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Abstract. The purpose of this paper is to derive primal and dual second-order necessary optimality con-
ditions for a standard bilevel optimization problem with both smooth and nonsmooth data. The approach
involves utilizing two different reformulations of the hierarchical model as a single-level problem under a
partial calmness assumption. The first reformulation consists on the use of the value function of the lower-
level problem, which is then tackled by using second-order directional derivatives. However, for the dual
conditions, this approach is not suitable except for cases that the value function is smooth. Therefore, we
adopt a second approach that relies on the Ψ-reformulation. In both cases, the obtained necessary optimality
conditions can be expressed according to the problem data. Finally, some examples are given to illustrate
the proven results.
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1. INTRODUCTION

Bilevel programming has emerged as a significant area of research in modern optimization the-
ory. It involves a hierarchical structure comprising two decision levels, upper and lower, with the
constraint region of the upper-level problem determined implicitly by the solution set to the lower-
level problem. These applications are used in many different fields, including finance, economics,
chemistry, and logistics.

The standard bilevel optimization problem, which we consider throughout this paper, is defined
as follows

min
x,y
{F(x,y) | G(x,y)≤ 0,y ∈ S(x)}, (BOP)

also known as the upper-level problem, and the lower-level problem

min
y
{ f (x,y) | g(x,y)≤ 0}. (P[x])
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The optimal solution mapping of the lower-level problem (P[x]) is represented by the set-valued
mapping S : Rn⇒ Rm, which is defined as follows:

∀x ∈ Rn : S(x) := argmin
y
{ f (x,y) | g(x,y)≤ 0}. (1.1)

Problem (BOP) has a two-level structure, upper-level problem with the objective function F : Rn×
Rm→ R, and constraint function G : Rn×Rm→ RP of components G1, . . . ,Gp : Rn×Rm→ R.
The lower-level problem (P[x]) of (BOP) has as objective function f :Rn×Rm→R, and constraint
function g : Rn×Rm→ Rq of components g1, . . . ,gq : Rn×Rm→ R. Note that the minimization
in (BOP) is done with respect to x and y.

Bilevel programs are mathematically difficult to study, as they are generally irregular, non-
convex, and non-smooth. A reformulation of the hierarchical model as a single-level program
results in surrogate problems that have an inherent lack of smoothness, convexity, and regular-
ity. To address this issue, various methods were devised and developed to determine necessary
optimality conditions for bilevel optimization problems.

The use of second-order optimality conditions can be very helpful in both understanding the
properties of the solution and analyzing the convergence of solution algorithms. In particular,
second-order conditions can help to determine whether a local optimum is also a global optimum,
which is important to ensure the quality of a solution. They can also provide information about the
sensitivity of the solution to changes in the problem data, which is efficient in understanding the
robustness of the solution.

Overall, the use of second-order conditions in bilevel optimization holds great promise for im-
proving the understanding and solution of these challenging optimization problems. There are
numerous results on second-order conditions, including [1, 6, 15] for problems with C2 and C1.1

data, and [16, 23] for problems with only C1 data.
In the literature, few authors investigated the second-order necessary optimality conditions for

bilevel optimization problems. Dempe and Gadhi [9] utilized an approximation of the contingent
cone to the feasible set of the bilevel problem and described it by using a support function to an
auxiliary set-valued mapping. This approach enables them to establish second-order necessary
and sufficient optimality conditions for the optimistic case of bilevel. Lafhim [22] investigated
second-order necessary and sufficient optimality conditions for the optimistic case of a bilevel
multiobjective programming problem under a generalized Abadie constraint qualification without
the assumption that the lower-level problem satisfies the Mangasarian Fromovitz constraint qualifi-
cation (MFCQ) by using the optimal value function of the lower-level problem. However, all these
optimality conditions may not always capture the inherent complexities of bilevel optimization
because they do not rely on the initial problem data.

To obtain second-order necessary optimality conditions in terms of initial data of problem
(BOP), one may reformulate it as a single-level optimization problem and apply optimality condi-
tions to the single-level problem under a partial calmness assumption considered by Ye and Zhu
[31], using two different approaches. The first approach for reformulation involves utilizing the
value function of the bilevel optimization problem and applying second-order directional deriva-
tives. However, this method may not be appropriate for the dual conditions, except in cases that
the value function is smooth. As a result, we chosen to use the second approach, which involves
relying on the Ψ-reformulation, introduced by Ye in [29] as well as the concept of partial calmness,
considered by Ye and Zhu in [31].
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The remaining parts of this paper are organized as follows. In Section 2, we briefly summarize
some reminders, definitions and regularity conditions used in rest of the paper. We use lower-level
value function reformulation (LLV F) and the concept of partial calmness to derive second-order
optimality conditions in Section 3. Section 4 is dedicated to the Ψ-reformulation of (BOP) to
obtain second-order necessary optimality conditions (Primal and dual) for the bilevel optimization
problem under consideration. Finally, in Section 5, we provide a conclusion and discuss future
directions for research.

2. PRELIMINARIES

2.1. Notations and constraint qualifications. Next, we give some constructions that we need in
the sequel. We set I = {1, . . . , p} and J = {1, . . . ,q}.

Let us define the set of feasible points of lower-level problem (P[x])

Π := {(x,y) ∈ Rn×Rm | g(x,y)≤ 0},

and the set-valued map

Y (x) := {y ∈ Rm | (x,y) ∈Π}, ∀x ∈ Rn,

which provides all lower-level feasible points for a given value of x. Let

domY = {x ∈ Rn | Y (x) 6= /0} and gphY = {(x,y) | x ∈ Rn,y ∈ Y (x)}.

For our lower-level problem (P[x]), we define the lower-level Lagrangian function ` by

`(x,y,w) := f (x,y)+w>g(x,y), ∀(x,y,w) ∈ Rn×Rm×Rq.

For any vector (x,y) ∈ gphY , the set of lower-level Lagrange multipliers is defined as

Λ(x,y) :=
{

w ∈ Rq | ∇y`(x,y,w) = 0,w≥ 0,g(x,y)≤ 0,w>g(x,y) = 0
}
.

For d1 ∈ Rn, let

Λ
2(x,y,d1) :=

{
w ∈ Λ(x,y) | 〈∇x`(x,y,w),d1〉= max

ω∈Λ(x,y)
〈∇x`(x,y,ω),d1〉

}
.

We denote by
Ω := {(x,y) ∈ Rn×Rm | G(x,y)≤ 0,g(x,y)≤ 0},

the set of feasible points of (BOP). For every feasible point (x̄, ȳ) ∈Ω, we define

ĪG = IG(x̄, ȳ) := {i ∈ I | Gi(x̄, ȳ) = 0} , and

Īg = Ig(x̄, ȳ) :=
{

j ∈ J | g j(x̄, ȳ) = 0
}
,

as the set of active constraints for the upper-level problem and the lower-level problem, respec-
tively.

The following standard conditions, called, LLICQ, LSOSC, and LMFCQ are applied to the
lower-level problem.

1. LLICQ. The lower-level linear independence constraint qualification (LLICQ) is verified at
a point (x̄, ȳ) ∈ gphY if the family of gradient vectors

{∇yg j(x̄, ȳ) , j ∈ Īg}

is linearly independent.
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2. LMFCQ. The lower-level Mangasarian-Fromovitz-Constraint-Qualification (LMFCQ) is
said to hold at a point (x̄, ȳ) ∈ gphY if there is a vector d ∈ Rm such that

∇yg j(x̄, ȳ)T d < 0 , ∀ j ∈ Īg.

Since (LMFCQ) confirms the positive linear independence of the gradients of active lower-level
constraints, it is obviously weaker than (LLICQ). For further discussion on these conditions, we
refer to Bazaraa et al. [4] and Janin [19].

3. LSOSC. We define the lower-level critical cone at (x̄, ȳ) ∈ gphY as

C l(x̄, ȳ) =
{

d2 ∈ Rm ∇y f (x̄, ȳ)T d2 = 0
∇yg j(x̄, ȳ)T d2 ≤ 0 , j ∈ Īg

}
.

The lower-level second-order sufficient condition (LSOSC) is verified at (x̄, ȳ) if we have

∀d2 ∈ C l(x̄, ȳ)\{0} , ∃w ∈ Λ(x̄, ȳ) : dT
2 ∇

2
yy`(x̄, ȳ,w)d2 > 0.

2.2. Generalized differentiation. In this subsection, we review some basic first-order directional
differentiability concepts; see, e.g., [7, 27]. To proceed, let ψ : Rn → R and x̄ ∈ domψ . For a
direction d ∈ Rn, the limits

ψ
+
d (x̄,d) := limsup

t↓0

ψ(x̄+ td)−ψ(x̄)
t

and ψ
−
d (x̄,d) := liminf

t↓0

ψ(x̄+ td)−ψ(x̄)
t

are, respectively, referred to as the upper and lower Dini directional derivatives of ψ at x̄ in the
direction d. We denote the directional derivative of ψ at x̄ in the direction d by

ψ
′(x̄,d) := lim

t↓0

ψ(x̄+ td)−ψ(x̄)
t

. (2.1)

This first-order derivative is in Gâteaux’s sense. In a similar way, we define the upper and lower
Hadamard directional derivatives of ψ at x̄ in the direction d as

ψ
+
H (x̄,d) := limsup

t↓0,u→d

ψ(x̄+ tu)−ψ(x̄)
t

and ψ
−
H (x̄,d) := liminf

t↓0,u→d

ψ(x̄+ tu)−ψ(x̄)
t

.

When it exists, we call

ψ
H(x̄,d) := lim

t↓0,u→d

ψ (x̄+ tu)−ψ(x̄)
t

the directional Hadamard direvative of ψ at x̄. Also, we recall that the Clarke directional derivative
of ψ at x̄ in the direction d is given by

ψ
◦(x̄,d) := limsup

t↓0,x→x̄

ψ(x+ td)−ψ(x)
t

.

We say that ψ is directionally differentiable at x̄ if, for each d ∈ Rn, ψ ′(x̄,d) exists. Similarly, ψ

is Hadamard or Clarke directionally differentiable at x̄ if the corresponding directional derivative
ψH(x̄,d) or ψ◦(x̄,d) exists for each d ∈ Rn.

In the following result, we list some important properties of the above directional derivatives.

Proposition 2.1. Let ψ : Rn→R and x̄ ∈ domψ . Let ψ be locally Lipschitz continuous at x̄. Then
(1) ψ

+
d (x̄, ·) and ψ

−
d (x̄, ·) are bounded and continuous w.r.t the second argument.

(2) For any d ∈ Rn, ψ
+
H (x̄,d) = ψ

+
d (x̄,d), and ψ

−
d (x̄,d) = ψ

−
H (x̄,d).
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(3) If ψ is directionally differentiable at x̄, then it is also Hadamard directionally differentiable
at x̄. Furthermore, ψ ′(x̄, ·) and ψH(x̄, ·) coincide.

(4) If ψ is continuously differentiable at x̄, then, for any d ∈ Rn, all of the generalized deriva-
tives mentioned above are equal to ∇ψ(x̄)>d, i.e.,

ψ
′(x̄,d) = ψ

H(x̄,d) = ψ
◦(x̄,d) = ∇ψ(x̄)>d.

Recall that a locally Lipschitz function ψ : Rn→ R is said to be regular at a point x̄ ∈ domψ if
the directional derivative ψ ′(x̄,d) exists in every direction d ∈ Rn and ψ ′(x̄,d) = ψ◦(x̄,d) in any
direction d ∈ Rn (Clarke [7]).

Below, we look at a second-order directional derivative that was used to analyze second-order
necessary optimality conditions of optimization problems; see [5]. ψ is said to be second-order
directionally differentiable at a point x̄ if both limit (2.1) and

ψ
′′(x̄,d,w) := lim

t↓0

ψ
(
x̄+ td + 1

2t2w
)
−ψ(x̄)− tψ ′(x̄,d)

1
2t2

(2.2)

exist for each choice of d,w∈Rn. If this limit exists, it is called second-order directional derivative
of ψ at the point x̄ with respect to the directions d and w. Note that, for w = 0, definition (2.2)
coincides with the proposal for a second directional derivative, due to Demyanov and Pevnyi [11]

ψ
′′(x̄,d) := lim

t↓0

ψ (x̄+ td)−ψ(x̄)− tψ ′(x̄,d)
1
2t2

.

Finally, we introduce the Páles and Zeidan’s [26] second-order upper generalized directional
derivative of ψ at x̄ in direction d ∈ Rn by

ψ
◦◦(x̄,d) = limsup

t↓0
2

ψ(x̄+ td)−ψ(x̄)− tψ◦(x̄,d)
t2 .

2.3. Partial calmness and exact penalization. In the following section, we present uniform para-
metric error bounds and demonstrate their usefulness in obtaining exact penalty formulations for a
general optimization problem. Consider the following optimization problem

min
x
{h(x) | α(x) = 0, β (x)≤ 0, x ∈C}, (2.3)

where h : Rn→R, α : Rn→R, β : Rn→Rm, and C is a closed subset of Rn. We assume that both
α and β are lower semicontinuous. The associated partially perturbed problem can be formulated
as:

min
x
{h(x) | α(x) = ε, β (x)≤ 0, x ∈C}, (2.4)

where ε ∈ R. The following definition was initially presented in [30].

Definition 2.1. (Partial calmness) Let x̄ solve (2.3). We say that (2.3) satisfies the partial calmness
property at x̄ if there exist positive constants κ, δ such that, for all ε ∈ δB and all x ∈ x̄+δB that
are feasible for (2.4), the following inequality holds:

h(x)−h(x̄)+κ|α(x)| ≥ 0,

where B denotes the open unit ball in Rn.
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The condition of partial calmness differs from the calmness condition introduced by Clarke and
Rockafellar (see, for example, [7]), in which only the equality constraint α(x) = 0 is perturbed.
Calmness was shown to be closely related to the concept of ”exact penalization” in [7, Prop. 6.4.3].
Specifically, if x̄ is a local solution to (2.3) and problem (2.3) is calm at x̄, then x̄ is a local solution
to a penalized problem.

The following proposition demonstrates that the concept of partial calmness is equivalent to
local exact penalization.

Proposition 2.2. [12, Lemma 5] Under the assumptions that h is continuous at x̄, and x̄ is a local
minimum to (2.3) and (2.3) is partially calm at x̄, there exists κ∗ > 0 such that, for all κ ≥ κ∗, x̄ is
a local minimum to the following penalized problem

min
x

h(x)+κ|α(x)|
β (x)≤ 0
x ∈C.

(2.5)

Moreover, any local minima of (2.5) with κ > κ∗ in a neighborhood of x̄, where x̄ is a local
minimum, is also local minima to (2.3).

2.4. R-regularity. Let v ∈ Rm and D ⊂ Rm. We can represent ρ(v,D) as the smallest distance
between v and any point y in the set D, i.e.,

ρ(v,D) = inf
y∈D
|v− y|,

where | · | denotes the Euclidean norm.
Let Γ : Rn⇒ Rm be a multi-valued mapping, and let z0 = (x0,y0) ∈ gphΓ.
• Γ is said to be R-regular at z0 if there exist numbers α > 0,δ1 > 0, and δ2 > 0 such that

ρ(y,Γ(x))≤ α max{0,gi(x,y)}
for all x ∈ x0 +δ1B and y ∈ y0 +δ2B.
• The set Γ(x0) is said to be R-regular at y0 if there exist numbers α > 0 and δ > 0 such that

ρ (y,Γ(x0))≤ α max{0,gi (x0,y)} ,
for all y ∈ y0 +δB.

Remark 2.1. • It should be noted that if Γ satisfies R-regularity for z = (x,y) ∈ gphΓ, it is
necessary that x belongs to the interior of domΓ.
• It is known that if the Mangasarian-Fromovitz regularity condition holds at a point z =
(x,y) ∈ gphΓ, then the R-regularity of the multi-valued mapping Γ also holds at that point.
However, the converse is not generally true; see [25].

Among the various Lipschitz-type properties of multi-valued mappings, two important ones are
pseudo-Lipschitz continuity [2] and upper pseudo- Lipschitz continuity (also known as calmness)
[17, 18].

The multi-function Γ can be characterized by several Lipschitz-type properties:
• Γ is pseudo-Lipschitz at z0 if there exist neighborhoods V and W of x0 and y0, and a number

l > 0, such that
Γ(x1)∩W ⊂ Γ(x2)+ l |x2− x1|B,

for all x1,x2 ∈V .



SECOND-ORDER NECESSARY OPTIMALITY CONDITIONS 159

• Γ is upper pseudo-Lipschitz (or calm) at z0 if there exist neighborhoods V and W of x0 and
y0, and a number l > 0, such that

Γ(x)∩W ⊂ Γ(x0)+ l |x− x0|B,

for all x ∈V .
• Γ is locally upper Lipschitz at z0 = (x0,y0) if there exist neighborhoods V and W of x0 and

y0, and a number l > 0, such that

Γ(x)∩W ⊆ y0 + l |x− x0|B,

for all x ∈V .

It is clearly seen that any pseudo-Lipschitz multifunction is also upper pseudo-Lipschitz. How-
ever, pseudo-lipschitz does not implies, in general, local upper Lipschitzity; see [21] for a counter
example. The pseudo-Lipschitz property is also known as the local Lipschitz-like property or the
Aubin property of multifunctions [20].

3. SECOND-ORDER NECESSARY OPTIMALITY CONDITIONS VIA (LLV F) REFORMULATION

The aim of this section is to derive primal and dual second-order necessary optimality conditions
for a point (x,y) to be a local solution for (BOP) with nonsmooth data. To proceed, we employ the
optimal value function ϕ : Rn→ R defined by

∀x ∈ Rn : ϕ(x) := inf
y
{ f (x,y) | g(x,y)≤ 0},

which is associated with the lower-level problem (P[x]) with the set of optimal solutions given in
(1.1). Exploiting the lower-level value function ϕ , we obtain the classical equivalent single-level
problem of (BOP):

min
x,y
{F(x,y) | G(x,y)≤ 0, f (x,y)−ϕ(x)≤ 0,g(x,y)≤ 0}. (LLV F)

Typically, optimization problem (LLV F) does not satisfy the standard constraint qualifications
in nonsmooth programming, and it is not regular at all feasible points.

In order to establish necessary optimality conditions for (BOP), we employ a partial calmness
condition for nonsmooth optimization problem (LLV F). This condition penalizes the challenging
constraint f (x,y)− ϕ(x) ≤ 0 by adding it to the objective function. To this end, we study the
penalized problem 

min
x,y

κF(x,y)+ f (x,y)−ϕ(x)

G(x,y)≤ 0
g(x,y)≤ 0.

(LLVF[κ])

Functions F ,
(
Gi, i ∈ ĪG) and

(
g j, j ∈ Īg) are supposed to be locally Lipschitz near (x̄, ȳ). Letting

z̄ = (x̄, ȳ) ∈Ω and d = (d1,d2) ∈ Rn×Rm, we consider the sets

IG
0 (z̄,d) = {i ∈ ĪG : G◦i (z̄,d) = 0}, and

Ig
0 (z̄,d) = { j ∈ Īg : g◦j(z̄,d) = 0}.
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Finally, we define the critical cone (set of critical directions) at the point z̄ ∈Ω as

C (z̄) =

 d = (d1,d2) ∈ Rn×Rm
κF◦(z̄,d)+ f ◦(z̄,d)−ϕ

′
(x̄,d1) ≤ 0

G◦i (z̄,d) ≤ 0 , i ∈ ĪG

g◦j(z̄,d) ≤ 0 , j ∈ Īg

 .

We are now in a position to state the initial theorem, which establishes the primal second-order
necessary optimality conditions for (BOP).

Theorem 3.1. Let z̄ = (x̄, ȳ) be a local solution to (BOP), assumed to be partially calm at z̄.
Suppose that the functions F, f , (Gi, i∈ ĪG), and (g j, j∈ Īg) are locally Lipschitz and the functions
(Gi, i /∈ ĪG) and (g j, j /∈ Īg) are continuous at z̄. Moreover, suppose that the first and second-
order directional derivatives of ϕ exist at x̄ and the LMFCQ condition is satisfied at every point
(x̄,y) ∈ gph S and the set Π is non-empty and compact. Then, for every d = (d1,d2) ∈ C (z̄), the
system

κ (F◦(z̄,r)+F◦◦(z̄,d))+ f ◦(z̄,r)+ f ◦◦(z̄,d)−ϕ
′
(x̄,r1)−ϕ

′′
(x̄,d1)< 0 (3.1)

G◦i (z̄,r)+G◦◦i (z̄,d)< 0, i ∈ IG
0 (z̄,d) (3.2)

g◦j(z̄,r)+g◦◦j (z̄,d)< 0, j ∈ Ig
0 (z̄,d) (3.3)

has no solution r = (r1,r2) ∈ Rn×Rm.

Proof. Let z̄= (x̄, ȳ) be a local minimum solution to (BOP) at which (BOP) is partially calm. Then,
from Proposition 2.2, there exists κ > 0 such that z̄ is a local minimum to (LLVF[κ]). Since Π is
non-empty and compact and LMFCQ condition is satisfied at every point (x̄,y) ∈ gph S, then one
sees from [8, Theorem 4.14] that ϕ is locally Lipschitz continuous at x.

To establish the conclusion of the theorem, we assume by contradiction that there exists a critical
direction d = (d1,d2) ∈ C (z̄) such that system (3.1)-(3.2)-(3.3) has a solution r = (r1,r2) ∈ Rn×
Rm. The proof consists of several steps.

Step 1: Let us prove that there exists η > 0 such that z̄ + td + 1
2t2r is a feasible point to

(LLVF[κ]) for all t ∈ [0,η).
To proceed, three cases will be considered for both functions G and g:

(a) For every i ∈ I\ĪG, we have Gi(z̄)< 0. Hence, by continuity, there exists η i
1 > 0 such that

Gi
(
z̄+ td + 1

2t2r
)
< 0, for all t ∈

[
0,η i

1
)
.

(b) For every i ∈ ĪG\IG
0 (z̄,d), we have G◦i (z̄,d)< 0. We need to show that there exists η i

2 > 0
such that, for all t ∈

[
0,η i

2
)
,

Gi

(
z̄+ td +

1
2

t2r
)
< Gi(z̄) = 0.

Suppose by contradiction that, for any η > 0, there exists 0 < tη < η such that

Gi

(
z̄+ tηd +

1
2

t2
ηr
)
≥ Gi(z̄).

Let ηn > 0 be a sequence convergent to 0 as n→ ∞ and tn ∈ [0,ηn) such that

Gi

(
z̄+ tnd +

1
2

t2
n r
)
−Gi(z̄)≥ 0.
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To simplify the writing, we set in the following uη
n = z̄+ tnd and vη

n = z̄+ tnd + 1
2t2

n r. The
last inequality yields

0≤ limsup
tn→0

Gi
(
vη

n
)
−Gi(z̄)

tn

≤ limsup
tn→0

1
tn
[Gi (uη

n )−Gi(z̄)]+ limsup
tn→0

1
tn
[Gi (vη

n )−Gi (uη
n )]

≤ G◦i (z̄,d)+ limsup
tn→0

Litn‖r‖

as Gi is locally Lipschitz of constant Li > 0. Thus G◦i (z̄,d)≥ 0, which contradicts the fact
that i /∈ IG

0 (z̄,d).
(c) Let i ∈ IG

0 (z̄,d). Since G◦i (z̄,d) = 0, there exist η i
3 > 0 such that, for all t ∈

[
0,η i

3
)
,

Gi

(
z̄+ td +

1
2

t2r
)
< Gi(z̄) = 0.

To demonstrate this, let us suppose for the sake of contradiction that, for every η > 0, there
exists some 0 < tη < η such that

Gi

(
z̄+ tηd +

1
2

t2
ηr
)
≥ Gi(z̄) = 0.

Let ηn > 0 be a sequence convergent to 0 as n→ ∞ and tn ∈ [0,ηn). Then,

0 ≤ Gi
(
vη

n
)
−Gi(z̄)

=
t2
n
2

[
2
t2
n

(
Gi
(
vη

n
)
−Gi

(
uη

n
))]

+
t2
n
2

[
2
t2
n

(
Gi
(
uη

n
)
−Gi(z̄)− tnG◦i (z̄,d)

)]
.

We divide the inequality above by t2
n/2 and we take the upper limit as tn→ 0+. Then

0≤ G◦i (z̄,r)+G◦◦i (z̄,d).

This contradicts the assumption that r is a solution to system (3.2).

Consequently, setting η1 = min
i∈I

η i
1, for all i ∈ I, we have Gi

(
z̄+ td + 1

2t2r
)
≤ 0 for all t ∈[

0,η1) . As in the case (a)-(c), we obtain the existence of η2 = min
j∈J

η
j

2 such that, for all j ∈ J and

for all t ∈
[
0,η2), g j(z̄+ td + 1

2t2r)< 0.
Finally, there exists η > 0 with η = min {η1,η2} such that z̄+ td + 1

2t2r is a feasible point of
(LLVF[κ]) for all t ∈ [0,η).

Step 2: We show that there exists ν > 0, for all t ∈ [0,ν),

κF(z̄+ td +
1
2

t2r)+ f (z̄+ td +
1
2

t2r)−ϕ(x̄+ td1 +
1
2

t2r1)< κF(z̄)+ f (z̄)−ϕ(x̄).

We proceed in two cases.
(a) κF◦(z̄,d)+ f ◦(z̄,d)−ϕ

′
(x̄,d1)< 0.

Suppose by contradiction that, for any ν > 0, there exists tν ∈ [0,ν) such that

κF
(

z̄+ tνd +
1
2

t2
νr
)
+ f

(
z̄+ tνd +

1
2

t2
νr
)
−ϕ

(
x̄+ tνd1 +

1
2

t2
νr1

)
≥ κF(z̄)+ f (z̄)−ϕ(x̄).
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Let νn > 0 be a sequence convergent to 0 as n→ ∞ and tn ∈ [0,νn) such that

κF
(

z̄+ tnd +
1
2

t2
n r
)
+ f

(
z̄+ tnd +

1
2

t2
n r
)
−ϕ

(
x̄+ tνd1 +

1
2

t2
n r1

)
≥ κF(z̄)+ f (z̄)−ϕ(x̄).

For each n, we set uν
n = z̄+ tnd, vν

n = z̄+ tnd + 1
2t2

n r, aν
n = x̄+ tnd1, and bν

n = x̄+ tnd1 +
1
2t2

n r1. It
follows that

0≤ limsup
tn→0

(
κ

F (vν
n )−F(z̄)

tn
+

f (vν
n )− f (z̄)

tn
− ϕ (bν

n )−ϕ(x̄)
tn

)
≤ κ limsup

tn→0

F (vν
n )−F(z̄)

tn
+ limsup

tn→0

f (vν
n )− f (z̄)

tn
− liminf

tn→0

ϕ (bν
n )−ϕ(x̄)

tn
.

Inserting ±t−1
n F (uν

n ), ±t−1
n f (uν

n ), and ±t−1
n ϕ (aν

n ) in the last inequality, we obtain

0≤ κ limsup
tn→0

F (uν
n )−F(z̄)

tn
+κ limsup

tn→0

F (vν
n )−F (uν

n )

tn

+ limsup
tn→0

f (uν
n )− f (z̄)

tn
+ limsup

tn→0

f (vν
n )− f (uν

n )

tn

− liminf
tn→0

ϕ (aν
n )−ϕ(x̄)

tn
− liminf

tn→0

ϕ (bν
n )−ϕ(aν

n )

tn
.

Using the definition of various directional derivatives, we have

0≤ κF◦(z̄,d)+ f ◦(z̄,d)−ϕ
′
(x̄,d1)+ limsup

tn→0
LFtn‖r‖+ limsup

tn→0
L f tn‖r‖+ limsup

tn→0
Lϕtn‖r1‖,

as F , f , and ϕ are locally Lipschitz of constant LF > 0, L f > 0, and Lϕ > 0 respectively.
Thus κF◦(z̄,d)+ f ◦(z̄,d)−ϕ

′
(x̄,d1) ≥ 0, which contradicts the previously assumed fact that

κF◦(z̄,d)+ f ◦(z̄,d)−ϕ
′
(x̄,d1)< 0.

(b) κF◦(z̄,d)+ f ◦(z̄,d)−ϕ
′
(x̄,d1) = 0. Using the same arguments as in (a), one obtains

0 ≤ κ (F (vν
n )−F(z̄))+ f (vν

n )− f (z̄)−ϕ (bν
n )+ϕ(x̄)

= κ (F (vν
n )−F (uν

n ))+κ (F (vν
n )−κF(z̄)−F◦ (z̄,d))

+( f (vν
n )− f (uν

n ))+( f (uν
n )− f (z̄)− tn f ◦ (z̄,d))

−(ϕ (bν
n )−ϕ (aν

n ))−
(

ϕ (aν
n )−ϕ(x̄)− tnϕ

′
(x̄,d1)

)
.

We divide the inequality above by t2
n/2. Take the limit as tn→ 0+, we see that

0≤ κ (F◦(z̄,r)+F◦◦(z̄,d))+ f ◦(z̄,r)+ f ◦◦(z̄,d)−ϕ
′
(x̄,r1)−ϕ

′′
(x̄,d1).

This is in contradiction with the assumption that r satisfies system (3.1).
Step 3: In conclusion, taking ε = min{η ,ν}, we see that, for all t ∈ [0,ε),

κF
(

z̄+ td +
1
2

t2r
)
+ f

(
z̄+ td +

1
2

t2r
)
−ϕ

(
x̄+ td1 +

1
2

t2r1

)
< κF(z̄)+ f (z̄)−ϕ(x̄)

Gi

(
z̄+ td +

1
2

t2r
)
< 0, for all i ∈ I

g j

(
z̄+ td +

1
2

t2r
)
< 0, for all j ∈ J.

This implies that z̄ cannot be a local minimizer to problem (LLVF[κ]). Contradiction. �
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Remark 3.1. It is worth noting that Theorem 3.1 does not require the differentiability of value
function ϕ . The only requirement on ϕ is that it is locally Lipschitz continuous at x̄ and that
its first and second-order directional derivatives exist at x̄. While differentiability of ϕ may be
important in some specific cases, it does not affect the validity of the theorem. In fact, under
certain regularity conditions, the estimations of the first and second-order directional derivatives
of ϕ can be obtained. In the following, we provide several corollaries derived from Theorem 3.1,
which involve an approximation of the first directional derivative of ϕ using the initial problem
data.

Assuming in addition to the conditions of Theorem 3.1 that LLICQ holds at all points (x,y) ∈
gph S, it is possible to obtain an upper bound for the directional derivative of ϕ as shown in [14,
corollary 4.4] by Gauvin and Dubeau. Note that condition LMFCQ is implicitly satisfied by adding
condition LLICQ. Based on this bound, the following corollary can be easily derived.

Corollary 3.1. Let z̄ = (x̄, ȳ) be a local solution to problem (BOP), assumed to be partially calm
at z̄. Suppose that the functions F, f , (Gi, i ∈ ĪG), and (g j, j ∈ Īg) are locally Lipschitz and the
functions (Gi, i /∈ ĪG) and (g j, j /∈ Īg) are continuous at z̄. Moreover, suppose that the second-
order directional derivative of ϕ exists at x̄ and the conditions LLICQ is satisfied at every point
(x,y) ∈ gph S and the set Π is non-empty and compact. Then, for every d = (d1,d2) ∈ C (z̄), there
is no r = (r1,r2) ∈ Rn×Rm, which solves system (3.2), (3.3), and

κ (F◦(z̄,r)+F◦◦(z̄,d))+∇ f (z̄)T r+ f ◦◦(z̄,d)− min
y∈S(x)

〈∇x`(x,y,w) ,r1〉−ϕ
′′
(x̄,d1)< 0.

If functions f and (g j, j ∈ J) are convex with respect to the variable y for each value of x, and the
lower-level problem is convex, then the assumptions of Theorem 3.1 ensure that ϕ is directionally
differentiable; see [8, Theorem 4.16]. The existing formula for the directional derivative produces
slightly superior outcomes compared to the one presented in Corollary 3.1.

Corollary 3.2. Let z̄ = (x̄, ȳ) be a local solution to problem (BOP), assumed to be partially calm
at z̄. Suppose that the functions F, f , (Gi, i ∈ ĪG), and (g j, j ∈ Īg) are locally Lipschitz and
the functions (Gi, i /∈ ĪG), and (g j, j /∈ Īg) are continuous at (x̄, ȳ). Moreover, suppose that the
second-order directional derivative of ϕ exist at x̄ and the LMFCQ condition is satisfied at every
point (x̄,y) ∈ gph S and the set Π is non-empty and compact and the lower-level problem (P[x]) is
convex with respect to y. Then, for every d = (d1,d2) ∈ C (z̄), there is no r = (r1,r2) ∈ Rn×Rm

which solves system (3.2), (3.3) and

κ (F◦(z̄,r)+F◦◦(z̄,d))+∇ f (z̄)T r+ f ◦◦(z̄,d)− min
y∈S(x)

max
w∈Λ(x,y)

〈∇x`(x,y,w) ,r1〉−ϕ
′′
(x̄,d1)< 0.

According to [8, Corollary 4.7], if the lower-level problem is fully convex, it is unnecessary to
take into account the minimum over all lower-level solutions that are associated with the reference
point, which makes the situation even more favorable.

Corollary 3.3. Let z̄ = (x̄, ȳ) be a local solution to problem (BOP), assumed to be partially calm
at z̄. Suppose that the functions F, f , (Gi, i ∈ ĪG), and (g j, j ∈ Īg) are locally Lipschitz and the
functions (Gi, i /∈ ĪG) and (g j, j /∈ Īg) are continuous at z̄. Moreover, suppose that the second-
order directional derivatives of ϕ exist at x̄ and the LMFCQ condition is satisfied at every point
(x̄,y)∈ gph S and the set Π is non-empty and compact and the problem (P[x]) is convex with respect
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to (x,y). Then, for every d = (d1,d2)∈C (z̄), there is no r = (r1,r2)∈Rn×Rm which solves system
(3.2), (3.3), and

κ (F◦(z̄,r)+F◦◦(z̄,d))+∇ f (z̄)T r+ f ◦◦(z̄,d)− max
w∈Λ(z)

wT
∇xg(x,y)r1−ϕ

′′
(x̄,d1)< 0.

The first result about the existence of the second-order directional derivative of the value function
ϕ was obtained in [10] for the case when problem (P[x]) is convex with respect to y, the matrix
∇2

yy f (x̄, ȳ) is positively definite, and Y (x) satisfies Slater regularity condition. In [28], it was shown
that under the LMFCQ regularity condition at all points z̄ = (x̄, ȳ)∈ {x̄}×S(x̄) the first and second-
order derivatives of ϕ exist at x̄ if LSOSC holds. However, these works almost always utilized
various second-order sufficient optimality conditions and, consequently, only studied the problems
with S(x̄) = {ȳ}.

In the following, we use first-order and second-order Hadamard derivative estimates of the value
function ϕ established by Minchenko and Tarakanov [25, Theorem 3.1 and Theorem 4.1] with non-
single-valued solutions. For this purpose, let x̄ ∈ Rn, d1 ∈ Rn, and assume

H (1): Y is R-regular;
H (2): the solution map S is upper pseudo-Lipschitz at all points of {x}×S (x);
H (3): the set S (x,d1) is non-empty;
H (4): the functions f , and (g j, j ∈ J) are C 2-differentiable.

Here,
S (x,d1) = {(y,d2) | y ∈ S (x) ,d2 ∈ ϒ((x,y) ,d1) ,ϕ

′ (x,d1) = 〈∇ f (x,y) ,d〉},
and

ϒ(x,y,d1) = {d2 ∈ Rm | 〈∇gi(x,y),(d1,d2)〉 ≥ 0}.
From [25, Lemma 2.3, Theorem 3.1 and Theorem 4.1], assuming that H (1)-H (4) are satis-

fied, we obtain that the value function ϕ is Lipschitzian in some neighbourhood of x̄ and we obtain
the following estimates for the first and second-order directional derivatives of ϕ at x̄ in a direction
d1 ∈ Rn

ϕ
′(x̄,d1) = inf

ȳ∈S(x)
max

w∈Λ(x,y)
〈∇x`(x,y,w) ,d1〉,

and
ϕ
′′
(x̄,d1) = inf

(ȳ,d2)∈S(x,d1)
max

w∈Λ2(x,y,d1)
〈d,∇2`(x,y,w)d〉.

Here, d = (d1,d2). Using this estimates, the following theorem follows easily.

Theorem 3.2. Let z̄ = (x̄, ȳ) be a local solution to problem (BOP), assumed to be partially calm
at z̄. Suppose that the functions F, f , (Gi, i ∈ ĪG) and (g j, j ∈ Īg) are locally Lipschitz and the
functions (Gi, i /∈ ĪG) and (gi, i /∈ Īg) are continuous at (x̄, ȳ). Moreover, suppose that assumptions
H (1)-H (4) hold. Then, for every d = (d1,d2) ∈ C (z̄), there is no r = (r1,r2) ∈ Rn×Rm which
solves system (3.2)-(3.3) and

κ (F◦(z̄,r)+F◦◦(z̄,d))+ f ◦(z̄,r)+ f ◦◦(z̄,d)− inf
ȳ∈S(x)

max
w∈Λ(z)

〈∇x`(z,w) ,r1〉

− inf
(ȳ,d2)∈S(x,d1)

max
w∈Λ2(z,d1)

〈d,∇2`(z,w)d〉< 0.
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Example 3.1. Let us consider the following bilevel optimization problem:

min
x,y
{F(x,y) = |x|+ |y| | G1(x,y) = x−1≤ 0, G2(x,y) =−x−1≤ 0, y ∈ S(x)}. (BOP)

For every x ∈ R, let S(x) denote the set of optimal solution mapping of the problem (P[x])

min
y
{ f (x,y) = x2 + y2 | g1(x,y) = y2− y≤ 0, g2(x,y) = x− y≤ 0, g3(x,y) =−x− y≤ 0}.

On the one hand, it can be observed that (0,0) is the only global optimum to (BOP) with
S(x) = {|x|} and

ϕ(x) = inf
y
{ f (x,y)|g(x,y)≤ 0}= 2x2.

The penalized problem reformulation of (BOP) is given by:

min
x,y

κF(x,y)+ f (x,y)−ϕ(x)

G1(x,y) = x−1≤ 0
G2(x,y) =−x−1≤ 0
g1(x,y) = y2− y≤ 0
g2(x,y) = x− y≤ 0
g3(x,y) =−x− y≤ 0,

(LLVF[κ])

where κ > 0.
We now show that z̄ = (x̄, ȳ) = (0,0) verifies the necessary conditions established in Theorem

3.1. We have Īg = {1,2,3}. Since S(x) = {|x|}, we have (x̄,y) ∈ gph S. This implies (x̄,y) = (0,0)
and for d ∈ R, one has

∇yg1(0,0)T d =−d < 0 , ∇yg2(0,0)T d =−d < 0 and ∇yg3(0,0)T d =−d < 0.

Hence, there is d ∈ R+ verifying (∇yg j(x̄, ȳ)T d < 0 , ∀ j ∈ Īg). Thus, LMFCQ holds at z̄ = (0,0).
We also have Π = {(x,y) ∈ R2 | g(x,y)≤ 0}= [−1,1]× [0,1] is non-empty and compact.

On the other hand, we have ĪG = /0 and Īg = {1,2,3}. Let v = (v1,v2) ∈ R2. Then

κF◦(z̄,v)+ f ◦(z̄,v)−ϕ
′
(x̄,v1) = κ|v1|+κ|v2|

and
g◦1(z̄,v) =−v2, g◦2(z̄,v) = v1− v2 and g◦3(z̄,v) =−v1− v2.

Let d = (d1,d2) ∈ C (z̄). It follows that
κ|d1|+κ|d2| ≤ 0
−d2 ≤ 0
d1−d2 ≤ 0
−d1−d2 ≤ 0.

Thus d = (0,0) is the unique critical direction. As a result

IG
0 (z̄,d) = /0 and Ig

0 (z̄,d) = {1,2,3},

and consequently

κF◦◦(z̄,v)+ f ◦◦(z̄,v)−ϕ
′′
(x̄,v1) = 2v2−2v1, g◦◦1 (z̄,v) = 2v2, g◦◦2 (z̄,v) = 0 and g◦◦1 (z̄,v) = 0.
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Now, we analyze the following system
κ (F◦(z̄,r)+F◦◦(z̄,d))+ f ◦(z̄,r)+ f ◦◦(z̄,d)−ϕ

′
(x̄,r1)−ϕ

′′
(x̄,d1) = κ|r1|+κ|r2|< 0

g◦1(z̄,r)+g◦◦1 (z̄,d) =−r2 < 0
g◦2(z̄,r)+g◦◦2 (z̄,d) = r1− r2 < 0
g◦3(z̄,r)+g◦◦3 (z̄,d) =−r1− r2 < 0

Since κ > 0, the above system has no solution. This proves that z̄ = (0,0) is a candidate of being
the optimum solution of problem (BOP) according to Theorem 3.1.

Remark 3.2. It is worth mentioning that, in general, the directional derivative ϕ ′(x, .) is neither
convex nor lower semi-continuous. Deriving the dual necessary conditions via linear duality tech-
nique seems to be impossible, even if the directional derivative of ϕ is sub-additive (which is the
case for regular functions). However, there are some special cases where ϕ is not only continuously
differentiable but also second-order directionally differentiable.

The following proposition assumes that the lower-level solution being considered is unique and
is determined through a standard second-order sufficient condition and convexity.

Proposition 3.1. [24, Proposition 4] Let (x,y)∈Ω, where LLICQ and LSOSC hold, and let w∈Rq

be unique lower-level Lagrange multiplier. Assume that, for each x∈Rn, f (x, ·) :Rn→R is convex
and g(x, ·) : Rn→ Rq is componentwise convex. Then, the following assertions hold:

(i) The optimal value function ϕ is continuously differentiable at x, and it holds

∇ϕ (x) = ∇x`(x,y,w) .

(ii) ϕ is second-order directionally differentiable at x, and, for every d1 ∈ Rn, it holds

ϕ
′′ (x,d1) = inf

d2∈Rm

{
dT

∇
2`(x,y,w)d

∣∣∣∣ ∇g j (x,y)
T d = 0, j ∈ Ig

, w j > 0
∇g j (x,y)

T d ≤ 0, j ∈ Ig
, w j = 0

}
.

Taking into account the conditions and the notations of the previous proposition, the critical
cone becomes

C (z̄) =

 d ∈ Rn×Rm
κF◦(z̄,d)+ f ◦(z̄,d)−∇ϕ (x)T d1 ≤ 0

G◦i (z̄,d) ≤ 0 , i ∈ ĪG

g◦j(z̄,d) ≤ 0 , j ∈ Īg

 .

In the following theorem, we establish dual second-order necessary optimality conditions in the
simple case that the optimal value function ϕ is continuously differentiable. To proceed, we need
the following reduced critical cone

RC (z̄) =

 d ∈ C (z̄)
κF◦◦(z̄,d)+ f ◦◦(z̄,d)−ϕ

′′
(x,d1) <+∞ if Θ(z̄,d) = 0

G◦◦i (z̄,d) <+∞, i ∈ IG
0 (z̄,d)

g◦◦j (z̄,d) <+∞, j ∈ Ig
0 (z̄,d)


with Θ(z̄,d) = κF◦(z̄,d)+ f ◦(z̄,d)−∇x`(x,y,w)

T d1.

Theorem 3.3. Let z̄ = (x,y) be a local solution to (BOP), assumed to be partially calm at z̄ and
where LLICQ and LSOSC hold. Assume that the functions F, f , (Gi, i ∈ ĪG) and (g j, j ∈ Īg)

are locally Lipschitz, Gâteaux differentiable and regular at z̄, and the functions (Gi, i /∈ ĪG) and
(g j, j /∈ Īg) are continuous at z̄. Moreover, suppose that for each x ∈Rn, f (x, ·) : Rn→R is convex
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and g(x, ·) :Rn→Rq is componentwise convex, and let w∈Rq be the unique lower-level Lagrange
multiplier. Then, for any nonzero critical direction d = (d1,d2) ∈RC (z̄) there exist non-negative
multipliers (λ ,α,β ) ∈ R+×Rp

+×Rq
+ not all zeros with

λκ∇F(z̄)+λ∇ f (z̄)−λ∇x`(x,y,w)+ ∑
i∈ĪG

αi∇Gi(z̄)+ ∑
j∈Īg

β j∇g j(z̄) = 0, (3.4)

λκF◦◦(z̄,d)+λ f ◦◦(z̄,d)−λϕ
′′(x̄,d1)+ ∑

i∈ĪG

αiG◦◦i (z̄,d)+ ∑
j∈Īg

β jg◦◦j (z̄,d)≥ 0, (3.5)

λκ∇F(z̄)T d +λ∇ f (z̄)T d−λ∇x`(x,y,w)
T d1 = 0, (3.6)

αiGi(z̄) = 0, i ∈ I and β jg j(z̄) = 0, j ∈ J, (3.7)

αi∇Gi(z̄)T d = 0, i ∈ ĪG and β j∇g j(z̄)T d = 0, j ∈ Īg. (3.8)

Proof. By utilizing Theorem 3.1, we can deduce that there is no solution to the following system
in r

κ
(
∇F(z̄)T r+F◦◦(z̄,d)

)
+∇ f (z̄)T r+ f ◦◦(z̄,d)−∇x`(x,y,w)

T r1−ϕ
′′(x̄,d1)< 0

∇Gi(z̄)T r+G◦◦i (z̄,d)< 0, i ∈ IG
0 (z̄,d)

∇g j(z̄)T r+g◦◦j (z̄,d)< 0, j ∈ Ig
0 (z̄,d),

for any fixed critical direction d such that d ∈RC (z̄).
By discarding inequalities from the system where the corresponding upper generalized direc-

tional derivative of the second-order is −∞, we can set

A =

 κ∇F(z̄)T +∇ f (z̄)T −∇x`(x,y,w)
T

∇Gi(z̄)T , i ∈ IG
0 (z̄,d)

∇g j(z̄)T , j ∈ Ig
0 (z̄,d)


and

b =

 −κF◦◦(z̄,d)− f ◦◦(z̄,d)+ϕ ′′(x̄,d1)
−(Gi)

◦◦ (z̄,d) , i ∈ IG
0 (z̄,d)

−
(
g j
)◦◦

(z̄,d) , j ∈ Ig
0 (z̄,d)

 .

It follows that Ar < b does not have a solution r. Or equivalently, the linear constrained program
max {s | Ar + ŝ ≤ b} has a solution s̄ ≤ 0. Here ŝ is the vector with all components equal to s.
Hence, from the duality theory, the program

min
{

bT
ζ ,AT

ζ = 0, ∑ζk = 1,ζk ≥ 0
}
,

admits a non-positive optimal value bT ζ̄ ≤ 0 with AT ζ̄ = 0, ∑ ζ̄k = 1, and ζ̄k ≥ 0. Thus, the
system

AT
ζ = 0,bT

ζ ≤ 0,ζ = (λ ,α,β )≥ 0,ζ 6= 0

has a solution, where (λ ,α,β )∈R×Rp×Rq. Thus, there exists (λ ,α,β )∈R+×Rp
+×R

q
+ not all

zeros such that (3.4) and (3.5) hold true, while taking λ = 0, αi = 0 and β j = 0 for the multipliers
that correspond to the functions that have the second-order directional derivative is −∞.

On the other hand, we take αi = 0 if i /∈ IG
0 (z̄,d) and β j = 0 if j /∈ Ig

0 (z̄,d). In addition, since F ,
f , (Gi, i ∈ ĪG) and (g j, j ∈ Īg) are locally Lipschitz, Gâteaux differentiable, and regular at z̄, then,
for i∈ IG

0 (z̄,d) we have ∇Gi(z̄)T d = G0
i (z̄,d) = 0, for j ∈ Ig

0 (z̄,d) we have ∇g j(z̄)T d = g0
j(z̄,d) = 0
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and κ∇F(z̄)T d +∇ f (z̄)T d−∇x`(x,y,w)
T d1 = 0. Consequently, the multipliers (λ ,α,β ) satisfy

inequalities (3.6)-(3.8). This completes the proof. �

4. SECOND-ORDER NECESSARY OPTIMALITY CONDITIONS VIA Ψ-REFORMULATION

In the previous section, we derived dual second-order necessary optimality conditions by using
reformulation (LLV F). However, this was only possible in the case that ϕ is differentiable un-
der constraint qualifications LLICQ and LSOSC, and we assumed that the lower-level Lagrange
multipliers were a singleton.

To generalize this special case, we consider a new single-level problem in this section that is
equivalent to (LLV F) at the optimal solution. Our approach involves replacing the function f −ϕ

with a new function Ψ, which is Lipschitz near the optimal solution, without any requirements on
the MFCQ of the lower-level problem.

Let x ∈ Rn, and assume that the feasible region Y (x) is a closed bounded set. According to Ye
[29], (BOP) is locally equivalent to the following single-level problem

min
x,y
{F(x,y) |Ψ(x,y)≤ 0, G(x,y)≤ 0, g(x,y)≤ 0}, (LLΨR)

where

Ψ(x,y) = max
z∈Y (x)

σ(x,y,z),

and

σ(x,y,z) = min { f (x,y)− f (x,z),−max
j∈J

g j (x,z)}.

The function Ψ(., .) is locally Lipschitz [29, Proposition 2.2].
The following lemma will be used to prove that if (x̄, ȳ) is a global solution to (BOP), then (x̄, ȳ)

is also a global solution to single-level problem (LLΨR). The argument is similar to that used in
[29] to prove local equivalence.
Lemma 4.1.

1)
{

(x,y) ∈ Rn×Rm

y ∈ Y (x) and f (x,y)−ϕ(x)< 0

}
=

{
(x,y) ∈ Rn×Rm

y ∈ Y (x) and Ψ(x,y)< 0

}
=∅.

2)
{

(x,y) ∈ Rn×Rm

y ∈ Y (x) and f (x,y)−ϕ(x) = 0

}
=

{
(x,y) ∈ Rn×Rm

y ∈ Y (x) and Ψ(x,y) = 0

}
.

3) If (x̄, ȳ) is a feasible point to (BOP), then the solution set of problem max
z∈Y (x)

σ(x̄, ȳ,z) is given

by S(x̄).

Proof. 1) Since Y (x) is compact, we have{
(x,y) ∈ Rn×Rm

y ∈ Y (x) and Ψ(x,y)< 0

}
=

{
(x,y) ∈ Rn×Rm :

y ∈ Y (x) and [σ(x,y,z)< 0, ∀z ∈ Y (x)]

}
.

Since

z ∈ Y (x)⇐⇒ g(x,z)≤ 0⇐⇒
q

max
i=1

gi(x,z)≤ 0,
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one sees that
σ(x,y,z)< 0, ∀z ∈ Y (x)⇐⇒ f (x,y)− f (x,z)< 0, ∀z ∈ Y (x)

⇐⇒ f (x,y)< ϕ(x),

which means{
(x,y) ∈ Rn×Rm

y ∈ Y (x) and Ψ(x,y)< 0

}
=

{
(x,y) ∈ Rn×Rm

y ∈ Y (x) and f (x,y)−ϕ(x)< 0

}
.

In veiw of
{

(x,y) ∈ Rn×Rm

y ∈ Y (x) and f (x,y)−ϕ(x)< 0

}
= /0, one obtains the result.

2) We prove a double inclusion.

a) Let x ∈ Rn and y ∈ Y (x) with f (x,y)−ϕ(x) = 0. We obtain that y is a global solution to
problem (P[x]) w.r.t. x. By 1), we obtain Ψ(x,y) ≥ 0. Precisely, we have Ψ(x,y) = 0.
Indeed, if Ψ(x,y)> 0, we have z ∈ Y (x) and σ(x,y,z)> 0. Thus

f (x,y)− f (x,z)> 0 and −
q

max
i=1

gi(x,z)> 0.

It follows that f (x,y)− f (x,z) > 0 and g(x,y) ≤ 0. Then, z ∈ Y (x) such that f (x,y) >
f (x,z). This is a contradiction, because y is a global solution to problem (P[x]) w.r.t. x.
One concludes that{

(x,y) ∈ Rn×Rm

y ∈ Y (x) and f (x,y)−ϕ(x) = 0

}
⊆
{

(x,y) ∈ Rn×Rm

y ∈ Y (x) and Ψ(x,y) = 0

}
.

b) We now prove the opposite inclusion. Let x ∈ Rn and y ∈ Y (x) be such that Ψ(x,y) = 0.
Then, for every z ∈ Y (x), one has

min
{

f (x,y)− f (x,z),−
q

max
i=1

gi(x,z)
}
≤ 0.

Since z ∈ Y (x)⇐⇒ g(x,z) ≤ 0⇐⇒
q

max
i=1

gi(x,z) ≤ 0, one has f (x,y)−ϕ(x) ≤ 0. By 1),
one deduces that f (x,y)−ϕ(x) = 0. Finally,{

(x,y) ∈ Rn×Rm

y ∈ Y (x) and f (x,y)−ϕ(x) = 0

}
⊇
{

(x,y) ∈ Rn×Rm

y ∈ Y (x) and Ψ(x,y) = 0

}
.

3) Let (x̄, ȳ) be a feasible point to (BOP). Note that ȳ ∈ S(x̄). Letting z̄ ∈ S(x̄), we have

f (x̄, ȳ)− f (x̄, z̄) = 0 and
q

max
i=1

gi(x̄, z̄)≤ 0.

Thus σ(x̄, ȳ, z̄) = 0. Using the fact that S(x̄)⊂ Y (x̄), it is sufficient to show that

σ(x̄, ȳ,z)≤ 0 for all z ∈ Y (x̄).

By contradiction, we suppose that there exists z ∈ Y (x) such that σ(x̄, ȳ,z)> 0. Then

f (x̄, ȳ)− f (x̄,z)> 0 and −
q

max
i=1

gi(x̄,z)> 0.

Hence, f (x̄, ȳ)> f (x̄,z) and g(x̄,z)≤ 0. A contradiction with ȳ ∈ S(x̄). �
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To obtain necessary optimality conditions for (BOP), we use a partial calmness condition for
nonsmooth optimization problem (LLΨR). This condition adds the constraint Ψ(x,y) ≤ 0 to the
objective function. To this end, we study the penalized problem

min
x,y

µF(x,y)+Ψ(x,y)

G(x,y)≤ 0
g(x,y)≤ 0.

(LLΨR[µ])

Using the above arguments together with the notation in Section 3, the critical cone at the point
z̄ = (x̄, ȳ) ∈Ω is given by

C (z̄) =

 d ∈ Rn×Rm
µF◦(z̄,d)+Ψ◦(z̄,d) ≤ 0

G◦i (z̄,d) ≤ 0 , i ∈ ĪG

g◦j(z̄,d) ≤ 0 , j ∈ Īg

 .

Theorem 4.1. Let z̄ = (x̄, ȳ) be a local solution to problem (BOP), assumed to be partially calm at
z̄. Suppose that the functions (Gi, i /∈ ĪG) and (g j, j /∈ Īg) are continuous at z̄, and the functions F,
(Gi, i ∈ ĪG) and (g j, j ∈ Īg) are locally Lipschitz. Moreover, suppose that the Clarke second-order
directional derivative of Ψ exists at z̄. Then, for every d ∈ C (z̄), there is no r ∈ Rn×Rm which
solves the system

µ (F◦(z̄,r)+F◦◦(z̄,d))+Ψ
◦(z̄,r)+Ψ

◦◦(z̄,d)< 0 (4.1)

G◦i (z̄,r)+G◦◦i (z̄,d)< 0, i ∈ IG
0 (z̄,d) (4.2)

g◦j(z̄,r)+g◦◦j (z̄,d)< 0, j ∈ Ig
0 (z̄,d). (4.3)

Proof. The proof is similar to that of Theorem 3.1 (Steps 1 and 3 are the same). Thus we detail
Step 2 only.

Let z̄ = (x̄, ȳ) be a solution to (BOP) where partial calmness holds. It follows from Proposition
2.2 that there exists µ > 0 such that z̄ is a solution to (LLΨR[µ]).

Step 2: We prove that there exists ν > 0 such that

µF(z̄+ td +
1
2

t2r)+Ψ(z̄+ td +
1
2

t2r)< µF(z̄)+Ψ(z̄)

for all t ∈ [0,ν). We proceed in two cases.
(a) If µF◦(z̄,d)+Ψ◦(z̄,d)< 0, we aim to demonstrate the existence of ν > 0 by verifying, for

all t ∈ [0,ν),

µF
(

z̄+ td +
1
2

t2r
)
+Ψ

(
z̄+ td +

1
2

t2r
)
< µF(z̄)+Ψ(z̄).

Suppose by contradiction that, for any ν > 0, there exists tν ∈ [0,ν) such that

µF
(

z̄+ tνd +
1
2

t2
νr
)
+Ψ

(
z̄+ tνd +

1
2

t2
νr
)
≥ µF(z̄)+Ψ(z̄).

Let νn > 0 be a sequence convergent to 0 as n→ ∞ and tn ∈ (0,νn) such that

µF
(

z̄+ tnd +
1
2

t2
n r
)
−µF(z̄)+Ψ

(
z̄+ tnd +

1
2

t2
n r
)
−Ψ(z̄)≥ 0.
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For each n, we set uν
n = z̄+ tnd and vν

n = z̄+ tnd + 1
2t2

n r. Then

0≤ limsup
tn→0

(
µF (vν

n )−µF(z̄)
tn

+
Ψ(vν

n )−Ψ(z̄)
tn

)
≤ limsup

tn→0

1
tn
[µF (uν

n )−µF(z̄)]+ limsup
tn→0

1
tn
[µF (vν

n )−µF (uν
n )]

+ limsup
tn→0

1
tn
[Ψ(uν

n )−Ψ(z̄)]+ limsup
tn→0

1
tn
[Ψ(vν

n )−Ψ(uν
n )]

0≤ µF◦(z̄,d)+Ψ
◦(z̄,d)+ limsup

tn→0
LFtn‖r‖+ limsup

tn→0
LΨtn‖r‖

as F and Ψ are locally Lipschitz of constant LF > 0 and LΨ > 0, respectively. Thus µF◦(z̄,d)+
Ψ◦(z̄,d) ≥ 0, which contradicts the fact that µF◦(z̄,d)+Ψ◦(z̄,d) < 0. We see that there exists
ν > 0, for all t ∈ (0,ν),

µF
(

z̄+ td +
1
2

t2r
)
+Ψ

(
z̄+ td +

1
2

t2r
)
< µF(z̄)+Ψ(z̄).

(b) If µF◦(z̄,d)+Ψ◦(z̄,d) = 0, then there exists ν > 0, for all t ∈ [0,ν),

µF
(

z̄+ td +
1
2

t2r
)
+Ψ

(
z̄+ td +

1
2

t2r
)
< µF(z̄)+Ψ(z̄).

To show this, we assume by contradiction that, for any ν > 0, there exists 0≤ tν < ν such that

µF
(

z̄+ tνd +
1
2

t2
νr
)
+Ψ

(
z̄+ tνd +

1
2

t2
νr
)
≥ µF(z̄)+Ψ(z̄).

Let νn > 0 be a sequence convergent to 0 as n→ ∞ and tn ∈ [0,νn) such that

µF (vν
n )+Ψ(vν

n )≥ µF(z̄)+Ψ(z̄).

Then
0≤µF (vν

n )−µF(z̄)+Ψ(vν
n )−Ψ(z̄)

=
t2
n
2

[
2
t2
n
(µF (vν

n )−µF (uν
n ))

]
+

t2
n
2

[
2
t2
n
(µF (uν

n )−µF(z̄)− tnµF◦ (z̄,d))
]

+
t2
n
2

[
2
t2
n
(Ψ(vν

n )−Ψ(uν
n ))

]
+

t2
n
2

[
2
t2
n
(Ψ(uν

n )−Ψ(z̄)− tnΨ
◦ (z̄,d))

]
.

After dividing the above inequality by t2
n/2 and taking the upper limit as tn→ 0+, we obtain

0≤ µF◦(z̄,r)+µF◦◦(z̄,d)+Ψ
◦(z̄,r)+Ψ

◦◦(z̄,d),

which contradicts the fact that r is an optimal solution to system (4.1). We obtain that there exists
ν > 0 such that, for all t ∈ (0,ν),

µF
(

z̄+ td +
1
2

t2r
)
+Ψ

(
z̄+ td +

1
2

t2r
)
< µF(z̄)+Ψ(z̄).

�
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Remark 4.1. Since the differentiability of the value function Ψ is not a requirement for Theorem
4.1 because Ψ is locally Lipschitz at z̄, then the Clarke first-order derivative exists. The sole
condition on Ψ is the existence of its second-order directional derivative at an optimal solution. Ye
[29] provided an upper approximation of the Clark generalized gradient at an optimal solution and
Auslender and Cominetti [3] gave estimates to the first and second-order directional derivatives
under LMFCQ and LSOSC, although the Clarke second-order derivative of Ψ may only be relevant
in certain cases, and it does not impact the validity of Theorem 4.1.

Example 4.1. Consider the following bilevel optimization problem:

min
x,y
{F(x,y) = |x|+ y2 | G(x,y) =−x≤ 0, y ∈ S(x)}, (BOP)

where, for each x ∈R, S(x) is the set of optimal solutions to the following parametric optimization
problem:

min
y
{ f (x,y) = x2− y | g1(x,y) = y≤ 0, g2(x,y) =−y− x≤ 0}. (P[x])

On easily remarks that (0,0) is the unique global optimum to (BOP). Before showing that
z̄ = (x̄, ȳ) = (0,0) verifies the necessary conditions of our theorem, we need to check that LMFCQ
condition is not satisfied at the feasible point z̄ = (0,0) and that the set of lower-level Lagrange
multipliers is not a singleton, and therefore Theorem 3.1 cannot be applied.

We have Īg = {1,2}, and, for each d ∈ R,

∇yg1(0,0)T d = d < 0 and ∇yg2(0,0)T d =−d < 0,

which is impossible. Thus LMFCQ does not hold at z̄ = (0,0). On the other, letting w = (w1,w2)∈
Λ(0,0), we have

`(x,y,w) = x2−y+w1y+w2(−y−x) and ∇y`(0,0,w) =−1+w1−w2 = 0 and wT g(0,0) = 0.

Consequently, Λ(0,0) = {(w2 +1,w2) | w2 ∈ R} is not a singleton.
We now analyze the feasible point z̄ = (0,0) by checking the second-order necessary conditions

of Theorem 4.1. We have S(x) = {0} and Y (x) = {y ∈ R | g(x,y)≤ 0}= [−x,0]. Then

Ψ(x,y) = max
z∈Y (x)

σ(x,y,z) = σ(x,y,0) = min{−y,0}.

The penalized problem reformulation of (BOP) is given by:
min
x,y

µF(x,y)+Ψ(x,y)

G(x,y) =−x6 0
g1(x,y) = y6 0
g2(x,y) =−y− x6 0

(LLΨR[µ])

where µ > 0. We have ĪG = {1}, Īg = {1,2}, and

µF◦(z̄,v)+Ψ
◦(z̄,v) = µ|v1|− v2

and

G◦(z̄,v) =−v1, g◦1(z̄,v) = v2 and g◦2(z̄,v) =−v1− v2.
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Let d = (d1,d2) ∈ C (z̄). We have 
µ|d1|−d2 6 0
−d1 6 0
d2 6 0
−d1−d2 6 0.

Thus d = (0,0) is the unique critical direction. As a result, IG
0 (z̄,d) = {1} and Ig

0 (z̄,d) = {1,2},
and hence

µF◦◦(z̄,v)+Ψ
◦◦(z̄,v) = 2µv2

2, G◦◦(z̄,v) = 0, g◦◦1 (z̄,v) = 0 and g◦◦2 (z̄,v) = 0.

Finally, we find the following system which does not admit any solution
µ (F◦(z̄,r)+F◦◦(z̄,d))+Ψ◦(z̄,r)+Ψ◦◦(z̄,d) = µ|r1|− r2 < 0
G◦(z̄,r)+G◦◦(z̄,d) =−r1 < 0
g◦1(z̄,r)+g◦◦1 (z̄,d) = r2 < 0
g◦2(z̄,r)+g◦◦2 (z̄,d) =−r1− r2 < 0.

This proves that z̄ = (0,0) is a possible global optimum of (BOP).

In the following theorem, we establish dual second-order necessary optimality conditions. To
proceed, let z̄ = (x̄, ȳ) ∈Ω and define the following reduced critical cone

RC (z̄) =

 d ∈ C (z̄)
µF◦◦(z̄,d)+Ψ◦◦(z̄,d) < ∞ if µF◦(z̄,d)+Ψ◦(z̄,d) = 0

G◦◦i (z̄,d) < ∞ , i ∈ IG
0 (z̄,d)

g◦◦j (z̄,d) < ∞ , j ∈ Ig
0 (z̄,d)

 .

Theorem 4.2. Let z̄ = (x̄, ȳ) be a local minimizer to (BOP), assumed to be partially calm at z̄.
Suppose that the functions F, (Gi, i∈ ĪG) and (g j, j∈ Īg) are locally Lipschitz, regular and Gâteaux
differentiable at z̄, and the functions (Gi, i /∈ ĪG) and (g j, j /∈ Īg) are continuous at z̄. Moreover,
suppose that the second-order directional derivative of Ψ exists at z̄. Then, for every critical
direction d ∈RC (z̄) that is not equal to zero, there exist multipliers (λ ,α,β ) ∈ R+×Rp

+×Rq
+

that are non-negative and not all zeros with

αiGi(z̄) = 0, i ∈ I and β jg j(z̄) = 0, j ∈ J (4.4)

λ µ∇F(z̄)T d +λΨ
◦(z̄,d) = 0 (4.5)

αi∇Gi(z̄)T d = 0, i ∈ ĪG and β j∇g j(z̄)T d = 0, j ∈ Īg (4.6)

λ µF◦◦(z̄,d)+λΨ
◦◦(z̄,d)+ ∑

i∈ĪG

αiG◦◦i (z̄,d)+ ∑
j∈Īg

β jg◦◦j (z̄,d)≥ 0. (4.7)

Proof. Let d be any fixed critical direction. Note that the following system in r has no solution

µ∇F(z̄)T r+F◦◦(z̄,d)+Ψ
◦(z̄,r)+Ψ

◦◦(z̄,d)< 0, if 0 ∈ I0(z̄,d)

∇Gi(z̄)T r+G◦◦i (z̄,d)< 0, i ∈ I0(z̄,d)

∇g j(z̄)T r+g◦◦j (z̄,d)< 0, j ∈ I0(z̄,d).

According to [13], the following system in (λ ,α,β ) ∈ R×Rp×Rq

λ µ(∇F(z̄)T r+F◦◦(z̄,d))+λ (Ψ◦(z̄,r)+Ψ
◦◦(z̄,d)+

∑
i∈I0(z̄,d)

αi(∇Gi(z̄)T r+G◦◦i (z̄,d))+ ∑
j∈I0(z̄,d)

β j(∇g j(z̄)T r+g◦◦j (z̄,d))≥ 0
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has a solution for all r ∈ Rn. For r = d, we find

λ µF◦◦(z̄,d)+λΨ
◦◦(z̄,d)+ ∑

i∈I0(z̄,d)
αiG◦◦i (z̄,d)+ ∑

j∈I0(z̄,d)
β jg◦◦j (z̄,d)≥ 0.

By taking αi = 0 if i /∈ IG
0 (z̄,d); and β j = 0 if j /∈ Ig

0 (z̄,d), the systems become

λ µF◦◦(z̄,d)+λΨ
◦◦(z̄,d)+ ∑

i∈ĪG

αiG◦◦i (z̄,d)+ ∑
j∈Īg

β jg◦◦j (z̄,d)≥ 0.

This shows (4.4) and (4.7).
On the other hand, since (Gi, i∈ ĪG) and (g j, j∈ Īg) are locally Lipschitz, Gâteaux differentiable,

and regular at z̄, then, for i ∈ IG
0 (z̄,d), we have ∇Gi(z̄)T d = G0

i (z̄,d) = 0. For j ∈ Ig
0 (z̄,d), we have

∇g j(z̄)T d = g0
j(z̄,d) = 0, which proves system (4.6).

Finally, to show (4.5), we take λ = 0 if µF◦(z̄,d)+Ψ◦(z̄,d)< 0. �

CONCLUSION

In this paper, we investigated second-order necessary optimality conditions for standard bilevel
optimization problems with smooth and nonsmooth data. We used two different single-level re-
formulations of the hierarchical model under a partial calmness assumption and derived primal
and dual conditions in terms of the initial problem data. We also gave some examples to illus-
trate our results. Our work improves some corresponding existing results in [9, 22] and provides
new insights into the second-order properties of bilevel optimization problems. As future research
directions, we plan to explore necessary optimality conditions for an isolated local minimizer of
order two and for KKT-reformulation of (BOP).
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