2.5. A point ((x∗,u∗) ,(y∗,v∗)) is said to be a W [n+ d]-local minimal solution to
(2.2) if ((x∗,u∗) ,(y∗,v∗)) is feasible to (2.2) and there exists ε > 0 such that J

(
x∗(t f ),y∗(t f )

)
≤

J
(
x(t f ),y(t f )

)
for each feasible point ((x,u),(y,v)) of (2.2) which verifies (x,y)∈Uε

W [n+d] (x
∗,y∗).

Now, we need to make some hypotheses for its W [n+ d]-local optimal solutions. For this
purpose, let ((x∗,u∗) ,(y∗,v∗)) be a W [n+d]-local minimal solution of (2.2).

(X1): J is Lipschitz continuous around
(
x∗(t f ),y∗(t f )

)
.
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(X2): For each (x,y) ∈ Rn×Rd , the mappings (t,u) 7→ φ1 (t,x,u) and (t,v) 7→ φ2 (t,y,v)
are L ×Bm and L ×Bl-measurable functions, respectively. For each t ∈

[
ti, t f

]
,

and (u,v) ∈ U× V, the mappings x 7→ φ1 (t,x,u) and y 7→ φ2 (t,y,v) are continuously
differentiable functions. There are two measurable functions γx :

[
ti, t f

]
×Rm → R,

γy :
[
ti, t f

]
×Rl → R, and scalars ε1,ε2 > 0 such that t 7→ γx (t,u∗(t)), t 7→ γy (t,v∗(t))

are integrable, and for almost every t ∈
[
ti, t f

]
‖φ1 (t,x1,u)−φ1 (t,x2,u)‖∞

≤ γx (t,u)‖x1− x2‖∞
and

‖φ2 (t,y1,v)−φ (t,y2,v)‖∞
≤ γy (t,v)‖y1− y2‖∞

,

for each x1,x2 ∈Uε1
Rn (x∗(t)), u ∈ U, y1,y2 ∈Uε2

Rd (y∗(t)), v ∈ V. φ1 and φ2 are continuous
functions.

(X3): For each t ∈
[
ti, t f

]
, x 7→ψ (t,x) is continuously differentiable, and ∇xψ (t,x∗(t)) 6=

0. ψ is an upper semicontinuous function. There are scalars εψ ,Lψ > 0 such that

|ψ (t,x1)−ψ (t,x2) | ≤ Lψ ‖x1− x2‖∞
,

for each t ∈
[
ti, t f

]
, x1,x2 ∈ Uεψ

Rn (x∗(t)).
(X4): C is non-empty and locally closed around

(
x∗(t f ),y∗(t f )

)
.

(X5): There is κ > 0 such that {φ1(t,x,u) : u ∈ U} is a convex set for all x ∈ Uκ
Rn (x0),

t ∈ [ti,κ[.
If ψ (ti,x0) = 0, then there are scalars ν1,ν2,ν3,ν4 > 0 and û∈ L1 ([ti, t f

]
,Rm) verifying

û ∈ U a.e on
[
ti, t f

]
such that

‖φ1 (t,x0,u∗(t))‖∞
≤ ν3, ‖φ1 (t,x0, û(t))‖∞

≤ ν3 and∫ t

ti
∇xψ(a,x)> [φ1 (τ,x0, û(τ))−φ1 (τ,x0,u∗(τ))]dτ ≤−ν4t,

for all a, t ∈ [ti,ν1[ and x ∈ Uν2
Rn (x0).

Remark 2.6. As it is known that the main objective of the optimality conditions is to reduce the
cardinal of the feasible set. Sadly, sometimes we find that any feasible point verifies the derived
necessary optimality conditions and is therefore useless. For that, and as in [23], we put the last
hypothesis (X5) to make sure that our derived Pontryagin optimality conditions, in Theorem
2.7, of optimal control problem (2.2) do not degenerate.

An immediate consequence of [22, Theorem 9.3.1] and [23, Theorem 4.1] is given below.

Theorem 2.7. Let ((x∗,u∗) ,(y∗,v∗)) be a W [n+ d]-local minimal solution to (2.2) such that
hypotheses (X1)−(X5) hold. Then, there are two functions (p1, p2)∈W [n]×W [d], a measure
λ ∈ C p

0
([

ti, t f
])

, and a constant τ ≥ 0 with the following optimality conditions:

.: the enhanced nontriviality condition: ‖R‖L∞([ti,t f ],Rn)+‖p2‖W [d]+λ
(]

ti, t f
])
+τ > 0;

.: the adjoint equations: for almost every t ∈
[
ti, t f

]
−ṗ1(t)> = R(t)>∇xφ1 (t,x∗(t),u∗(t)) ,

−ṗ2(t)> = p2(t)>∇yφ2 (t,y∗(t),v∗(t)) ;
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.: the Weierstrass-Pontryagin conditions: for almost every t ∈
[
ti, t f

]
R(t)>φ1 (t,x∗(t),u∗(t)) = max

w∈U
R(t)>φ1 (t,x∗(t),w) ,

p2(t)>φ2 (t,y∗(t),v∗(t)) = max
w∈V

p2(t)>φ2 (t,y∗(t),w) ;

.: the transversality condition:

p2 (ti) = 0,(
−R
(
t f
)
,−p2

(
t f
))
∈ τ ∂

cJ
(
x∗(t f ),y∗(t f )

)
+N

(
C,
(
x∗(t f ),y∗(t f )

))
;

.: the support condition: supp(λ )⊆
{

t ∈
[
ti, t f

]
: ψ (t,x∗(t)) = 0

}
;

where the function R :
[
ti, t f

]
→ Rn is given by

R(t) :=


p1(t)+

∫
[ti,t f [

∇xψ (a,x∗(a))λ (da) if ti < t < t f ,

p1(t f )+
∫
[ti,t f ]

∇xψ (a,x∗(a))λ (da) if t = t f .

Remark 2.8. Without imposing the validity of hypothesis (X5), the enhanced nontriviality
condition in Theorem 2.7 receives (p1, p2,λ ,τ) 6= (0,0,0,0) . In this case, there is nothing that
guarantees the nondegeneracy of the derived maximum principle in Theorem 2.7.

3. THE PROBLEM AND ITS REFORMULATION

To keep things simple, this work is concentrated on a Mayer-type cost function. Examine the
following bilevel optimal control problem with variational inequality constraints:

min
x,u,y

f
(
x(t f ),y

)
subject to ẋ(t) = φ (t,x(t),u(t)) a.e. t ∈ [ti, t f ]

x(ti) = x0

g(t,x(t))≤ 0 ∀t ∈ [ti, t f ]

u(t) ∈U a.e. t ∈ [ti, t f ]

y ∈ S
(
x(t f )

)
,

(GBOCP)

where S(x(t f )) is the solution set of the following variational inequality parameterized by the
final state: 〈

F(x(t f ),y),y− z
〉
Rd ≤ 0, ∀z ∈ K(x(t f )). (3.1)

The material provided for this problem includes an interval [ti, t f ], the objective function f :Rn×
Rd → R, the dynamic function of system φ : [ti, t f ]×Rn×Rm→ Rn, the initial state condition
fixed x0 ∈ Rn, the scalar function g : [ti, t f ]×Rn → R, a nonempty and Borel measurable set
U ⊂ Rm, the set-valued map K : Rn→ Rd , and the vector function F : Rn×Rd → Rd . Here,
x and u are respectively the state function and the measurable control of our problem, while
parameter t describes the time, and ẋ refers to us as the (weak) derivative of x w.r.t. time. One
can observe that function S symbolizes the solution mapping of minz

〈
F(x(t f ),y),z

〉
Rd subject

to z ∈ K(x(t f )).
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From now on, we work with a specific type of a local and global minimizer. For this purpose,
we indicate the feasible leader set Ou

s and the feasible set Os of (GBOCP) by

Ou
s :=

(x,u) ∈W [n]×M
(
[ti, t f ],Rm)

∣∣∣∣∣∣∣∣∣
ẋ(t) = φ (t,x(t),u(t)) a.e. t ∈ [ti, t f ]

x(ti) = x0

g(t,x(t))≤ 0 ∀t ∈ [ti, t f ]

u(t) ∈U a.e. t ∈ [ti, t f ]

 ,

Os :=
{
(x,u,y) ∈W [n]×M

(
[ti, t f ],Rm)×Rd : (x,u) ∈Ou

s and y ∈ S
(
x(t f )

)}
,

respectively. Hence, for Θ := W [n]×Rd , we make use of the definitions below.

Definition 3.1 (Θ-Local minimal solution). A point (x∗,u∗,y∗) ∈Os is a Θ-local minimal solu-
tion to (GBOCP) if we can find ε > 0 such that, for all (x,u,y) ∈ Os with (x,y) ∈ Uε

Θ
(x∗,y∗),

f
(
x∗(t f ),y∗

)
≤ f

(
x(t f ),y

)
.

Definition 3.2 (Global minimal solution). A global minimal solution to problem (GBOCP) is a
Θ-local minimal solution to problem (GBOCP) with ε =+∞.

Next, we suppose that K
(
x(t f )

)
=
{

y ∈ Rd : G
(
x(t f ),y

)
≤ 0
}
, with G : Rn ×Rd → Rq

being a vector function with components Gk, k = 1, . . . ,q.
We assume for the rest of this study that the following requirements hold true for all Θ-local

minimal solutions (x∗,u∗,y∗) of (GBOCP):
(C1) f , F , and G are continuously differentiable functions w.r.t their variables.
(C2) φ is a continuous function w.r.t its variables.

x 7→ φ (t,x,u) is continuously differentiable for all (t,u) ∈ [ti, t f ]×U .
For x to be fixed, (t,u) 7→ φ (t,x,u) is L ×Bm-measurable.
There exist ς : [ti, t f ]×Rm→R a measurable function and ε > 0 such that t 7→ ς (t,u∗(t))
is in L1 ([ti, t f ],R

)
and

‖φ (t,x1,u)−φ (t,x2,u)‖∞
≤ ς(t,u)‖x1− x2‖∞

∀x1,x2 ∈ Uε
Rn (x∗(t)) ,∀u ∈U .

(C3) For each t ∈ [ti, t f ], x 7→ g(t,x) is continuously differentiable, ∇xg(t,x∗(t)) 6= 0 for all
t ∈ [ti, t f ], and g is an upper semicontinuous function. There are scalars εg,Lg > 0 such
that |g(t,x1)−g(t,x2) | ≤ Lg ‖x1− x2‖∞

, for each t ∈
[
ti, t f

]
x1,x2 ∈ Bεg

Rn (x∗(t)).
(C4) The MFCQ holds at all y ∈ K

(
x∗(t f )

)
.

With the aim to derive an equivalent single-level optimal control problem for generalized
bileve optimal control problems, we define the gap function ϕGF : Rn×Rd → R for problem
(GBOCP) for all (a,b) ∈ Rn×Rd , by ϕGF (a,b) := sup{〈F (a,b) ,b− z〉Rd : z ∈ K (a)} .

For any a ∈ Rn, the two assertions that follow are clear:{
ϕGF (a,b)≥ 0 for all b ∈ K (a) ,
ϕGF (a,b) = 0 if and only if b ∈ S (a) .

(3.2)

Using the gap function, we can then rewrite the solution set of (3.1) for a state function x∈W [n]
as follows:

S
(
x(t f )

)
:=
{

y ∈ Rd : G
(
x(t f ),y

)
≤ 0 and ϕGF

(
x(t f ),y

)
= 0
}
. (3.3)
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Hence, problem (GBOCP) is identical to the next one-level optimal control problem:

min
x,u,y

f
(
x(t f ),y

)
subject to ẋ(t) = φ (t,x(t),u(t)) a.e. t ∈ [ti, t f ]

x(ti) = x0

g(t,x(t))≤ 0 ∀t ∈ [ti, t f ]

u(t) ∈U a.e. t ∈ [ti, t f ]

ϕGF
(
x(t f ),y

)
= 0

G
(
x(t f ),y

)
≤ 0.

(3.4)

From now on, Λ
(
x(t f ),y

)
is borrowed to stand for the collection of all vectors where ϕGF

(
x(t f ),y

)
attains its maximum. It is worth mentioning that the standard constraint qualifications, like the
MFCQ, never hold for problem (3.4). Consider the simple case that (x∗,u∗,y∗) is a Θ-local min-
imal solution to (GBOCP), K(x(t f )) =Rd , Ou

s =W [n]×M
(
[ti, t f ),Rm), and ϕGF is a Lipschitz

continuous function. Then, assertions (3.2) yield inclusion 0 ∈ ∂ cϕGF (x∗(T ),y∗); demonstrat-
ing that the abnormal multipliers (see Definition 2.2 (D1)) always exist for problem (3.4). As
a result, the Mangasarian Fromovitz constraint qualification is not verified. We adopt Ye and
Zhu’s theories [24], in which the authors discovered some constraint qualifications by using an
exact penalization. This principle, which is now widely known, is completely connected to the
property of calmness. First, let us go over the concept of partial calmness.

Definition 3.3. Problem (3.4) is said to be partially calm at a (x∗,u∗,y∗) ∈ Os if there exist
ε,β > 0 such that f

(
x(t f ),y

)
− f
(
x∗(t f ),y∗

)
+βσ ≥ 0 for all (x,u,y,σ)∈Ou

s ×K
(
x(t f )

)
×R+

satisfying (x,y,σ) ∈ Uε
Θ×R (x

∗,y∗,0) and ϕGF
(
x(t f ),y

)
= σ .

The following result describes the partial calmness property at a defined Θ-local minimum
solution of (3.4) using the precise penalization concept when the gap function ϕGF is a locally
Lipschitz continuous function.

Proposition 3.4. Let (x∗,u∗,y∗) be a Θ-local minimal solution of (3.4). Assume that ϕGF
is Lipschitz continuous function around

(
x∗(t f ),y∗

)
. Then, problem (3.4) is partially calm at

(x∗,u∗,y∗) if and only if there exists some β > 0 such that (x∗,u∗,y∗) is a Θ-local minimal
solution for the following optimal control problem:

min
x,u,y

f
(
x(t f ),y

)
+βϕGF

(
x(t f ),y

)
subject to ẋ(t) = φ (t,x(t),u(t)) a.e. t ∈ [ti, t f ]

x(ti) = x0

g(t,x(t))≤ 0 ∀t ∈ [ti, t f ]

u(t) ∈U a.e. t ∈ [ti, t f ]

G
(
x(t f ),y

)
≤ 0.

(P[β ])

Proof. First, assume that problem (3.4) is partially calm at (x∗,u∗,y∗). Then, there exist ε,β > 0
such that for all (x,u,y,σ) ∈ Ou

s ×K
(
x(t f )

)
×R+ satisfying (x,y,σ) ∈ Uε

Θ×R (x
∗,y∗,0) and

ϕGF
(
x(t f ),y

)
= σ , f

(
x(t f ),y

)
− f

(
x∗(t f ),y∗

)
+ βσ ≥ 0. Since ϕGF is Lipschitz continuous
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around
(
x∗(t f ),y∗

)
, then there exist ε1,LϕGF > 0 such that

‖ϕGF (a1,b1)−ϕGF (a2,b2)‖∞
≤ LϕGF ‖(a1,b1)− (a2,b2)‖∞

, (3.5)

for all (a1,b1) ,(a2,b2) ∈ Uε1
Rn×Rd

(
x∗(t f ),y∗

)
.

Now, let (x,u,y) ∈Ou
s ×K

(
x(t f )

)
which satisfies (x,y) ∈ Uε?

Θ
(x∗,y∗) with

ε
? := min

{
ε,

ε

Cemb
,

ε1

Cemb
,

ε

max
{

LϕGF ,CembLϕGF

}} ,

where Cemb is the constant in Lemma 2.1 satisfying

‖x(t)‖
∞
≤ ‖x‖C ([ti,t f ],Rn) ≤Cemb ‖x‖W [n] , (3.6)

for all t ∈ [ti, t f ].
Next, fix a scalar σ such that ϕGF

(
x(t f ),y

)
= σ . It follows that

σ
(1∗)
= ϕGF

(
x(t f ),y

)
−ϕGF

(
x∗(t f ),y∗

)
(2∗)
≤ LϕGF

∥∥(x(t f ),y
)
−
(
x∗(t f ),y∗

)∥∥
∞

(3∗)
≤ LϕGF max

{∥∥x(t f )− x∗(t f )
∥∥

∞
, ‖y− y∗‖

∞

}
(4∗)
≤ LϕGF max

{
‖x− x∗‖C ([ti,t f ],Rn) , ‖y− y∗‖

∞

}
(5∗)
≤ max

{
LϕGF , LϕGFCemb

}
max

{
‖x− x∗‖W [n] , ‖y− y∗‖

∞

}
(6∗)
< max

{
LϕGF , LϕGFCemb

}
ε
?

(7∗)
≤ ε,

where (1∗) results from y∗ ∈ S
(
x∗(t f )

)
, (2∗) from (3.5), (3∗) is the definition of ‖ · ‖∞, (4∗)

and (5∗) corresponds to assertion (3.6), (6∗) is a consequence of (x,y) ∈ Uε?

Θ
(x∗,y∗), and (7∗)

relates to how ε? is defined.
Consequently, (x,y,σ) ∈ Uε

Θ×R (x
∗,y∗,0). Finally, from the fact that ϕGF

(
x(t f ),y

)
= σ , the

partial calmness of (3.4) at (x∗,u∗,y∗), and the assumption y∗ ∈ S
(
x∗(t f )

)
, we have that

f
(
x(t f ),y

)
+βϕGF

(
x(t f ),y

)
≥ f

(
x∗(t f ),y∗

)
+βϕGF

(
x∗(t f ),y∗

)
,

hold for all feasible points (x,u,y) of problem (P[β ]) with (x,y) ∈ Uε?

Θ
(x∗,y∗), which proves

that (x∗,u∗,y∗) is a Θ-local minimal solution to problem (P[β ]).
Conversely, assume that there is β > 0 such that (x∗,u∗,y∗) is a Θ-local minimal solution to

the problem of (P[β ]). Then, there exists some ε > 0 such that f
(
x∗(t f ),y∗

)
≤ f

(
x(t f ),y

)
+

βϕGF
(
x(t f ),y

)
for all (x,u,y) ∈ Ou

s ×K
(
x(t f )

)
with (x,y) ∈ Uε

Θ
(x∗,y∗). Let us fix (x,u,y,σ)

in Ou
s ×K

(
x(t f )

)
×R+ with ϕGF

(
x(t f ),y

)
= σ and (x,y,σ) ∈ Uε

Θ×R (x
∗,y∗,0). Hence, we can

write f
(
x(t f ),y

)
− f

(
x∗(t f ),y∗

)
+βσ ≥ 0. As a consequence, problem (3.4) is partially calm

at (x∗,u∗,y∗). �
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Subsequently, we offer sufficient conditions to ensure that problem (3.4) remains partially
calm. We start with the uniform parametric error bound, which uses the distance function.

Definition 3.5. We say that variational inequality (3.1) possesses a uniformly parametric error
bound (UPEB) at

(
x∗(t f ),y∗

)
∈ gph(S) if there exist scalars ε,σ > 0 such that

∀
(
x(t f ),y

)
∈ Uε

Rn×Rd

(
x∗(t f ),y∗

)
: y ∈ K

(
x(t f )

)
⇒ dS(x(t f ))(y)≤ σϕGF

(
x(t f ),y

)
.

Proposition 3.6. Let (x∗,u∗,y∗) be a Θ-local minimal solution to (3.4). Assume that variational
inequality (3.1) possesses a (UPEB) at

(
x∗(t f ),y∗

)
with modulus σ > 0. Then, there exists a

scalar β ∗ > 0 such that (x∗,u∗,y∗) is a Θ-local minimal solution to (P[β ]) for all β ≥ σβ ∗.

Proof. Firstly, observe that problem (GBOCP) is identical to the next optimal control problem:

min
x,u,y

f
(
x(t f ),y

)
subject to ẋ(t) = φ (t,x(t),u(t)) a.e. t ∈ [ti, t f ]

x(0) = x0

g(t,x(t))≤ 0 ∀t ∈ [ti, t f ]

u(t) ∈U a.e. t ∈ [ti, t f ]

dS(x(t f ))(y) = 0.

(3.7)

Furthermore, problem (3.7) is partially calm at (x∗,u∗,y∗). Indeed, let ε > 0 be the constant that

satisfy Definition 3.1 and ε1 =
ε

2
. Let ε2 ∈ [0,ε1[, (x,u)∈Ou

s and y∈Rd such that dS(x(t f ))(y) =

ε2 and (x,y) ∈ Uε1
Θ
(x∗,y∗). Condition (C1) implies that S

(
x(t f )

)
is closed. Then, there exists

y ∈ S
(
x(t f )

)
such that ‖y− y‖

∞
= ε2. Thus (x,u,y) is a feasible point of (3.7). Moreover,

‖(x∗,y∗)− (x,y)‖
Θ
≤ ‖(x∗,y∗)− (x,y)‖

Θ
+‖(x,y)− (x,y)‖

Θ
< ε1 + ε2 < ε.

Consequently, (x,y) ∈ Uε
Θ
(x∗,y∗). Since (x∗,u∗,y∗) is a Θ-local minimal solution to (3.4),

then
f
(
x∗(t f ),y∗

)
≤ f

(
x(t f ),y

)
. (3.8)

By multiplying inequality (3.8) by (−1) and adding f
(
x(t f ),y

)
on both sides, we obtain

f
(
x(t f ),y

)
− f

(
x∗(t f ),y∗

)
≥ f

(
x(t f ),y

)
− f

(
x(t f ),y

)
.

Since (C1) holds, f is locally Lipschitz continuous at
(
x∗(t f ),y∗

)
with modulus L f > 0 on

Uε

Rn×Rd

(
x∗(t f ),y∗

)
, then f

(
x(t f ),y

)
− f

(
x∗(t f ),y∗

)
+L f ε2 ≥ 0, which proves that (3.7) is par-

tially calm at (x∗,u∗,y∗).
Secondly, as in Proposition 3.4, there exists β ∗ > 0 such that, for all (x,u,y) ∈ Os with

(x,y) ∈ Uε
Θ
(x∗,y∗),

f
(
x∗(t f ),y∗

)
+β

∗dS(x∗(t f )) (y
∗)≤ f

(
x(t f ),y

)
+β

∗dS(x(t f ))(y). (3.9)

Now, let (x,u,y) ∈Os with (x,y) ∈ Uε
Θ
(x∗,y∗). We have from y∗ ∈ S

(
x∗(t f )

)
, inequality (3.9),

and the (UPEB) assumption that

f
(
x∗(t f ),y∗

)
+σβ

∗
ϕGF

(
x∗(t f ),y∗

)
≤ f

(
x(t f ),y

)
+σβ

∗
ϕGF

(
x(t f ),y

)
.

Consequently, (x∗,u∗,y∗) is a Θ-local minimal solution to (P[β ]) for all β ≥ σβ ∗. �
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Finally, keeping in mind that S is defined as in (3.3), we provide a sufficient condition for the
(UPEB) based on the R-regularity of the set-valued mapping S.

Proposition 3.7. Let (x∗,u∗,y∗) be a Θ-local minimal solution to problem (GBOCP). Assume
that there exists some neighborhood N ⊂ Rn of x∗(t f ) verified dom(K)∩N = dom(S)∩N .
Moreover, let S be R-regular at

(
x∗(t f ),y∗

)
w.r.t dom(S). Then, variational inequality (3.1)

possesses a (UPEB) at
(
x∗(t f ),y∗

)
∈ gph(S)∩N ×Rd .

Proof. Since S is R-regular at
(
x∗(t f ),y∗

)
w.r.t dom(S), then there exist scalars σ ,δ > 0 such

that, for all (x,u,y) ∈Os with
(
x(t f ),y

)
∈ Uδ

Rn×Rd

(
x∗(t f ),y∗

)
∩dom(S)×Rd ,

dS(x(t f ))(y)≤ σ max
{

0,G1
(
x(t f ),y

)
, . . . ,Gq

(
x(t f ),y

)
,ϕGF

(
x(t f ),y

)}
.

Hence, one can write y ∈ K(x(t f )⇒ dS(x(t f ))(y)≤ σϕGF
(
x(t f ),y

)
for all (x,u,y) ∈Os verified(

x(t f ),y
)
∈ Uδ

Rn×Rd

(
x∗(t f ),y∗

)
∩ dom(S)×Rd . In view of dom(K)∩N = dom(S)∩N , for

all (x,u,y) ∈Os satisfying
(
x(t f ),y

)
∈ Uδ

Rn×Rd

(
x∗(t f ),y∗

)
∩N ×Rd , we obtain

y ∈ K(x(t f )⇒ dS(x(t f ))(y)≤ σϕGF
(
x(t f ),y

)
,

which completes the proof. �

4. NECESSARY OPTIMALITY CONDITIONS

In this section, we use the maximal concept described in Section 2.2 to deal with Pontryagin
optimality conditions for problem (GBOCP). Following Remark 2.6, we add the two conditions
below to avoid the nondegeneracy of the necessary optimality conditions. For a Θ-local minimal
solution (x∗,u∗,y∗) of (GBOCP), we assume that:

(C5) There exists ε > 0 such that, for all x ∈ Uε
Rn (x0) and t ∈ [ti,ε[, {φ(t,x,u) : u ∈U } is

convex.
(C6) If g(ti,x0) = 0, then there exist scalars ε1,ε2,ε3,ε4 > 0 and a control function û ∈

L1 ([ti, t f ],Rm) verifying û ∈U a.e on [ti, t f ] such that
‖φ (t,x0,u∗(t))‖∞

≤ ε3,

‖φ (t,x0, û(t))‖∞
≤ ε3,∫ t

ti ∇xg(s,x)> [φ (τ,x0, û(τ))−φ (τ,x0,u∗(τ))]dτ ≤−ε4t,

for all s, t ∈ [ti,ε1[ and x ∈ Uε2
Rn (x0) .

On the other hand, we need the following upper estimate for our gap function, which is a
straightforward application of [25, Corollary 1 of Theorem 6.5.2]. To proceed, let (x∗,u∗,y∗) ∈
Os and let z ∈ K

(
x∗(t f )

)
. The abnormal and normal cones in smooth cases take, respectively,

the following forms:

A(x∗,y∗)(z) =
{

η ∈ Rq
+ : ∇yG

(
x∗(t f ),z

)>
η = 0,η>G

(
x∗(t f ),z

)
= 0
}
,

B(x∗,y∗)(z) =
{

η ∈ Rq
+ : F

(
x∗(t f ),y∗

)
+∇yG

(
x∗(t f ),z

)>
η = 0,η>G

(
x∗(t f ),z

)
= 0
}
.
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Proposition 4.1. Let (x∗,u∗,y∗) ∈ Os. Suppose that A(x∗,y∗)
(
Λ
(
x∗(t f ),y∗

))
= {0Rq}. Then

ϕGF is Lipschitz continuous near
(
x∗(t f ),y∗

)
and

∂ cϕGF
(
x∗(t f ),y∗

)
⊂ co

{(
∇x(t f )F

(
x∗(t f ),y∗

)>
(y∗− z)−∇x(t f )G

(
x∗(t f ),z

)>
η ,

∇yF
(
x∗(t f ),y∗

)>
(y∗− z)+F

(
x∗(t f ),y∗

))
such that

z ∈ Λ
(
x∗(t f ),y∗

)
,η ∈B(x∗,y∗)(z)

}
.

Now, we are ready to derive a maximum principle for the generalized bilevel optimal control
problem under consideration.

Theorem 4.2. Let (x∗,u∗,y∗) be a Θ-local minimal solution to problem (GBOCP). Suppose that
A(x∗,y∗)

(
Λ
(
x∗(t f ),y∗

))
= {0Rq}, conditions (C1)− (C6) hold, and problem (3.4) is partially

calm at (x∗,u∗,y∗). Then, there exist a function p ∈W [n], an integer l ∈ N∗, a finite family of

scalars (α)2≤i≤l ⊆ R+ with
l
∑

i=2
αi = 1, a finite family of vectors (ηi)1≤i≤l ⊆ Rq

+, a finite family

of vectors (zi)2≤i≤l ⊂ Λ
(
x∗(t f ),y∗

)
with for all i ∈ {2, . . . , l}: ηi ∈ B(x∗,y∗)(zi), a measure

λ ∈ C p
0
(
[ti, t f ]

)
, and τ ≥ 0, β > 0 such that

(T1): the enhanced nontriviality condition ‖R‖L∞

([ti,t f ],Rn)
+λ

(
]ti, t f ]

)
+ τ > 0;

(T2): the adjoint equation, for almost every t ∈ [ti, t f ],−ṗ(t)>=R(t)>∇xφ (t,x∗(t),u∗(t)) ;
(T3): the Weierstrass–Pontryagin condition: for almost every t ∈ [ti, t f ]

R(t)>φ (t,x∗(t),u∗(t)) = max
w∈U

R(t)>φ (t,x∗(t),w) ;

(T4): the transversality condition:

−R(t f ) =τ

(
∇x(t f ) f

(
x∗(t f ),y∗

)
+β

(
l

∑
i=2

αi

[
∇x(t f )F

(
x∗(t f ),y∗

)>
(y∗− zi)

−∇x(t f )G
(
x∗(t f ),zi

)>
ηi

]))
+∇x(t f )G

(
x∗(t f ),y∗

)>
η1;

(T5): the support condition: supp(λ )⊆
{

t ∈ [ti, t f ] : g(t,x∗(t)) = 0
}

;
(T6): the variational inequality condition: for all i ∈ {2, . . . , l}

F
(
x∗(t f ),y∗

)
+∇yG

(
x∗(t f ),zi

)>
ηi = 0, η

>
i G
(
x∗(t f ),zi

)
= 0;

(T7): the complementarity condition: η>1 G
(
x∗(t f ),y∗

)
= 0;

(T8): the multiplier condition:

0 =τ

(
∇y f

(
x∗(t f ),y∗

)
+β

(
l

∑
i=2

αi

[
∇yF

(
x∗(t f ),y∗

)>
(y∗− zi)+F

(
x∗(t f ),y∗

)]))
+∇yG

(
x∗(t f ),y∗

)>
η1;
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where the function R : [ti, t f ]→ Rn is given by:

R(t) :=


p(t)+

∫
[ti,t[

∇xg(s,x∗(s))λ (ds) if ti ≤ t < t f ,

p(t f )+
∫
[ti,t f ]

∇xg(s,x∗(s))λ (ds) if t = t f .

Proof. Since (x∗,u∗,y∗) is a Θ-local minimal solution to problem (GBOCP), then (x∗,u∗,y∗) is
clearly a Θ-local minimal solution to problem (3.4). As (3.4) is partially calm at (x∗,u∗,y∗),
according to Proposition 3.4, one has that (x∗,u∗,y∗) is a Θ-local minimal solution to (P[β ]) for
some β > 0. Set Z :=

{
(a,b) ∈ Rn×Rd : G(a,b)≤ 0

}
. Considering y∗ as a constant state

function, we see that (x∗,u∗,y∗) is a Θ-local minimal solution to the following optimal control
problem: 

min
(x,y),u

f
(
x(t f ),y(t f )

)
+βϕGF(x(t f ),y(t f ))

subject to ẋ(t) = φ (t,x(t),u(t)) a.e. t ∈
[
ti, t f

]
ẏ(t) = 0 a.e. t ∈

[
ti, t f

]
x(ti) = x0

g(t,x(t))≤ 0 ∀t ∈
[
ti, t f

]
u(t) ∈U a.e. t ∈

[
ti, t f

](
x(t f ),y(t f )

)
∈Z .

It follows from Theorem 2.7 that there exist two functions p1 ∈W [n], p2 ∈W [d], a nonnegative
Borel measure λ ∈ C p

0
(
[ti, t f ]

)
and a constant τ ≥ 0 satisfying for almost every t ∈ [ti, t f ]:

‖R‖L∞([ti,t f ],Rn) +‖p2‖W [d]+λ (]ti, t f ])+ τ > 0; (4.1)

− ṗ1(t)> = R(t)>∇xφ (t,x∗(t),u∗(t)) ; (4.2)

− ṗ2(t) = 0; (4.3)

R(t)>φ (t,x∗(t),u∗(t)) = max
w∈U

R(t)>φ (t,x∗(t),w) ; (4.4)

p2(0) = 0; (4.5)(
−R(t f ),−p2(t f )

)
∈
{(

τ∇x(t f ) f
(
x∗(t f ),y∗(t f )

)
,τ∇y(t f ) f

(
x∗(t f ),y∗(t f )

))}
+τβ∂ cϕGF

(
x∗(t f ),y∗(t f )

)
+N

(
Z ,
(
x∗(t f ),y∗(t f )

))
;

(4.6)

supp(
(
[ti, t f ],Rn))⊂ {t ∈ [ti, t f ] : g(t,x∗(t)) = 0

}
; (4.7)

where R : [ti, t f ]→ Rn is given by:

R(t) :=


p1(t)+

∫
[ti,t[

∇xg(s,x∗(s))λ (ds) if ti ≤ t < t f ,

p1(t f )+
∫
[ti,t f ]

∇xg(s,x∗(s))λ (ds) if t = t f .

Combining (4.3) and (4.5), we obtain p2 ≡ 0. Then, the enhanced nontriviality condition (T1)
follows from (4.1). Take p ≡ p1. Then, the adjoint equation (T2) follows from (4.2) and the
Weierstrass-Pontryagin condition (T3) follows from (4.4). Observe that condition (4.7) is the
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support condition (T5). From (C4), we have

N
(
Z ,
(
x∗(t f ),y∗(t f )

))
⊆

{ (
∇x(t f )G

(
x∗(t f ),y∗(t f )

)>
η ,∇y(t f )G

(
x∗(t f ),y∗(t f )

)>
η

)
η ≥ 0, η>G

(
x∗(t f ),y∗(t f )

)
= 0
}
.

Recall that y∗(t f )= y∗. According to (4.6), there is ξ =(ξ1,ξ2)
> ∈ ∂ cϕGF

(
x∗(t f ),y∗

)
satisfying

complementarity condition (T7) and η1 ∈ Rq
+ such that

−R(t f ) =τ

(
∇x(t f ) f

(
x∗(t f ),y∗

)
+βξ1

)
+∇x(t f )G

(
x∗(t f ),y∗

)>
η1,

0 =τ
(
∇y f

(
x∗(t f ),y∗

)
+βξ2

)
+∇yG

(
x∗(t f ),y∗

)>
η1.

(4.8)

Proposition 4.1 implies that there exists l ∈ N∗, (αi)2≤i≤l ⊂ R+ with
l
∑

i=2
αi = 1, and for all

i∈ {2, . . . , l}, there exist zi ∈Λ
(
x∗(t f ),y∗

)
and ηi ∈B(x∗,y∗)(zi) satisfying variational inequality

condition (T6), and

ξ =


l

∑
i=2

αi

[
∇x(t f )F

(
x∗(t f ),y∗

)>
(y∗− zi)−∇x(t f )G

(
x∗(t f ),zi

)>
ηi

]
l

∑
i=2

αi

[
∇yF

(
x∗(t f ),y∗

)>
(y∗− zi)+F

(
x∗(t f ),y∗

)]
 ,

so we obtain transversality condition (T4) and multiplier condition (T8) from (4.8). The proof
is complete. �

Example 4.3. To emphasize our findings, we take into consideration the subsequent problem:

min
x,u,y

(x1(1)+5)2−2x2(1)+ y

subject to ẋ1(t) =−2x2(t)+u1(t) a.e. t ∈ [0,1]

ẋ2(t) = 2t2−2t−4+u2(t) a.e. t ∈ [0,1]

x(0) =
(

1
3
,3
)>

− x2(t)≤ 0 ∀t ∈ [0,1]
u(t) ∈ [−1,3]× [3,5] a.e. t ∈ [0,1]
y ∈ S (x(1)) ,

(4.9)

where S (x(1)) is the solution set of the variational inequality: y− z ≤ 0 for all z ∈ K (x(1)) ,
with K (x(1)) := {z ∈ R : 2x2(1)− z≤ 0 and − z≤ 0} .
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A comparison between problem (GBOCP) and problem (4.9) gives us:

ti := 0,

t f := 1,

x := (x1,x2)
> ,

u := (u1,u2)
> ,

f (x(1),y) := (x1(1)+5)2−2x2(1)+ y,

φ (t,x(t),u(t)) :=
(
−2x2(t)+u1(t),2t2−2t−4+u2(t)

)>
,

x0 :=
(

1
3
,3
)>

,

g(t,x(t)) :=−x2(t),

U := [−1,3]× [3,5],

F (x(1),y) := 1,

G(x(1),y) := (2x2(1)− y,−y)> ,

n = m = q := 2

d := 1.

As we have already mentioned, S (x(1)) represents the solution set of the following paramet-
ric problem:

min
z
〈F (x(1),y) ,z〉R subject to z ∈ K (x(1)). (4.10)

Then, S (x(1)) is given by

S (x(1)) :=
{{0} if x2(1)≤ 0,
{2x2(1)} if x2(1)≥ 0.

Now, the point (x∗,u∗,y∗) which is defined by

x∗1(t) :=
2
3

t3 + t2−7t +
1
3

∀t ∈ [0,1],

x∗2(t) :=−t2 + t +3 ∀t ∈ [0,1],
u∗1(t) := 4t−1 ∀t ∈ [0,1],

u∗2(t) :=−2t2 +5 ∀t ∈ [0,1],
y∗ := 6;

(4.11)

is a global minimal solution to (4.9). Thus(x∗,u∗,y∗) is a Θ-local minimal solution to (4.9). By
definition of the gap function, we have

z∗ ∈ S0 (x∗(1),y∗)⇔ 0 = 〈F (x∗(1),y∗) ,y∗− z∗〉R⇔ y∗ = z∗.

Hence, Λ(x∗(1),y∗) = {6}.
By a simple calculation, we find that A(x∗,y∗)

(
Λ
(
x∗(t f ),y∗

))
= {0}. By Proposition 4.1,

we see that ϕGF is Lipschitz continuous near (x∗(1),y∗). Problem (4.10) is fully linear. [24,
Proposition 4.1] gives that problem (4.9) is partially calm at (x∗,u∗,y∗). By construction, all
conditions (C1)-(C6) are satisfied.
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Consequently, according to Theorem 4.2, there exist p ∈ W [2], an integer l ∈ N∗, a finite
family of scalars (α)2≤i≤l ⊂ R+ with ∑

l
i=2 αi = 1 , a finite family of vectors (ηi)1≤i≤l ⊂ R2

+, a
finite family of vectors (zi)1≤i≤l ⊂ Λ(x∗(1),y∗) verified for all i ∈ {2, . . . , l}: ηi ∈B(x∗,y∗)(zi),
a measure λ ∈ C p

0
(
[0,1],R2) and some τ ≥ 0, β > 0 such that:

(1) the enhanced nontriviality condition: ‖R‖L∞([0,1],R2) +λ (]0,1])+ τ > 0,

(2) the adjoint equation: for almost every t ∈ [0,1]
(

ṗ1(t)
ṗ2(t)

)
=

(
0

2R1(t)

)
;

(3) the Weierstrass–Pontryagin condition: for almost every t ∈ [0,1]

R1(t)(−2x∗2(t)+u∗1(t))+R2(t)
(
2t2−2t−4+u∗2(t)

)
= max

w∈U

[
R1(t)(−2x∗2(t)+w1)+R2(t)

(
2t2−2t−4+w2

)]
;

(4) the transversality condition:(
R1(1)
R2(1)

)
= 2

(
0

τ−η1,1

)
+2τβ

l

∑
i=2

(
0

αiηi,1

)
;

(5) the support condition: supp(λ )⊂ /0;
(6) the variational inequality condition, for all i∈{2, . . . , l}, 1−ηi,1−ηi,2 = 0, ηi,1 (6− zi)−

ηi,2zi = 0;
(7) the complementarity condition: −6η1,2 = 0;
(8) the multiplier condition: τ (1+β )−η1,1−η1,2 = 0,

where the function R is defined by:

R(t) := (R1(t),R2(t))
> =

p1(t),


p2(t)−

∫
[0,t[

λ (ds) if 0≤ t < 1

p2(1)−
∫
[0,1]

λ (ds) if t = 1


>

.

According to the complementarity condition and the multiplier condition, we find that η1 =

(τ (1+β ) ,0)> . Since Λ(x∗(1),y∗) = {6}, we have zi = 6 for all i∈ {2, . . . , l}. Therefore, under
the variational inequality condition, we have ηi = (1,0)> for all i ∈ {2, . . . , l}.

The function R’s construction indicates R1 ≡ p1. R1 and p1 are both constant functions,
according to the adjoint equation. The transversality condition gives us that R(1) = 0, therefore
R1≡ p1≡ 0. Hence, p2 is also a constant function. Let µ := µLeb◦χF with µLeb be the Lebesgue
measure and F :=]−∞,0[∪]1,+∞[. It is easy to see that the support condition is verified by µ .
Hence, we have R2(t) = p2(t) for all t ∈ [0,1]. Consequently, from the transversality condition,
we obtain R2(t) = p2(t) = −τ − 2τβ for all t ∈ [0,1]. Finally, in our case, the choice of τ is
unproblematic as long as τ > 0.

5. DISCUSSION

In this section, we show that the Pontryagin optimality conditions for problem (GBOCP) gave
more information than various optimal control problems. Here, we focus on bilevel optimal
control problems. More precisely, we compare our maximum principle in Theorem 4.2 to
that stated for bilevel optimal control problems in [19, Theorem 4.3], which both lead to two
different Pontryagin optimality conditions.
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Consider the bilevel optimal control problem shown below

min
x,u,y

f
(
x(t f ),y

)
subject to ẋ(t) = φ (t,x(t),u(t)) a.e. t ∈ [ti, t f ]

x(0) = x0

g(t,x(t))≤ 0 ∀t ∈ [ti, t f ]

u(t) ∈U a.e. t ∈ [ti, t f ]

y ∈Π
(
x(t f )

)
,

(BOCP)

where Π
(
x(t f )

)
is the solution set of the following fully convex parametric optimization prob-

lem:
min

y
h
(
x(t f ),y

)
subject to y ∈ K

(
x(t f )

)
, (P[x(t f )])

with h : Rn×Rd→R. Using the value function V : Rn→R, which is defined by, for all x(t f ) ∈
Rn, V

(
x(t f )

)
:= inf

y

{
h
(
x(t f ),y

)
: y ∈ K

(
x(t f )

)}
, one has that problem (BOCP) is equivalent

to: 

min
x,u,y

f
(
x(t f ),y

)
subject to ẋ(t) = φ (t,x(t),u(t)) a.e. t ∈ [ti, t f ]

x(0) = x0

g(t,x(t))≤ 0 ∀t ∈ [ti, t f ]

u(t) ∈U a.e. t ∈ [ti, t f ]

h
(
x(t f ),y

)
−V

(
x(t f )

)
≤ 0

G
(
x(t f ),y

)
≤ 0.

(5.1)

From the KKT optimality condition, one sees that y∗ ∈Π
(
x(t f )

)
is equivalent to〈

∇yh
(
x(t f ),y∗

)
,y∗− z

〉
≤ 0, ∀z ∈ K

(
x(t f )

)
.

Consequently, bilevel optimal control problem (BOCP) can now be considered an optimal con-
trol problem with variational inequality constraints (GBOCP).

Under the hypotheses of Theorem 4.2, we have the following Pontryagin optimality condi-
tions for problem (GBOCP):

(T1): the enhanced nontriviality condition: ‖R‖L∞

([ti,t f ],Rn)
+λ

(
]ti, t f ]

)
+ τ > 0;

(T2): the adjoint equation, for almost every t ∈ [ti, t f ],−ṗ(t)>=R(t)>∇xφ (t,x∗(t),u∗(t)) ;
(T3): the Weierstrass–Pontryagin condition, for almost every t ∈ [ti, t f ],

R(t)>φ (t,x∗(t),u∗(t)) = max
w∈U

R(t)>φ (t,x∗(t),w) ;

(T4): the transversality condition:

−R(t f ) =τ

(
∇x(t f ) f

(
x∗(t f ),y∗

)
+β

(
l

∑
i=2

αi

[
∇x(t f )∇yh

(
x∗(t f ),y∗

)>
(y∗− zi)

−∇x(t f )G
(
x∗(t f ),zi

)>
ηi

]))
+∇x(t f )G

(
x∗(t f ),y∗

)>
η1;
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(T5): the support condition: supp(λ )⊆
{

t ∈ [ti, t f ] : g(t,x∗(t)) = 0
}

;
(T6): the variational inequality condition: for all i ∈ {2, . . . , l}

∇yh
(
x∗(t f ),y∗

)
+∇yG

(
x∗(t f ),zi

)>
ηi = 0, η

>
i G
(
x∗(t f ),zi

)
= 0;

(T7): the complementarity condition: η>1 G
(
x∗(t f ),y∗

)
= 0;

(T8): the multiplier condition:

0 =τ

(
∇y f

(
x∗(t f ),y∗

)
+β

(
l

∑
i=2

αi

[
∇

2
yh
(
x∗(t f ),y∗

)>
(y∗− zi)+∇yh

(
x∗(t f ),y∗

)]))
+∇yG

(
x∗(t f ),y∗

)>
η1;

where the function R : [ti, t f ]→ Rn is given by:

R(t) :=


p(t)+

∫
[ti,t[

∇xg(s,x∗(s))λ (ds) if ti ≤ t < t f ,

p(t f )+
∫
[ti,t f ]

∇xg(s,x∗(s))λ (ds) if t = t f .

According to our knowledge, the first finding on optimality conditions for bilevel optimal
control problems was identified in [19]. These conditions were detected via the notion of Clarke
subdifferential by using the same reformulation stated in (5.1). The Pontryagin optimality con-
ditions in the latter paper can easily be recovered from Theorem 4.2 while rewriting (BOCP) as
an optimal control problem with variational inequality constraints (GBOCP). Indeed,

(1) The enhanced nontriviality condition, the adjoint equation, the Weierstrass-Pontryagin
condition, and the support condition are the same in Theorem 4.2 and [19, Theorem 4.3]
because all these conditions are associated with only leader data.

(2) Furthermore, since both problems (GBOCP) and (BOCP) have the same lower inequal-
ity constraints, their complementarity conditions are identical.

(3) In contrast to Theorem 4.2, the transversality condition, the follower’s optimality con-
dition, and the multiplier condition of [19, Theorem 4.3] have the following forms,
respectively.
(iv) −R

(
t f
)
= ∇x(t f )G

(
x∗(t f ),y∗

)>
(η1− τβη2)+ τ∇x(t f ) f

(
x∗(t f ),y∗

)
;

(vi) ∇yh
(
x∗(t f ),y∗

)
+∇yG

(
x∗(t f ),y∗

)>
η2 = 0, η>2 G

(
x∗(t f ),y∗

)
= 0;

(viii) τ
(
∇y f

(
x∗(t f ),y∗

)
+β∇yh

(
x∗(t f ),y∗

))
+∇yG

(
x∗(t f ),y∗

)>
η1 = 0.

It is noticeable that conditions (T4), (T6), and (T8) significantly differ from (iv), (vi), and
(viii), and the fundamental reason for this is the differing nature of the gap function applied.
The absence of second-order terms in Theorem [19, Theorem 4.3] is the most visible difference
between the results. This discovery implies that the subdifferential estimate of the optimal value
function in [19, Theorem 4.3] plays a very restricted role. Imagine a situation in which the
follower of (GBOCP) has no constraints, which results in K

(
x(t f )

)
= Rd . Since the inequality

constraints G
(
x(t f ),y

)
≤ 0 are absent, the conditions of (iv), (vi), and (viii) are reduced to the

following form, respectively.
(iv) −R

(
t f
)
= τ∇x(t f ) f

(
x∗(t f ),y∗

)
;

(vi) ∇yh
(
x∗(t f ),y∗

)
= 0;

(viii) τ∇y f
(
x∗(t f ),y∗

)
= 0.



GENERALIZED BILEVEL OPTIMAL CONTROL PROBLEMS 247

While Theorem 4.2 continues to provide significantly greater information regarding the exis-
tence of V such that

(T4): the transversality condition:

−R(t f ) =τ

(
∇x(t f ) f

(
x∗(t f ),y∗

)
+β

l

∑
i=2

αi

[
∇x(t f )∇yh

(
x∗(t f ),y∗

)>
(y∗− zi)

])
;

(T6): the variational inequality condition: ∇yh
(
x∗(t f ),y∗

)
= 0;

(T8): the multiplier condition:

0 = τ

(
∇y f

(
x∗(t f ),y∗

)
+β

l

∑
i=2

αi

[
∇

2
yh
(
x∗(t f ),y∗

)>
(y∗− zi)

])
.

6. CONCLUSIONS

In this paper, we developed Pontryagin optimality conditions for a generalized bilevel optimal
control problem with pure state constraints in the leader. Using the gap function, we converted
the problem under consideration into a single level optimal control problem. In order to accom-
plish our goal, we used a variety of tools, including partial penalization. Since the gap function
is not differentiable, we used a few results of nonsmooth analysis. We specifically provided an
estimation of the gap function’s Clarke subdifferential. We imposed other hypotheses on our
problem to make sure that the derived optimality conditions were not degenerate. Finally, we
discussed the case that our results indicate that the maximum principle for generalized bilevel
optimal control problems using the gap function approach is more efficient than the maximum
principle for bilevel optimal control problems using the optimal value function approach when
(BOCP) is expressed as a (GBOCP).
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