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Abstract. This paper provides quasi-optimal a priori error estimates for an optimal control problem
constrained by an elliptic obstacle problem where the finite element discretization is carried out using the
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L?-error estimates for the obstacle problem, the discrete maximum principle, and a well-known quadratic
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1. INTRODUCTION

Free boundary problems governed by physical principles are ubiquitous in science and engi-
neering. In particular, variational inequalities of first kind, such as the obstacle problem, arise
in elasticity, fluid filtration in porous media and finance. Special attention has been given to the
obstacle problem which acts as a model problem in many of these applications. It is also natural
to consider the optimization problems governed by variational inequalities as constraints which
is the focus here.

This paper considers an optimal control problem governed by an elliptic variational inequality
(EVI) of the first kind (obstacle problem) [20, 34] as constraints. Let £ be a bounded domain
in R?, where d is in {2,3} with Lipschitz boundary Q. For (u,z) denoting the state-control
pair, the optimal control problem is given by

min {J(,2) i= §u—uall2, g + 3200 -
subjectto a(u,v—u) > (z,v—u) Vve.r, (A)
andu € # :={we ¥V :=H}(Q) : w(x)>g(x)ae. in Q},
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where the open set Q is either Q = Q or Q = Q) CC Q. Here, a(s,t) == [oVs-VtdxVs,t €V
is the continuous, # -elliptic bilinear form on ¥ x ¥, (-,-) denotes the L?>(Q) inner-product
and || - ||L2(§) is the norm on L2(Q). Let uy € L2(Q) be the desired state and v > 0 be the
regularization parameter. The exact functional-analytic setting of Problem (A) is stated in the
upcoming sections.

This paper derives a priori error estimates for Problem (A) by using the symmetric interior
penalty discontinuous Galerkin (DG) finite element method (FEM). The state u represents either
global matching state, i.e., Q = Q or local matching state Q= Qo, where ¢ CC Q. In both
cases, finite element error estimates for z and u are derived. In the local matching setting, error
estimates are quasi-optimal i.e., O(h) for control. In the global setting, we are limited by the

DG boundary conditions and we obtain O(h%).

DG methods provide greater flexibility to handle complex geometries and allow discretiza-
tions with hanging nodes and different degrees of polynomial approximation on different ele-
ments. In addition, they are more flexible to locally adapt the discretization or the degree of the
discrete basis functions which captures better approximation of the solution. For a general ref-
erence on DG methods, we refer to [12]. Furthermore, the articles [3, 4, 8] discuss DG methods
for elliptic problems. For related work on obstacle problem, we refer to [38].

The literature on the optimal control problem constrained by PDE:s is indeed significant (see
[1, 17, 22, 24, 36]), but this is still a highly active research area. For works on a priori error
analysis for optimal control problems governed by PDEs, we refer to [2, 13, 16, 19, 28]. Optimal
control for the obstacle problem is a challenging problem due to non-differentiability of the
solution mapping S between the control and state variables. In the seminal works [30, 31],
the authors demonstrated the directional differentiability of the map § and, later introduced the
optimality conditions of the strong stationarity type for Problem (A). The authors in [27] built
upon the ideas from [30] and derived the second order strong stationarity conditions for Problem
(A). Haslinger and Roubicek [21] first discussed the finite element approximations for the
optimal control of variational inequality of the first kind. The article [21] showed convergence
of the finite element approximation but does not talk about order of convergence.

The article [29] derived quasi-optimal a priori error estimates for Problem (A) by using con-
forming finite element method based on certain assumptions on the mesh and given data. The
analysis in [29] is valid for convex Q C RY, where d € {2,3} with polygonal boundary 9.
The Discrete Maximum Principle (DMP) [9] is a crucial tool to derive the improved L?-error
estimates for the obstacle problem. In [29], the DMP holds true in the sense that the conforming
stiffness matrix is a weakly diagonally dominant M-matrix (see [18]), which can be restrictive
in applications. Later, [14] proved the error estimates for the same model problem using the
Crouzeix-Raviart (CR) nonconforming finite elements. This analysis is valid for bounded con-
vex and polygon domain Q C R?. Furthermore, the discretization is chosen in such a way that
the quasi-uniform triangulation or a Friedrich-Keller triangulation with CR elements generates
a global stiffness matrix which is a weakly domainated M-matrix, a slight variant of the DMP.
This can again be challenging to fulfill in practice.

In the DG setting, there are only two works that studies the DMP for the Poisson problem,
1.e., [23] and [5]. The results in [23] are valid for dimension one, whereas [5] proposes a new
(variational) definition of the DMP in the DG setting for d > 1. Here, we follow the approach
that is discussed in [5]. Our analysis is based on the quadratic growth condition (Assumption
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3.1) and the strong stationarity conditions (Theorem 3.1). The main contributions of our work
are as follows:

e We do not assume/impose any restrictive assumption on our mesh as we have employed the
definition for the local discrete maximum (respectively, minimum) and use the key property that
DMP works in a local sense for DG methods, i.e., for all K € .7, where .7, is the triangulation.
e Derive the convergence rate of order % — € for every € > 0 for the control z when Q=0.
This result require Q to be convex leading to H?(Q) regularity for the solution to the obstacle
problem.

e In case of local matching state variable, we first derive novel quasi-optimal estimates for the
state [[u(z) — un(2)[|2(0p) S h2—2€ [ullw2r(q)- We use these estimates to derive quasi-optimal

error estimates for control approximation of order 1 — €. These results require u € W27, for this
regularity, we have assumed Q to be C!'!. Unfortunately we could not find a reference for this
regularity for convex domains.

The article is organized as follows: In Section 2, we begin with some preliminaries of Prob-
lem (A) and state the regularity estimates corresponding to the solution to the elliptic variational
inequality. Next, we formulate the variational inequality into an equality with the help of con-
tinuous Lagrange multiplier { which acts as a function of both #* and L*(Q) in Section 2.
In Section 3, we first highlight that the solution operator S which maps control to state is not
Gateaux-differentiable and later, we represent the Problem (A) into the mathematical problem
with complementarity constraints (MPCCs) in function spaces. Using standard arguments, we
state the existence and regularity result of an optimal control Z in Section 3. After that we
state the strong stationarity conditions for any arbitrary obstacle using the ideas laid initially
by Mignot in [30] for zero obstacle g = 0. One of the key ingredient in our error analysis is
the quadratic growth condition satisfied by an optimal control ? if it satisfies second-order suf-
ficient conditions which involve the strong stationary conditions in (3.3) (due to authors in [27]
stated in Section 3). We introduce some notations and DG formulation in Section 4. Moreover,
the matrix version of the strong stationarity conditions are discussed in Section 4. The main
convergence results of our analysis require an improved a priori estimate for the L2-error of the
finite element discretization of the obstacle problem, which we have shown in Section 5. The
idea is to use the Discrete Maximum Principle and L*-error estimates for the Poisson equation
which we have highlighted in Section 5. The a priori error estimates for « and z in both global
and local matching cases are derived in Section 5. Finally, conclusions and future directions are
discussed in Section 6.

2. PRELIMINARIES AND REGULARITY RESULTS

The classical obstacle problem [20, 34] reads as:

a(u,y—u) > (z,v—u) Vvex, (2.1a)
ue X ={we? : w(kx)>gx)ae. in Q}, (2.1b)

where (-,-) denotes the L?(Q) inner-product. In our analysis, W™”(Q) denotes the Sobolev
space equipped with the norm || - ||wmr and seminorm | - |ymr [25]. We assume that the given
obstacle satisfies g < 0 a.e. on dQ, g € H'(Q) and some other precise conditions on the given
obstacle g will be discussed later. The closed and convex set .#” is non-empty because gt :=
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max{g,0} € #. Next result collects the existence and regularity results of solution to (2.1a)—
(2.1b) (see [27, Lemma 2.1] and [26, Theorem 6.2], [34, Chapter 5, Corollary 2.3 and Theorem
2.5]).

Theorem 2.1 (Existence and regularity of the obstacle problem). The following holds:

(a) If @ C R? is a polygonal domain, g € H'(Q), and z € H'(Q), then there exists a unique
solution to (2.1a)-(2.1b) satisfying u € Hé (Q).

(b) If Q is convex or dQ is C1', g € H*(Q), and z € L*(Q), then the solution to (2.1a)-(2.1b)
satisfies u € H*(Q)NHL (Q).

(c) Let 9Q be CV!, 7 € LP(Q)NH 1 (Q) and g € W*P(Q), with | < p < oo then the solution
to (2.1a)-(2.1b) satisfies u € W>P(Q) N H} (Q).

Remark 2.1. In Theorem 2.1(c), note that LP(Q) C H~!(Q) for d =2 when 1 < p < +oo and

LP(Q) c H 1(Q) for d = 3 when g < p < +oo. These conditions are always satisfied by our
control z which is at least L?(Q).

In case of bounded Lipschitz domain Q, there exists a unique Lagrange multiplier { € ¥
(the dual of ¥") [37] such that

a(u,v) = (z,v)+({,v)_11 VYver, (2.2)

(C,u—g)—11=0, ¢ >0and u(x) —g(x) >0 ae.in Q, (2.3)

where (-,-)_ 1 denotes the duality pairing between #” and ¥"*. The equation (2.3) is known as
the complementarity equation with § >0 on Q' C Qif (£,9)_11 >0, forall 0 < ¢ € H}(Q).

We can also equivalently rewrite the bilinear form a(-,-) as follows. We have .o/ € Z(¥, V™)
i.e., the set of all bounded linear operators from ¥ to #"* such that

a(v,w) = (v,w)_1 YvweY. (2.4)
For any f € ¥, the norm || ||+ is defined as

|f|l»+:= sup (fiv)-11

e (2.5)
ver v20l VYl

3. THE STRONG STATIONARITY CONDITIONS

The goal of this section is to discuss the strong stationarity conditions for the model Prob-
lem (A). The content of this section is known in the literature especially for the case g = 0 (see
[30, 31]). We first recall the notion of the differentiability in Hilbert spaces [1].

Definition 3.1. Let X and Y be two Banach spaces and .Z := £ (X,Y) denotes the space of all
bounded linear operators from X to Y. Let X’ be an open subset of X, then the map J : X’ — Y
is said to be Géteaux differentiable at z € X’ if it is directionally differentiable in all directions
t € X and J'(z,t) = J'(2)t where J'(z) € Z(X,Y).

Remark 3.1. The solution map S : L?>(Q) — # C ¥ which is defined as S(z) :=u € . is
Lipschitz continuous (see Lemma 2.1 in [27]) but in general is not Gateaux-differentiable (see
Lemma 2.4 in [27]). Whereas, S is directionally differentiable at all z € L?(Q). Using Theorem
3.3 of article [30], the directional derivative given by DS(z,t) € .4, in the direction ¢t € ¥*
satisfies the following variational inequality

a(DS(z,1),v—DS(z,1)) > (t,y—DS(z,1)) 1., Vv E M, 3.1)
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where .4, :={veEY : v(x) >0 ae. on{u—g=0}and ({,v)_;; =0}

Using (2.2) and (2.3), Problem (A) can be rewritten as the mathematical program with com-
plementarity constraints (MPCCs) in function spaces which is a particular case of the mathe-
matical program with equilibrium constraints (MPECs) [31]. For notation simplicity, we will
focus on Q = Q, with almost no changes to the text for Q= Q.

Problem 3.1.
- 1 2 Va2
o {FQ) 1= 1156 ~wallq + 3l | 320
subject to a(u,v) = (Z,V)+<C,V>7171 Vve 7/7 (3.2b)
(C,u—g)-11 =0, { >0and u(x)—g(x) >0 ae. in Q. (3.2¢)

Existence of solution to the above optimization problem follows by standard arguments.
However, in general we cannot expect Z to be unique. The strong stationarity conditions have
been stated in the next result. See [31, Theorem 2.2] for the proof when g = 0 and for g # 0, the
proof follows using similar arguments as in [30, 31] provided optimal state satisfies ii € H>(Q)
(via Theorem 2.1(b)) or g|yq = 0.

Theorem 3.1 (Strong stationarity conditions). Let ii € H>(Q) or ii € A with g|yq = 0 and let
(2,8) € L*(Q) x ¥* satisfy equations (3.2a)—(3.2c). Then, there exists a slack variable A € V¥,
an adjoint variable p € H}(Q) such that (4,%,p,1) solves the following strong stationarity
conditions:

a(ﬁ,v):/fvdx+(C,V>—1,1‘v’ve”//, (3.32)
(ga—g>Ll:o?czxnmda@)—g@)zo(wawawwwmmnng, (3.3b)
a@m):/}a—mgwu+wxm>leve%, (3.3¢)
<lmﬁm|§O%veﬂ%cmdp€A%, (3.3d)
p(x) +vilx) =0 ae. in Q, (3.3¢)

where M, = {v eV : v(x) >0 quasi everywhere on {u—g =0} and ({,v)_;1=0}.

From (3.3e), using the regularity of adjoint p, we immediately have that 7 € H(% (Q). The
embedding of H'(Q) in L”(Q) is standard as [25].

Proposition 3.1. Under the assumptions of Theorem 3.1, optimal control 7 € L*(Q) correspond-
ing to Problem (A) fulfills

6 o
ZEH%Q%%{L“D fd_&
LP(Q) ifd=2, wherel <p <oo.
The optimal control 7 € L*(Q) of (3.2a) also satisfies the quadratic growth condition provided
if Z satisfies the second-order sufficient optimality conditions. Specifically, if there exists a
positive constant T > 0 such that p > 0 a.e. where g+ 7 > ii > g, then the following holds (cf.
[27, Assumption 1 and Theorem 2.12, Pg. 529]).



464 H. ANTIL, R. KHANDELWAL, U. RAKHIMOV

Assumption 3.1. (Quadratic growth condition) Let F(-) be the functional defined in (3.2a),
then there exists constants ¥ > 0 and k > 0 such that

F(2) <F(2) = lz—2llfq Yz€By(2), (3.4)
where By(Z) is the ball of radius y with center 7 in the topology of L*(Q).

4. DISCRETIZATION

Let .7, be a regular triangulation (mesh) of Q and K € .7, denotes a non-degenerate element
(triangle) for d = 2 or tetrahedron for d = 3. For the discretization of Problem (A), we use a
discontinuous Galerkin finite element space given by

Vh={v €LX(Q) : vk € 21 (K) VK € T}, (4.1)

where w|g denotes the restriction of w to K and &7|(K) is the space of polynomials of de-
gree less than or equal to one defined on K. Let {z; : i =1,2,...,M;} denotes the set of all
vertices (corner points) of the mesh, where M), is the total number of vertices and the cor-
responding macroelements (patch) will be denoted by @w; = U, cxK. The discrete function
v, € ¥, can be expressed as the linear combination of the Lagrange basis functions (biK where
(i,K) € {1,2,-+- ,My} x F,. Note that ¢X(z;) = &;;, where §;; is the Kronker’s delta function
and ¢X (x) = 0 Vx € Q\ K. Therefore, any v;, € ¥, can have the following form:
M

V= Z Z v£i¢lK. 4.2)

i=1KCa;
Let 7k be the set of all nodes of element K € .7,. Further, &), is the set of all the edges/faces of

I, and h, is the length of an edge/face e. Let us introduce the discrete nonempty, closed and
convex subset %, as follows:

Hiyi={wn € i : walk(p) > gn(p) ¥ p € ¥k and V K € F3}, 4.3)

where g, € ¥ := ¥;,N¥ denotes the nodal interpolation of g [7]. Before introducing the discrete
variational inequality, we need to introduce the average and jump of the discrete functions.
Firstly, the broken Sobolev space is defined by

HYQ, 7)) ={vel*(Q) : v cH\(K) VKc.F}).

Let e be an interior edge/face in .7}, then there exist two elements K™ and K~ such that e =
dKTNJK ™. Let n™ be an unit outward normal pointing from K+ to K—, then we have n~ =
—n™. Hence, the average and jump of v € H'(Q,.7},) on an edge/face e is defined by

e

respectively where v = v|g+ and v~ = v|g-. Similarly, we define the average and jump for a
vector valued function g € [H'(Q,.%,)]“ on interior edge/face e as

+ —
q° t+4q S
flah=——F— and [adl=q"-n"+q -n".
Let é"hb be the set of all boundary edges of .7}, then for a boundary edge e € éahb let n¢ be an
outward unit normal to an element K such that K N dQ = e, we define for v € H'(Q,.7,)

[[V]] =vwn® and {{v}}:v on e
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and for g € [H'(Q, 73,)]%, we set

g =q-n° and {{gf} =q on e.
Next, let us define the following two bilinear forms
ah(vh,wh) = (thh,Vhwh) / Vvh th dx
Ke%,
and for all w,v € ¥},

by (w,v) = / gvwhi ds— ¥ / gvohn] ds+ ¥ / hﬂ[[w]][[v]] ds,  (44)

eeé”h ecé), ecé&,ve’e

where n > 1o > 0 is sufficiently large positive number to ensure the ellipticity of .275/P(-,.)
which is defined by

S (v wi) = an(Vp,wi) 4 br (v, wi) Vv, wi, € . 4.5)
The discrete version of the obstacle problem in Problem (A) is given by: Find u;, € %, fulfilling
M (up, v — un) > (2, v — up) ¥ v € Hp, (4.6)

where o751P (-, .) : 4, x ¥, — R is the SIPG (Symmetric Interior Penalty Galerkin) bilinear form
[7, Chapter 10]. Using the coercivity and boundedness of the discrete bilinear form o757 (-, .)
[38], it can be verified that the discrete problem (4.6) has a unique solution u;, € J7},.

Next, we introduce the discrete solution map corresponding to uy, € #;, C ¥}, as follows:

A LZ(Q) =, 2 Sp(z) = u.

The discrete version of the optimization problem (3.2a) using S, is stated next:

. 1 1%
min {Fh(z) = EHS;,(Z) - ud”%}(g) + 5“2”%2(9) (4~7)

Z€L2(Q)
Vv
= LY IS —wallag + S }
K€7h (K) " 2 (Q)

As in the continuous case, the standard arguments yield existence of local optimal solution to
(4.7). In (4.7), the control z € L?>(Q) is not discretized. However, we will see in Remark 4.1 that
each local optimum z of (4.7) belongs to ¥}, (defined in (4.1)) and there is no need to discretize
the control variable. To begin, we introduce the space

W =Y+ (Y NH*(Q)),
where A+B:={a+b : ac Aand b € B} and the norm |||-||| for w € # is defined by
2
Iwli® =} 1VwliZ2 + ) —H Wiz + X kD W2k, (4.8)
KeZ, ee@@h Ke7,

where hg := diameter of K. It is easy to see that ||w|| is a norm on # with the help of next
lemma. We deduce that the || - [|;2(q) is bounded by ||-|| through the next result. For more
details, see [3, Lemma 2.1]. We refer to Appendix A for a proof.
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Lemma 4.1. Ir holds that

1

2
Il <c1(z|\vW\|Lz + Tl ||Lz) VweH Q7). 49)

KeZ, ee@@h

where Cy is a positive constant.
In the following result, we discuss the Lipschitz continuity of Sy,.

Lemma 4.2 (S), is Lipschitz). For every given z',7> € L*(Q), there exist unique solutions
Sp(zh) = u,ll € Ay and Sy(z%) == u,zl € &, of (4.6) and the following holds:

1Sh(z") = Su(Z) I < llz' = M2 (4.10)

h -
where ||w||? := R HVWHL2 eZ th[[ ]]sz(e) is the norm on ¥}, [38].
I

Proof. We prove (4.10) for every K € 7,. We begin the proof by letting SX (z!) =u} ; SK(z*) =
u% for some K € .7},. Next, we insert v, = u,]l € #, for z =72 1in (4.6) and v, = ui € %, for
z=17' in (4.6) and we observe the following:

I (uywy — ) > (&, — ), (4.11)
ISP () u —ul) > (' up —u)). (4.12)
We employ the coercivity of &7 SIP (+,+), Lemma 4.1 and add the equations (4.11)—(4.12) to have
the following:
ey, — il < 7% (g, — s,y — ) < ||2" =22 2ty — e 1
Finally, we conclude the proof of (4.10). 0

Next, we introduce the discrete Lagrange multiplier §;, € ¥, as
(Cnovahn = ' (up, vi) —/ vpdx Yoy €Y, (4.13)
Q

which could be thought as an approximation to the continuous functional { stated in (2.2) and
the inner product (-, -),, is defined by: for any v, wy, € ¥},

K
= ¥ S Y wi(pwp). @149
Ke g, + PEYK
Using the definition (4.13) and discrete variational inequality (4.6), we get that

(Cnyvn —up)py >0 Vv, €, 4.15)

Let us suppose d)f: € 7}, be the canonical Lagrange basis function associated with the vertex
p, i.e., ¢f; takes the value one at the vertex p and vanishes at all other vertices. We note that
Cnlk € 21(K) and by choosing vy, = up + ¢} € 4 in (4.15), we obtain that V K € .7},

G>0inK < §(p) >0V pe Y. (4.16)

For any K € .7, let {¢1§ ; p € Yk} be its local Lagrange basis functions, then we set v = v|x.
Using this notation, we define v; on the single element K as

vy =Y va(p)oy. (4.17)

PEVK
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Then, we can rewrite (4.6) in the following way using the above notation (4.17) and support of
the local basis functions ¢I§, ie., ¢§(x) =0 ifxeQ\K.

Y, w(p) (05, 05) () —un(@) = Y (z,05)(vala) —unlq)) VK€ T,
P.9€Tk q<Vk
= (Twg) DT (Vg —wk) > ("hog) (Vg —upg) Vvig € R7EL(4.18)
and v, g —grx >0 VK€,
where
(1) g™ € RI7&Vk| having the (p,q) entry as &5/F (¢X, K.
2) bog = (2,08 )gern € RI7k|
() Wik = (Wn(P))per ¥ Wi € V.
4) Ta:= Transpose of the vector a € RI7&l.

(5) Let wp, vy € 7, then Wy, xk — yj x > 0 is understood in the sense that wy,(p) — y(p) >
0V pe 7.

We revisit the matrix version of the Lagrange multiplier in the following way:
Sk = Py g —b g € R’k for every K € 7,
In the view of the definition of {x, we reformulate (4.18) as:
MWk = Gk + bk, (4.19)
up(p) > gn(pP)V p € ¥k, Ck >0, (" Ck)(wpk—gnk)=0. (4.20)

For each element K € .7},, we have the equivalent mathematical problem with complementarity
constraints (MPCC) to problem (4.7). For some K € .7,, we define the minimum function
min(a,b), where minimum is understood in the componentwise sense

min - 3("wg) A g — (W g)ba + 312017 g 421
subject to 2wy k = Cx+b,x  and  min(w,x —gnk, Ck) =0, ‘
where
(1) For every K € .7, the mass matrix .4 is defined as
N € RIZxkIxI7kl Npg 1= /Kq)[fq)qux Vp,q € Vk. (4.22)

(2) Forall p € ¥k and K € J,, we define by := [ uq¢)dx.

The proof of the next result follows along the same as in theory of finite dimensional MPECs
[6, 35]. Here, we use © to indicate the Hadamard product.

Theorem 4.1. Let ), := (3X)kc 7 € L*(Q) be a discrete optimal solution to (4.21) having an
associated state variable iy := (ﬁ{f) ke, € Vi and a Lagrange multiplier (matrix version)
EK = (51(7[)[-3:1 e RI%, Therefore, we have existence of a discrete adjoint state variable
P = (PK)keg € Vi and a discrete multiplier A = (Ak ;)i € Rkl such that the follow-
ing holdsV K € 9:

APy g = Cx +b;, k, (4.23a)
("Ck)(Bpx —gngx) =0 Ck >0 and lipx — gk > 0, (4.23b)
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(""" ppx = Nk —ba+ Ak, 4.23¢)

(lipx —8rr) OAk =0 440 Prx =0, (4.23d)

Aki <O0Vie{1,2,3}; pulq) >0V g € ¥k along with iip(q) — gn(q) =0=Ck 4 (4.23€)
viK(x)+ pK(x) =0 ae inK. (4.23f)

Remark 4.1. With the help of (4.23f) and if Z;, € LZ(Q) is a discrete optimal solution to (4.7),
then Z, € 7j,.

An equivalent discontinuous Galerkin finite element formulation corresponding to the strong
stationarity conditions defined in Theorem 3.1 can be stated as follows: let Z;, € ¥}, be a local
optimum of (4.7), ii;, € 7}, be the discrete state variable, pj, € ¥}, be the discrete adjoint variable
and lastly A;, € ¥}, be the discrete slack variable. Then, it holds that

(@) = [ v de Gondn V€ %y (4.242)

(Chriin—gn)n=03; { >0V K € T, (4.24b)

(i@, —gn)(p) >0V peYxandV K € T, (4.24¢)

/5 (vy, ) = / (iin — ua)vi dx+ (A, vi)p ¥ vi, € Y, (4.244d)
Q

(A, vidn <0V v, € My, and p, € My, (4.24e)

pr(x)+vZp(x) =0 ae. in Q. (4.241)

where,

,//,;h = {Vh S vh(x) >0 a.e. on {fth—gh = O} and (Ch,vh)h = 0}

5. THE ERROR ANALYSIS

In this section, we discuss the a priori error analysis for the symmetric interior penalty dis-
continuous Galerkin method for the optimal control problem governed by the elliptic obstacle
problem (Problem (A)). To prove the error estimates for the state (local matching) and control
variables, we derive the improved L2-error estimates for the obstacle problem for £; DG FEM
discretization. We also recall the energy norm estimates for the elliptic variational inequality
[38] for the state (global matching) and control variables.

5.1. Error estimates for the obstacle problem. For a given control z € L>(Q), we consider
the following obstacle problem:

a(u,yv—u) > (z,v—u) Vver, (5.1)
ue X ={we? : wx)>g)ae.in Q}. (5.2)
The next theorem recalls the energy norm error estimates for the obstacle problem from [38].

See Theorem 4.1 on Pg. 718 in [38] for a proof. We recall the regularity result for the obstacle
problem from Theorem 2.1 which has been used below.

Theorem S.1. Let u and uy, be the continuous and discrete solutions of (5.1) and (4.6), respec-
tively. Then, there is a positive constant C depending on the penalty parameter N > 0 such that
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the following error estimate holds
e = wnlll < Ch(llull 20 + 181l 2(0) (5.3)
where h:= max{hx : K € I}
With the help of Theorem 5.1 and Lemma 4.1, we have the estimate (5.4).

Remark 5.1. Let C > 0 be a positive constant which depends on the penalty parameter 7 > 0,
the domain © and on the given bounds ||u/| 2 () and ||g||;2(q)- Then, there holds

Hu—uhHLz < Ch®. (5.4)

Note that, & = 1 is evident from Theorem 5.1 but the proof for o > 1 is much more delicate.
This will be the focus of subsection 5.2 and it is one of the main novel aspect of this paper. The
celebrated Aubin-Nitsche trick from the theory of elliptic PDEs does not directly apply to the
obstacle problem [32]. To overcome this difficulty, we will employ the L*-error estimates for
the obstacle problem based on the Discrete Maximum Principle (DMP) for DG methods [5].
The initial ideas were laid by Nitsche [33] which are based on the DMP. The key difference is
that we need W2- regularity on the solution of obstacle problem (Theorem 2.1) whereas [33]
requires W2>-regularity.

5.2. Improved error estimates for the obstacle problem. We adopt the following definition
of local extremum in the DG setting and refer to article [5] for more details.

Definition 5.1. Let v, € ¥}, and K € .7}, then v;, has a local discrete minimum (resp., maximum)
atanode x; € K if vK (x;) < vy (2) (resp., th(x,-) > vp(z) Vz € 0 =Uyex K.

Let us consider the index set .4 := {1,2,--- ,N+ M} to be the set of all corner points of .7,
where {x;}Y | and {x;}¥ 41 denote the total number of interior and boundary corner points of
I, respectively. Next, using the above Definition 5.1 of a local discrete extremum, we are in
the position to state the DMP.

Lemma 5.1. (Discrete Maximum Principle) Let ¢ C A be a given set, we let
I ={je N : thereexist i € ¢ with a corner point x; € ;}, (5.5)
Fi={je 7 : 1<j<N} (5.6)
Note that g, is the collection of those corner points in ¢ that are in interior of Q and ¢*
denotes the collection of corner points which lie in the union of elements which support the

vertices in 7. Let K € J), and v, € ¥}, be such that vy, is locally minimal (resp., maximal) on
an interior corner point x; in K and if Vi € % :={1,2,--- N}, the following holds

A (v, 0K) < — Y, Tk, /| [vi]l| — Okhx /|Vvh\ (5.7)
zi€e,ecdK

where I', > 0 and 8k > 0 are positive constants

_ 1 .
(resp., %?’P(Vhﬁf() > —Yeeecok Lehe lfe |[valll = 6xhy Jx |VV{,( i€ s ={12,-- N}
then vy, has no strict local discrete minimum (resp., maximum) in any interior corner point.
Moreover, the global minimum (resp., maximum) is on the boundary, i.e.,

Vi (x;) <max{0,M} Vje £, (5.8)

where M := max vK(x;).

JET N\ I+
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Remark 5.2. In our analysis, we will be using the following variant of the discrete maximum
principle. If

A (v, 0K) < OVie s :={1,2,--- N}, (5.9)

(resp., dglp(vh, ¢Z.K) >0 i€ s ={l,2,---,N}), then v has no strict local discrete minimum
(resp., maximum) at any interior corner point. We note that the right hand side of (5.7) is strictly
less than zero and hence (5.9) holds true.

Next, for given z € L?(Q), we discuss the improved L?-error estimates for the obstacle prob-
lem (2.2)—(2.3).

Theorem 5.2. Let the assumptions of Theorem 2.1 and Proposition 3.1 hold and additionally
g € W2=(Q) holds.

Let u and uy, be the solutions of (2.2)—(2.3) and (4.19)—(4.20), respectively. For any Qo CC
Q, the following error estimate holds:

18(2) = Sn(zn)ll 2 (0g) = Il — unll12(qy)
< Ch" (lullyzno) + l1gllwam() ) (5.10)

where B :=1— % and the positive constant C is independent of h and the penalty parameter
n > 0. Further, let 0 < € < %, then (5.10) implies

ot =l 200 < CH2 2 (ullwzny + 18 lwaeay)- (5.11)
Proof. We note that
[l —upllr2(0y) < llu—Pull2(qn) + | Pr— unll12(qy) (5.12)

where P : H>(Q) ﬂHé (Q) — ¥}, is a projection operator which is defined as the unique solution
to the following equation

%SIP(Pu,vh) = —/ Auvy, dx Y v, €Y. (5.13)
Q

The operator Pu € ¥}, is indeed the SIPG finite element approximation to u which solves the
following Poisson equation

a(u,v) = / wvdx VveY, (5.14)
Q

where w = —Au. Using the standard duality arguments (see [7, Section 10.5]) and the ideas in
the article [11, Theorem 5.1], we have the following [?-error estimate and maximum (L*-norm)
error estimate for the Poisson equation, i.e.,

_d
[u— Pul|=(q) < Ch inf [[u—vp|y1eq) < ch’ 7 ullwarqy, 1 < p<eo, (5.15)
VhE%,
e = Pull 20 < CR*(n+172), (5.16)

where 7 is the penalty parameter defined in the 275/F(-,.) (equation (4.5)) and the positive
constant C (in (5.15) and (5.16)) is independent of 4. Next, we employ the discrete maximum
principle (Lemma 5.1) to deal with the second error term ||Pu — u|| 12(Q0) (in (5.12)). We will
proceed in few steps
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Step 1. e Let K € .7}, be a fixed element such that K N Qq # @ and note that both Pu and uy,
belong to ¥},. Fori € {1,2,3}, let PulK and uhK ; denote the components of the coefficient vectors

PuX and uhK , respectively. Next, we estimate the following differences
Puf —uy; and uy;,—Puf where K €., (5.17a)

where u{f = uf (x;) and {x;};_, are the vertices of K. Note that, we are interested in the max-
imum error estimates around the set Qg CC Q. Let us denote the continuous active set as
2:={x€Q : u(x)=g(x)}. Let {x;}i_, and {x;}/”, | be the set of all interior and boundary
corner points of the triangulization assocnated with Qq, respectively. Next, we introduce the
index sets

2 :={ie{l,2,---,n} : 0;N2#$}, (5.17b)
L={ie{l,2,--- N} : N2 +# ¢}, (5.17¢)
Dy ={ic{1,2,---,n} : uh(z)=gn(z)}, (5.17d)
L={ie{1,2,--- N} : ul(z) = gK(z)}, (5.17e)
A ={1,2,-- . n}\ 2, ; H:={1,2,--- n}\ D, (5.17f)
F1:={1,2,--- NI\ ; F:={1,2,--- ,N}\ 2, (5.17g)
Zpi=J o and 24,:= ] o, (5.17h)
€2, €2,
L= ] o and ZLo:= ] o (5.171)
€4 i€

Step 2. e Next, we prove the following estimate for all i € {1,2,--- ,n,n+1,--- ,m}, (i.e.,
the interior and boundary corner points of )

P —uffy < [Pt = )+ max|u(x) - g () (5.18)
1

Note that 2, U4 U{n+1,--- ,m}:={1,2,--- .n,n+1,--- ,m}. In view of Qy CC Q, then
observe thatifi € {n+1,--- ;m} theni € {1,2,--- N} and the proof follows on the similar lines
as in [29, Lemma A.2 and A.3]. Next, let i € 2| which implies uhK (xi) > ghK (x;) and K € w;
such that

Puf — ”f,i = Puf —u(x;) +ulx;) — uhKJ
<||Pu—u| =g, ) +ulx) — g ()
< ||Pu—ull=(z) +g§f|“(xi) —&n(xi)|-
Now, leti € 74, ie.,i € {1,2,---,n} and i ¢ 2, then we have u(x) —g(x) >0Vx €K € w;
and using (2.3), we have (x ;(x) = 0. For K € w; and with the help of (5.13) and (2.2), it holds
that

0= / —Au—z2 (Z)KdX—/ AM(PKdX SIP(“ha‘PiK>+ CK,i
SIP( 7¢1 ) K (Mh,d)iK)"f‘CK,i
> " (Pu, ¢f) — " (un, 9F)

1
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= A (Pu—uy, 0%) Vi € 4.
Using Remark 5.2 and .7 = (.74 ), we deduce

Puf —uK. <max{0, max (Pul—uk)?, 5.19
i hi = { 16%01*\(%)5 i h,z) ( )

=max 40, max Puf —uk.

{ iE%ﬁ*\jﬁ( i h,t)}
< mg}(PulK —uk) (using 74"\ 74 C A) (5.20)
1€ ’
< [[Pu—ul| 1= (7, ) + max|u(x;) — gn(xi)l. (5.21)
’ l€f1

Finally, we have the estimate for Puf — uX ..

Step 3. e Using the similar arguments in Step 2 along with definitions of the sets 2, and %>,
we have the following estimate for uhK i PulK

”th _P”zK < ||”—P”||L°°(fh_2) + llgn —g||L°°(fh_2)-

Step 4. e Using Steps 1, 2 and 3, we conclude
[ Pu— up| =0y < C<||u —Pull =202, 18n — 8&ll=(2.,)

) —gh<x,->|>. (5.22)

Lastly, we bound the third term on the right side of (5.22). Let m € {0,1} and u,g €
cmB (1) Notice that this Holder regularity follows from the respective regularity on « and
g. Since j € .4, there exists a y € ®; N 2 such that |x; —x’| < Ch and u(y) = g(y). Next, we
show the following estimate for m € {0, 1}:

0 < u(xj) — gn(x;) < CH"™F (H”HCM-,B(%J) + Hg”cm,ﬁ(fh_l)> +llgn = 8lli=(z,,),  (5:23)
where C is a positive constant independent of 4. For m = 0,
u(xj) —gn(x)) = u(xj) —u(y) +u(y) —8(x;) + 8(x;) — gn(x;)
= (u(x)) —u(y)) +(8(v) — 8(x;)) + (8(xj) — gn(x)))
< (HuHCOﬁ(ﬁM) + ||8||c07ﬁ(,gﬂh’1))|1j —yIP +llg —8ll=(,1)- (5.24)

Next, for m = 1, we employ the same ideas as in articles [29, Lemma A.5] and [14, Step 4, Pg.
660] to conclude

u(xj) = gn(x;) < CHP (lullcrp g, )+ 8llcrs 4,,))- (5.25)

Using the following standard interpolation estimate [7], [|gx — 8llz=(,,) < Ch?||g]ly2e(q) to-
gether with Steps 1, 2, 3 and 4 and inserting the Sobolov embedding W27 (Q) — C"#(Q) for
B=1- % (or with equations (5.12), (5.15), (5.16), (5.21), (5.22) and (5.23)), we have the proof
of Theorem 5.2. U
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5.3. Error estimates for the state and control: global matching. For the error estimates for
the control and state in the global matching case (ﬁ = Qin (A)), we first state the existence of
a sequence of discrete optimal solutions to (4.7), say {Zj}4~0 such that {Z,},-0 — 7 in L*(Q).
We skip the proof for the sake of brevity, as it follows along the lines of [29, Lemma 5.5].

Lemma 5.2. Let7 € L? (Q) satisfies (3.4) (quadratic growth condition) and Theorem 5.1 holds.
Then, we have existence of a sequence {Z}p~o of the local optimal solutions to (4.7) which
converge to 7 in L*(Q) as h — 0.

The sequence {Z,};~0 in Lemma 5.2 is generated by standard arguments [10, 29] through
solving the following auxiliary problem

{min Fy(2) == 5|1Su(z) — “dHiz(Q) + %”ZH%Z(Q)’

(5.26)
such that  z € By(2),

where By(Z) is defined in Proposition 3.1. Next, we state and prove the control error estimate in
the setting under consideration.

Theorem 5.3. Let 7 satisfies Lemma 5.2 and the error estimate (5.3) holds. Then, there exists a
constant C > 0, independent of h, such that

12— Znll2(q) < CVR(1+), (5.27)
where h is sufficiently small and 7 is the limit of a sequence {Z, } n~0 of local solutions to (4.7).

Proof. In view of Lemma 5.2, we have existence of sequence of local solutions to (4.7) con-
verging strongly to Z in L?(Q). and hence, for sufficiently small choices of & > 0 and ¥, Z,
satisfies

Fy(Zp) < F(2) and  Zj, € By(2). (5.28)
The quadratic growth condition (Assumption 3.1) and (5.28) yield the following
F(2) S F(2) = Kl =l 0) = K2 —2lz20) < F @)~ F(2) (5.29)
= |2 — 22 () < F (@) — FalZn) + Fiu(2) + Fi(2) — Fa(2) — F(2)
< [F(Zh) — Fn(Zn)| + [Fa(2) — F (2)]. (5.30)

First, we bound the term |F(Z;) — Fj,(Z;)| using the definition (4.7) and exploit the error bound
for term [|S;(Z,) — S (Zh)H%z(Q) using (5.3) and Remark 5.1 (by taking right hand side as Zj in
the elliptic variational equality of Problem (A)).

. - 1 - .
F ()~ Bl = 5 |10 — wall o) — 194(20) — wal B

1 . - . .
:Ewﬂ%%ﬂﬂéme%@U—ﬂ%ﬂﬂ@ﬂ—wﬁmn

1 g 3 g g -
< 5115w (zh) = S 720 + 11Sa(Z8) = Sl 20 1S(2) — wall 20y
< Ch*+Ch||S(2) — uall12(q)- (5.31)
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Next, we prove the uniform boundedness of Z;, V 7 > 0. Using (4.24d), (4.24e), (4.24f) and the
coercivity of .75 it holds that
N L
2]l 2 @) = 3 l1Pnll 20 (5.32)

and

1Bnll 720y < 1Ball> < =75 (pn, pn) = /Q(ﬁh —ug) Pn dx + (An; Pi)n

S / (ﬁh — ud)ﬁh dx
Q

< lln — uall 2l Pnll 12

< (Il + ludle )Ipilgy. (539

The Lipschitz continuity of S (see Lemma 2.1 in [27]) and the strong convergence of 7, (Lemma
5.2) provide the convergence of ii;, and hence i, is uniformly bounded. Using (5.33), the uni-
form boundedness of pj, follows and from (5.32) we have the uniform boundedness of 7. Fi-
nally (5.31) implies the following estimate

|F(Zn) = Fn(Zn)| < Ch(1 +h).

We apply the same arguments for estimating the second term |Fj,(Z) — F(Z)| and this finishes the
proof of Theorem 5.3 using (5.30). U

For the state variable, we employ S(Z) = i and S;,(Z;) = iy, together with the triangle in-
equality, estimates (5.3), (5.27) and the Lipschitz continuity of Sj, gives the following

@ — dn|[n = [|S(2) = Su(Zn)lln = IS(2) — Sn(2) + Sa(2) — Sn(Zn) |
< |1S@) = Su@)ln + 1Sn(2) = Su(Zn) [0 < Ch+ |2 = Znll12(02)
< Cy\/h(1+h)
which immediately implies
@ — dn|| 2q) < CV/A(1+ ). (5.34)
5.4. Error estimates for the state and control: local matching. In this sulosection, we prove

the quasi-optimal a priori error estimates of Z and # which satisfies (A) for Q = Q¢ CC Q. We
present the main result of this subsection in the next theorem.

Theorem 5.4. (Error estimate for control). Let € be such that 0 < € < %. Then, the following
estimate holds

12 = 24l 2 () < CR' 7, (5.35)

where 7 is the control variable in (A), {Z,}n, is a sequence which is obtained using Lemma 5.2
(i.e., {Zn} converges to Z) and the positive constant C is independent of h and depends on the
bounds ||g|w2=(q) and [[ully2.p(q)-

Proof. From estimate (5.30), we have

illzn — 272y < 1F (2) — FalZn)| + |F(2) = F(2)].
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Using (5.31), it is sufficient to bound the term ||Sy,(Z4) — S(Z1)l;2(q,)- Employing Theorem 5.2
and same ideas as in Theorem 5.3, it holds that

15420 = S sy < O (Il + lela-isn )
and we finally obtain the desired result

12— 24l 2 () < CR' 5. (5.36)

We conclude this subsection by stating the error estimates for the state variable.

Corollary 5.1. (Error estimate for state). Let ii and iiy, be the corresponding continuous and
discrete state variables, respectively. Then, it holds that ||i — iiy||, < Ch' €.

6. CONCLUSIONS

In this paper, we derived the a priori error estimates for the discontinuous Galerkin approx-
imation to the optimal control of obstacle problem. The key ingredients of the analysis are
the quadratic growth condition, the discrete maximum property and improved a priori error
estimates for solutions of the obstacle problem. The error estimates are quasi-optimal when
Q= Qp CC Qin (A). As a part of future work, we plan to develop a posteriori error estimates
by using the results from this paper.

APPENDIX A. PROOF
Proof of Lemma 4.1. For any w € H'(Q,.7},), define the function v € ¥ N H?(Q) that satisfies
—Av=w inQ,
v=0 ondQ.

Using the integration by parts formula [15, Appendix C] and discrete Cauchy-Schwarz inequal-
ity [15, Appendix C], it holds that

/Vw Vvdx— Z /[[w]]

Ke g, ecé),

< F 19wl 190l + T e 00 1 G e )

||W||%2(Q):/Q ( AV dx—

Ke, ecédy,
! !
<(Z 1wl ) (X 190l
Keg, Keg,
(T i) (ZrI2E)
eE/L ecéy

< (T 19wl X 1) (2 19+ I

Keg, ecd) h Ke, ecé),
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Employing the standard discrete trace inequality [7, equation (10.3.8) on Pg. 282], the follow-
ing holds

v 2
el| 5220y < ClIVIy22(x):

where C is a positive constant. Finally using —Av = w, we have the proof. UJ
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