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Abstract. This paper provides quasi-optimal a priori error estimates for an optimal control problem
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1. INTRODUCTION

Free boundary problems governed by physical principles are ubiquitous in science and engi-
neering. In particular, variational inequalities of first kind, such as the obstacle problem, arise
in elasticity, fluid filtration in porous media and finance. Special attention has been given to the
obstacle problem which acts as a model problem in many of these applications. It is also natural
to consider the optimization problems governed by variational inequalities as constraints which
is the focus here.

This paper considers an optimal control problem governed by an elliptic variational inequality
(EVI) of the first kind (obstacle problem) [20, 34] as constraints. Let Ω be a bounded domain
in Rd , where d is in {2,3} with Lipschitz boundary ∂Ω. For (u,z) denoting the state-control
pair, the optimal control problem is given by

min
{

J(u,z) := 1
2‖u−ud‖2

L2(Ω̂)
+ ν

2‖z‖
2
L2(Ω)

}
,

subject to a(u,v−u)≥ (z,v−u) ∀ v ∈K ,

and u ∈K := {w ∈ V := H1
0 (Ω) : w(x)≥ g(x) a.e. in Ω},

(A)
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where the open set Ω̂ is either Ω̂ = Ω or Ω̂ = Ω0 ⊂⊂Ω. Here, a(s, t) :=
∫

Ω
∇s ·∇t dx ∀s, t ∈ V

is the continuous, V -elliptic bilinear form on V ×V , (·, ·) denotes the L2(Ω) inner-product
and ‖ · ‖L2(Ω̂)

is the norm on L2(Ω̂). Let ud ∈ L2(Ω̂) be the desired state and ν > 0 be the
regularization parameter. The exact functional-analytic setting of Problem (A) is stated in the
upcoming sections.

This paper derives a priori error estimates for Problem (A) by using the symmetric interior
penalty discontinuous Galerkin (DG) finite element method (FEM). The state u represents either
global matching state, i.e., Ω̂ = Ω or local matching state Ω̂ = Ω0, where Ω0 ⊂⊂ Ω. In both
cases, finite element error estimates for z and u are derived. In the local matching setting, error
estimates are quasi-optimal i.e., O(h) for control. In the global setting, we are limited by the
DG boundary conditions and we obtain O(h

1
2 ).

DG methods provide greater flexibility to handle complex geometries and allow discretiza-
tions with hanging nodes and different degrees of polynomial approximation on different ele-
ments. In addition, they are more flexible to locally adapt the discretization or the degree of the
discrete basis functions which captures better approximation of the solution. For a general ref-
erence on DG methods, we refer to [12]. Furthermore, the articles [3, 4, 8] discuss DG methods
for elliptic problems. For related work on obstacle problem, we refer to [38].

The literature on the optimal control problem constrained by PDEs is indeed significant (see
[1, 17, 22, 24, 36]), but this is still a highly active research area. For works on a priori error
analysis for optimal control problems governed by PDEs, we refer to [2, 13, 16, 19, 28]. Optimal
control for the obstacle problem is a challenging problem due to non-differentiability of the
solution mapping S between the control and state variables. In the seminal works [30, 31],
the authors demonstrated the directional differentiability of the map S and, later introduced the
optimality conditions of the strong stationarity type for Problem (A). The authors in [27] built
upon the ideas from [30] and derived the second order strong stationarity conditions for Problem
(A). Haslinger and Roubı́ček [21] first discussed the finite element approximations for the
optimal control of variational inequality of the first kind. The article [21] showed convergence
of the finite element approximation but does not talk about order of convergence.

The article [29] derived quasi-optimal a priori error estimates for Problem (A) by using con-
forming finite element method based on certain assumptions on the mesh and given data. The
analysis in [29] is valid for convex Ω ⊂ Rd , where d ∈ {2,3} with polygonal boundary ∂Ω.
The Discrete Maximum Principle (DMP) [9] is a crucial tool to derive the improved L2-error
estimates for the obstacle problem. In [29], the DMP holds true in the sense that the conforming
stiffness matrix is a weakly diagonally dominant M-matrix (see [18]), which can be restrictive
in applications. Later, [14] proved the error estimates for the same model problem using the
Crouzeix-Raviart (CR) nonconforming finite elements. This analysis is valid for bounded con-
vex and polygon domain Ω⊂ R2. Furthermore, the discretization is chosen in such a way that
the quasi-uniform triangulation or a Friedrich-Keller triangulation with CR elements generates
a global stiffness matrix which is a weakly domainated M-matrix, a slight variant of the DMP.
This can again be challenging to fulfill in practice.

In the DG setting, there are only two works that studies the DMP for the Poisson problem,
i.e., [23] and [5]. The results in [23] are valid for dimension one, whereas [5] proposes a new
(variational) definition of the DMP in the DG setting for d ≥ 1. Here, we follow the approach
that is discussed in [5]. Our analysis is based on the quadratic growth condition (Assumption
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3.1) and the strong stationarity conditions (Theorem 3.1). The main contributions of our work
are as follows:
• We do not assume/impose any restrictive assumption on our mesh as we have employed the
definition for the local discrete maximum (respectively, minimum) and use the key property that
DMP works in a local sense for DG methods, i.e., for all K ∈Th, where Th is the triangulation.
• Derive the convergence rate of order 1

2 − ε for every ε > 0 for the control z when Ω̂ = Ω.
This result require Ω to be convex leading to H2(Ω) regularity for the solution to the obstacle
problem.
• In case of local matching state variable, we first derive novel quasi-optimal estimates for the
state ‖u(z)− uh(z)‖L2(Ω0)

. h2−2ε‖u‖W 2,p(Ω). We use these estimates to derive quasi-optimal
error estimates for control approximation of order 1−ε . These results require u∈W 2,p, for this
regularity, we have assumed Ω to be C1,1. Unfortunately we could not find a reference for this
regularity for convex domains.

The article is organized as follows: In Section 2, we begin with some preliminaries of Prob-
lem (A) and state the regularity estimates corresponding to the solution to the elliptic variational
inequality. Next, we formulate the variational inequality into an equality with the help of con-
tinuous Lagrange multiplier ζ which acts as a function of both V ∗ and L2(Ω) in Section 2.
In Section 3, we first highlight that the solution operator S which maps control to state is not
Gâteaux-differentiable and later, we represent the Problem (A) into the mathematical problem
with complementarity constraints (MPCCs) in function spaces. Using standard arguments, we
state the existence and regularity result of an optimal control z̃ in Section 3. After that we
state the strong stationarity conditions for any arbitrary obstacle using the ideas laid initially
by Mignot in [30] for zero obstacle g = 0. One of the key ingredient in our error analysis is
the quadratic growth condition satisfied by an optimal control z̃ if it satisfies second-order suf-
ficient conditions which involve the strong stationary conditions in (3.3) (due to authors in [27]
stated in Section 3). We introduce some notations and DG formulation in Section 4. Moreover,
the matrix version of the strong stationarity conditions are discussed in Section 4. The main
convergence results of our analysis require an improved a priori estimate for the L2-error of the
finite element discretization of the obstacle problem, which we have shown in Section 5. The
idea is to use the Discrete Maximum Principle and L∞-error estimates for the Poisson equation
which we have highlighted in Section 5. The a priori error estimates for u and z in both global
and local matching cases are derived in Section 5. Finally, conclusions and future directions are
discussed in Section 6.

2. PRELIMINARIES AND REGULARITY RESULTS

The classical obstacle problem [20, 34] reads as:

a(u,v−u)≥ (z,v−u) ∀ v ∈K , (2.1a)

u ∈K = {w ∈ V : w(x)≥ g(x) a.e. in Ω}, (2.1b)

where (·, ·) denotes the L2(Ω) inner-product. In our analysis, W m,p(Ω) denotes the Sobolev
space equipped with the norm ‖ · ‖W m,p and seminorm | · |W m,p [25]. We assume that the given
obstacle satisfies g ≤ 0 a.e. on ∂Ω, g ∈ H1(Ω) and some other precise conditions on the given
obstacle g will be discussed later. The closed and convex set K is non-empty because g+ :=



462 H. ANTIL, R. KHANDELWAL, U. RAKHIMOV

max{g,0} ∈K . Next result collects the existence and regularity results of solution to (2.1a)–
(2.1b) (see [27, Lemma 2.1] and [26, Theorem 6.2], [34, Chapter 5, Corollary 2.3 and Theorem
2.5]).

Theorem 2.1 (Existence and regularity of the obstacle problem). The following holds:
(a) If Ω ⊂ Rd is a polygonal domain, g ∈ H1(Ω), and z ∈ H−1(Ω), then there exists a unique

solution to (2.1a)-(2.1b) satisfying u ∈ H1
0 (Ω).

(b) If Ω is convex or ∂Ω is C1,1, g ∈ H2(Ω), and z ∈ L2(Ω), then the solution to (2.1a)-(2.1b)
satisfies u ∈ H2(Ω)∩H1

0 (Ω).
(c) Let ∂Ω be C1,1, z ∈ Lp(Ω)∩H−1(Ω) and g ∈W 2,p(Ω), with 1 < p <+∞ then the solution

to (2.1a)-(2.1b) satisfies u ∈W 2,p(Ω)∩H1
0 (Ω).

Remark 2.1. In Theorem 2.1(c), note that Lp(Ω)⊂ H−1(Ω) for d = 2 when 1 < p <+∞ and
Lp(Ω) ⊂ H−1(Ω) for d = 3 when 6

5 ≤ p < +∞. These conditions are always satisfied by our
control z which is at least L2(Ω).

In case of bounded Lipschitz domain Ω, there exists a unique Lagrange multiplier ζ ∈ V ∗

(the dual of V ) [37] such that

a(u,v) = (z,v)+ 〈ζ ,v〉−1,1 ∀ v ∈ V , (2.2)

〈ζ ,u−g〉−1,1 = 0 , ζ ≥ 0 and u(x)−g(x)≥ 0 a.e. in Ω, (2.3)

where 〈·, ·〉−1,1 denotes the duality pairing between V and V ∗. The equation (2.3) is known as
the complementarity equation with ζ ≥ 0 on Ω′ ⊆Ω if 〈ζ ,φ〉−1,1 ≥ 0, for all 0≤ φ ∈ H1

0 (Ω
′).

We can also equivalently rewrite the bilinear form a(·, ·) as follows. We have A ∈L (V ,V ∗)
i.e., the set of all bounded linear operators from V to V ∗ such that

a(v,w) = 〈A v,w〉−1,1 ∀ v,w ∈ V . (2.4)

For any f ∈ V ∗, the norm ‖ f‖V ∗ is defined as

‖ f‖V ∗ := sup
v∈V , v6=0

〈 f ,v〉−1,1

‖∇v‖L2(Ω)

. (2.5)

3. THE STRONG STATIONARITY CONDITIONS

The goal of this section is to discuss the strong stationarity conditions for the model Prob-
lem (A). The content of this section is known in the literature especially for the case g≡ 0 (see
[30, 31]). We first recall the notion of the differentiability in Hilbert spaces [1].

Definition 3.1. Let X and Y be two Banach spaces and L := L (X ,Y ) denotes the space of all
bounded linear operators from X to Y . Let X ′ be an open subset of X , then the map J : X ′→ Y
is said to be Gâteaux differentiable at z ∈ X ′ if it is directionally differentiable in all directions
t ∈ X and J′(z, t) = J′(z)t where J′(z) ∈L (X ,Y ).

Remark 3.1. The solution map S : L2(Ω)→K ⊆ V which is defined as S(z) := u ∈K is
Lipschitz continuous (see Lemma 2.1 in [27]) but in general is not Gâteaux-differentiable (see
Lemma 2.4 in [27]). Whereas, S is directionally differentiable at all z ∈ L2(Ω). Using Theorem
3.3 of article [30], the directional derivative given by DS(z, t) ∈Mu in the direction t ∈ V ∗

satisfies the following variational inequality

a(DS(z, t),v−DS(z, t))≥ 〈t,v−DS(z, t)〉−1,1 ∀ v ∈Mu, (3.1)
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where Mu :=
{

v ∈ V : v(x)≥ 0 a.e. on {u−g = 0} and 〈ζ ,v〉−1,1 = 0
}

.

Using (2.2) and (2.3), Problem (A) can be rewritten as the mathematical program with com-
plementarity constraints (MPCCs) in function spaces which is a particular case of the mathe-
matical program with equilibrium constraints (MPECs) [31]. For notation simplicity, we will
focus on Ω̂ = Ω, with almost no changes to the text for Ω̂ = Ω0.

Problem 3.1.

min
z∈L2(Ω)

{
F(z) :=

1
2
‖S(z)−ud‖2

L2(Ω)+
ν

2
‖z‖2

L2(Ω)

}
, (3.2a)

subject to a(u,v) = (z,v)+ 〈ζ ,v〉−1,1 ∀ v ∈ V , (3.2b)

〈ζ ,u−g〉−1,1 = 0 , ζ ≥ 0 and u(x)−g(x)≥ 0 a.e. in Ω. (3.2c)

Existence of solution to the above optimization problem follows by standard arguments.
However, in general we cannot expect z̃ to be unique. The strong stationarity conditions have
been stated in the next result. See [31, Theorem 2.2] for the proof when g = 0 and for g 6= 0, the
proof follows using similar arguments as in [30, 31] provided optimal state satisfies ũ ∈ H2(Ω)
(via Theorem 2.1(b)) or g|∂Ω = 0.

Theorem 3.1 (Strong stationarity conditions). Let ũ ∈ H2(Ω) or ũ ∈K with g|∂Ω = 0 and let
(z̃,ζ )∈ L2(Ω)×V ∗ satisfy equations (3.2a)–(3.2c). Then, there exists a slack variable λ ∈ V ∗,
an adjoint variable p ∈ H1

0 (Ω) such that (ũ, z̃, p,λ ) solves the following strong stationarity
conditions:

a(ũ,v) =
∫

Ω

z̃ v dx+ 〈ζ ,v〉−1,1 ∀ v ∈ V , (3.3a)

〈ζ , ũ−g〉−1,1 = 0 , ζ ≥ 0 and ũ(x)−g(x)≥ 0 quasi everywhere in Ω, (3.3b)

a(v, p) =
∫

Ω

(ũ−ud)v dx+ 〈λ ,v〉−1,1 ∀ v ∈ V , (3.3c)

〈λ ,v〉−1,1 ≤ 0 ∀ v ∈Mũ and p ∈Mũ, (3.3d)

p(x)+ν z̃(x) = 0 a.e. in Ω, (3.3e)

where Mu :=
{

v ∈ V : v(x)≥ 0 quasi everywhere on {u−g = 0} and 〈ζ ,v〉−1,1 = 0
}

.

From (3.3e), using the regularity of adjoint p, we immediately have that z̃ ∈ H1
0 (Ω). The

embedding of H1(Ω) in Lp(Ω) is standard as [25].

Proposition 3.1. Under the assumptions of Theorem 3.1, optimal control z̃∈ L2(Ω) correspond-
ing to Problem (A) fulfills

z̃ ∈ H1(Ω) ↪→

{
L6(Ω) if d = 3,
Lp(Ω) if d = 2, where 1≤ p < ∞.

The optimal control z̃∈ L2(Ω) of (3.2a) also satisfies the quadratic growth condition provided
if z̃ satisfies the second-order sufficient optimality conditions. Specifically, if there exists a
positive constant τ > 0 such that p≥ 0 a.e. where g+ τ > ũ > g, then the following holds (cf.
[27, Assumption 1 and Theorem 2.12, Pg. 529]).
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Assumption 3.1. (Quadratic growth condition) Let F(·) be the functional defined in (3.2a),
then there exists constants γ > 0 and κ > 0 such that

F(z̃)≤ F(z)−κ‖z− z̃‖2
L2(Ω) ∀ z ∈ Bγ(z̃), (3.4)

where Bγ(z̃) is the ball of radius γ with center z̃ in the topology of L2(Ω).

4. DISCRETIZATION

Let Th be a regular triangulation (mesh) of Ω and K ∈Th denotes a non-degenerate element
(triangle) for d = 2 or tetrahedron for d = 3. For the discretization of Problem (A), we use a
discontinuous Galerkin finite element space given by

Vh := {vh ∈ L2(Ω) : vh|K ∈P1(K) ∀ K ∈Th}, (4.1)

where w|K denotes the restriction of w to K and P1(K) is the space of polynomials of de-
gree less than or equal to one defined on K. Let {zi : i = 1,2, . . . ,Mh} denotes the set of all
vertices (corner points) of the mesh, where Mh is the total number of vertices and the cor-
responding macroelements (patch) will be denoted by ωi = ∪zi∈KK. The discrete function
vh ∈ Vh can be expressed as the linear combination of the Lagrange basis functions φ K

i where
(i,K) ∈ {1,2, · · · ,Mh}×Th. Note that φ K

i (z j) = δi j, where δi j is the Kronker’s delta function
and φ K

i (x) = 0 ∀x ∈Ω\K. Therefore, any vh ∈ Vh can have the following form:

vh =
Mh

∑
i=1

∑
K⊂ωi

vK
h,iφ

K
i . (4.2)

Let VK be the set of all nodes of element K ∈Th. Further, Eh is the set of all the edges/faces of
Th and he is the length of an edge/face e. Let us introduce the discrete nonempty, closed and
convex subset Kh as follows:

Kh := {wh ∈ Vh : wh|K(p)≥ gh(p) ∀ p ∈ VK and ∀ K ∈Th}, (4.3)

where gh ∈Vc :=Vh∩V denotes the nodal interpolation of g [7]. Before introducing the discrete
variational inequality, we need to introduce the average and jump of the discrete functions.
Firstly, the broken Sobolev space is defined by

H1(Ω,Th) = {v ∈ L2(Ω) : v|K ∈ H1(K) ∀ K ∈Th}.

Let e be an interior edge/face in Th, then there exist two elements K+ and K− such that e =
∂K+∩ ∂K−. Let n+ be an unit outward normal pointing from K+ to K−, then we have n− =
−n+. Hence, the average and jump of v ∈ H1(Ω,Th) on an edge/face e is defined by

{{v}}= v++ v−

2
and [[v]] = v+n++ v−n−,

respectively where v+ = v|K+ and v− = v|K− . Similarly, we define the average and jump for a
vector valued function q ∈ [H1(Ω,Th)]

d on interior edge/face e as

{{q}}= q++q−

2
and [[q]] = q+ ·n++q− ·n−.

Let E b
h be the set of all boundary edges of Th, then for a boundary edge e ∈ E b

h let ne be an
outward unit normal to an element K such that ∂K∩∂Ω = e, we define for v ∈ H1(Ω,Th)

[[v]] = vne and {{v}}= v on e



DG OCP FOR THE OBSTACLE PROBLEM 465

and for q ∈ [H1(Ω,Th)]
d , we set

[[q]] = q ·ne and {{q}}= q on e.

Next, let us define the following two bilinear forms

ah(vh,wh) := (∇hvh,∇hwh) = ∑
K∈Th

∫
K

∇vh ·∇wh dx,

and for all w,v ∈ Vh

bh(w,v) :=− ∑
e∈Eh

∫
e
{{∇w}}[[v]] ds− ∑

e∈Eh

∫
e
{{∇v}}[[w]] ds+ ∑

e∈Eh

∫
e

η

he
[[w]][[v]] ds, (4.4)

where η ≥ η0 > 0 is sufficiently large positive number to ensure the ellipticity of A SIP(·, ·)
which is defined by

A SIP(vh,wh) = ah(vh,wh)+bh(vh,wh) ∀vh,wh ∈ Vh. (4.5)

The discrete version of the obstacle problem in Problem (A) is given by: Find uh ∈Kh fulfilling

A SIP(uh,vh−uh)≥ (z,vh−uh) ∀ vh ∈Kh, (4.6)

where A SIP(·, ·) : Vh×Vh→R is the SIPG (Symmetric Interior Penalty Galerkin) bilinear form
[7, Chapter 10]. Using the coercivity and boundedness of the discrete bilinear form A SIP(·, ·)
[38], it can be verified that the discrete problem (4.6) has a unique solution uh ∈Kh.

Next, we introduce the discrete solution map corresponding to uh ∈Kh ⊆ Vh as follows:

Sh : L2(Ω)→ Vh , z 7→ Sh(z) =: uh.

The discrete version of the optimization problem (3.2a) using Sh is stated next:

min
z∈L2(Ω)

{
Fh(z) :=

1
2
‖Sh(z)−ud‖2

L2(Ω)+
ν

2
‖z‖2

L2(Ω) (4.7)

=
1
2 ∑

K∈Th

‖SK
h (z)−ud‖2

L2(K)+
ν

2
‖z‖2

L2(Ω)

}
.

As in the continuous case, the standard arguments yield existence of local optimal solution to
(4.7). In (4.7), the control z∈ L2(Ω) is not discretized. However, we will see in Remark 4.1 that
each local optimum z of (4.7) belongs to Vh (defined in (4.1)) and there is no need to discretize
the control variable. To begin, we introduce the space

W := Vh +(V ∩H2(Ω)),

where A+B := {a+b : a ∈ A and b ∈ B} and the norm |||·||| for w ∈W is defined by

|||w|||2 := ∑
K∈Th

‖∇w‖2
L2(K)+ ∑

e∈Eh

1
he
‖[[w]]‖2

L2(e)+ ∑
K∈Th

h2
K‖D2w‖2

L2(K), (4.8)

where hK := diameter of K. It is easy to see that |||w||| is a norm on W with the help of next
lemma. We deduce that the ‖ · ‖L2(Ω) is bounded by |||·||| through the next result. For more
details, see [3, Lemma 2.1]. We refer to Appendix A for a proof.
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Lemma 4.1. It holds that

‖w‖L2(Ω) ≤C1

(
∑

K∈Th

‖∇w‖2
L2(K)+ ∑

e∈Eh

1
he
‖[[w]]‖2

L2(e)

) 1
2

∀ w ∈ H1(Ω,Th), (4.9)

where C1 is a positive constant.

In the following result, we discuss the Lipschitz continuity of Sh.

Lemma 4.2 (Sh is Lipschitz). For every given z1,z2 ∈ L2(Ω), there exist unique solutions
Sh(z1) := u1

h ∈Kh and Sh(z2) := u2
h ∈Kh of (4.6) and the following holds:

‖Sh(z1)−Sh(z2)‖h ≤ ‖z1− z2‖L2(Ω), (4.10)

where ‖w‖2
h := ∑

K∈Th

‖∇w‖2
L2(K)

+ ∑
e∈Eh

1
he
‖[[w]]‖2

L2(e) is the norm on Vh [38].

Proof. We prove (4.10) for every K ∈Th. We begin the proof by letting SK
h (z

1) = u1
h ; SK

h (z
2) =

u2
h for some K ∈ Th. Next, we insert vh = u1

h ∈Kh for z = z2 in (4.6) and vh = u2
h ∈Kh for

z = z1 in (4.6) and we observe the following:

A SIP(u2
h,u

1
h−u2

h)≥ (z2,u1
h−u2

h), (4.11)

A SIP(u1
h,u

2
h−u1

h)≥ (z1,u2
h−u1

h). (4.12)

We employ the coercivity of A SIP(·, ·), Lemma 4.1 and add the equations (4.11)–(4.12) to have
the following:

‖u1
h−u2

h‖2
h ≤A SIP(u1

h−u2
h,u

1
h−u2

h)≤ ‖z1− z2‖L2(Ω)‖u1
h−u2

h‖h.

Finally, we conclude the proof of (4.10). �

Next, we introduce the discrete Lagrange multiplier ζh ∈ Vh as

〈ζh,vh〉h = A SIP(uh,vh)−
∫

Ω

zvh dx ∀ vh ∈ Vh, (4.13)

which could be thought as an approximation to the continuous functional ζ stated in (2.2) and
the inner product 〈·, ·〉h is defined by: for any vh,wh ∈ Vh,

〈vh,wh〉h := ∑
K∈Th

|K|
d +1 ∑

p∈VK

vh(p)wh(p). (4.14)

Using the definition (4.13) and discrete variational inequality (4.6), we get that

〈ζh,vh−uh〉h ≥ 0 ∀ vh ∈Kh. (4.15)

Let us suppose φ
p
h ∈ Vh be the canonical Lagrange basis function associated with the vertex

p, i.e., φ
p
h takes the value one at the vertex p and vanishes at all other vertices. We note that

ζh|K ∈P1(K) and by choosing vh = uh +φ
p
h ∈Kh in (4.15), we obtain that ∀ K ∈Th

ζh ≥ 0 in K ⇐⇒ ζh(p)≥ 0 ∀ p ∈ VK. (4.16)

For any K ∈Th, let {φ K
p ; p ∈ VK} be its local Lagrange basis functions, then we set vK

h = vh|K .
Using this notation, we define vh on the single element K as

vK
h := ∑

p∈VK

vh(p)φ K
p . (4.17)
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Then, we can rewrite (4.6) in the following way using the above notation (4.17) and support of
the local basis functions φ K

p , i.e., φ K
p (x) = 0 if x ∈Ω\K.

∑
p,q∈VK

uh(p)A SIP(φ K
p ,φ

K
q )(vh(q)−uh(q))≥ ∑

q∈VK

(z,φ K
q )(vh(q)−uh(q)) ∀ K ∈Th,

⇐⇒ (>uh,K)A
SIP

K (vh,K−uh,K)≥ (>bz,K)(vh,K−uh,K) ∀ vh,K ∈ R|VK | (4.18)

and vh,K−gh,K ≥ 0 ∀ K ∈Th,

where
(1) A SIP

K ∈ R|VK |×|VK | having the (p,q) entry as A SIP(φ K
p ,φ

K
q ).

(2) bz,K := (z,φ K
q )q∈VK ∈ R|VK |.

(3) wh,K := (wh(p))p∈VK ∀ wh ∈ Vh.
(4) >a := Transpose of the vector a ∈ R|VK |.
(5) Let wh,vh ∈ Vh, then wh,K − yh,K ≥ 0 is understood in the sense that wh(p)− yh(p) ≥

0 ∀ p ∈ VK .
We revisit the matrix version of the Lagrange multiplier in the following way:

ζK := A SIP
K uh,K−bz,K ∈ R|VK | for every K ∈Th.

In the view of the definition of ζK , we reformulate (4.18) as:

A SIP
K uh,K = ζK +bz,K, (4.19)

uh(p)≥ gh(p) ∀ p ∈ VK, ζK ≥ 0, (>ζK)(uh,K−gh,K) = 0. (4.20)

For each element K ∈Th, we have the equivalent mathematical problem with complementarity
constraints (MPCC) to problem (4.7). For some K ∈ Th, we define the minimum function
min(a,b), where minimum is understood in the componentwise sense{

min 1
2(
>uh,K)N uh,K− (>uh,K)bd +

ν

2‖z‖
2
L2(Ω)

subject to A SIP
K uh,K = ζK +bz,K and min(uh,K−gh,K,ζK) = 0,

(4.21)

where
(1) For every K ∈Th, the mass matrix N is defined as

N ∈ R|VK |×|VK | ; Npq :=
∫

K
φ

K
p φ

K
q dx ∀p,q ∈ VK. (4.22)

(2) For all p ∈ VK and K ∈Th, we define bd :=
∫

K udφ K
p dx.

The proof of the next result follows along the same as in theory of finite dimensional MPECs
[6, 35]. Here, we use � to indicate the Hadamard product.

Theorem 4.1. Let z̃h := (z̃K
h )K∈Th ∈ L2(Ω) be a discrete optimal solution to (4.21) having an

associated state variable ũh := (ũK
h )K∈Th ∈ Vh and a Lagrange multiplier (matrix version)

ζ̃K := (ζ̃K,i)
3
i=1 ∈ R|VK |. Therefore, we have existence of a discrete adjoint state variable

p̃h := (p̃K
h )K∈Th ∈ Vh and a discrete multiplier λK := (λK,i)

3
i=1 ∈ R|VK | such that the follow-

ing holds ∀ K ∈Th:

A SIP
K ũh,K = ζ̃K +bz̃h,K, (4.23a)

(>ζ̃K)(ũh,K−gh,K) = 0 ; ζ̃K ≥ 0 and ũh,K−gh,K ≥ 0, (4.23b)
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(>A SIP
K )p̃h,K = N ũh,K−bd +λK, (4.23c)

(ũh,K−gh,K)�λK = 0 ; ζ̃K� p̃h,K = 0, (4.23d)

λK,i ≤ 0 ∀ i ∈ {1,2,3} ; p̃h(q)≥ 0 ∀ q ∈ VK along with ũh(q)−gh(q) = 0 = ζ̃K,q, (4.23e)

ν z̃K
h (x)+ p̃K

h (x) = 0 a.e. in K. (4.23f)

Remark 4.1. With the help of (4.23f) and if z̃h ∈ L2(Ω) is a discrete optimal solution to (4.7),
then z̃h ∈ Vh.

An equivalent discontinuous Galerkin finite element formulation corresponding to the strong
stationarity conditions defined in Theorem 3.1 can be stated as follows: let z̃h ∈ Vh be a local
optimum of (4.7), ũh ∈ Vh be the discrete state variable, p̃h ∈ Vh be the discrete adjoint variable
and lastly λh ∈ Vh be the discrete slack variable. Then, it holds that

A SIP(ũh,vh) =
∫

Ω

z̃hvh dx+ 〈ζh,vh〉h ∀ vh ∈ Vh, (4.24a)

〈ζh, ũh−gh〉h = 0 ; ζh ≥ 0 ∀ K ∈Th, (4.24b)

(ũh−gh)(p)≥ 0 ∀ p ∈ VK and ∀ K ∈Th, (4.24c)

A SIP(vh, ph) =
∫

Ω

(ũh−ud)vh dx+ 〈λh,vh〉h ∀ vh ∈ Vh, (4.24d)

〈λh,vh〉h ≤ 0 ∀ vh ∈Mũh and ph ∈Mũh, (4.24e)

ph(x)+ν z̃h(x) = 0 a.e. in Ω. (4.24f)

where,

Mũh :=
{

vh ∈ Vh : vh(x)≥ 0 a.e. on {ũh−gh = 0} and 〈ζh,vh〉h = 0
}
.

5. THE ERROR ANALYSIS

In this section, we discuss the a priori error analysis for the symmetric interior penalty dis-
continuous Galerkin method for the optimal control problem governed by the elliptic obstacle
problem (Problem (A)). To prove the error estimates for the state (local matching) and control
variables, we derive the improved L2-error estimates for the obstacle problem for P1 DG FEM
discretization. We also recall the energy norm estimates for the elliptic variational inequality
[38] for the state (global matching) and control variables.

5.1. Error estimates for the obstacle problem. For a given control z ∈ L2(Ω), we consider
the following obstacle problem:

a(u,v−u)≥ (z,v−u) ∀ v ∈K , (5.1)

u ∈K = {w ∈ V : w(x)≥ g(x) a.e. in Ω}. (5.2)

The next theorem recalls the energy norm error estimates for the obstacle problem from [38].
See Theorem 4.1 on Pg. 718 in [38] for a proof. We recall the regularity result for the obstacle
problem from Theorem 2.1 which has been used below.

Theorem 5.1. Let u and uh be the continuous and discrete solutions of (5.1) and (4.6), respec-
tively. Then, there is a positive constant C depending on the penalty parameter η > 0 such that
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the following error estimate holds

|||u−uh||| ≤Ch
(
‖u‖H2(Ω)+‖g‖H2(Ω)

)
, (5.3)

where h := max{hK : K ∈Th}.
With the help of Theorem 5.1 and Lemma 4.1, we have the estimate (5.4).

Remark 5.1. Let C > 0 be a positive constant which depends on the penalty parameter η > 0,
the domain Ω and on the given bounds ‖u‖H2(Ω) and ‖g‖H2(Ω). Then, there holds

‖u−uh‖L2(Ω) ≤Chα . (5.4)

Note that, α = 1 is evident from Theorem 5.1 but the proof for α > 1 is much more delicate.
This will be the focus of subsection 5.2 and it is one of the main novel aspect of this paper. The
celebrated Aubin-Nitsche trick from the theory of elliptic PDEs does not directly apply to the
obstacle problem [32]. To overcome this difficulty, we will employ the L∞-error estimates for
the obstacle problem based on the Discrete Maximum Principle (DMP) for DG methods [5].
The initial ideas were laid by Nitsche [33] which are based on the DMP. The key difference is
that we need W 2,p- regularity on the solution of obstacle problem (Theorem 2.1) whereas [33]
requires W 2,∞-regularity.

5.2. Improved error estimates for the obstacle problem. We adopt the following definition
of local extremum in the DG setting and refer to article [5] for more details.

Definition 5.1. Let vh ∈Vh and K ∈Th, then vh has a local discrete minimum (resp., maximum)
at a node xi ∈ K if vK

h (xi)≤ vh(z) (resp., vK
h (xi)≥ vh(z)) ∀ z ∈ ωi =

⋃
xi∈K K.

Let us consider the index set N := {1,2, · · · ,N +M} to be the set of all corner points of Th,
where {xi}N

i=1 and {xi}M
i=N+1 denote the total number of interior and boundary corner points of

Th, respectively. Next, using the above Definition 5.1 of a local discrete extremum, we are in
the position to state the DMP.

Lemma 5.1. (Discrete Maximum Principle) Let J ⊂N be a given set, we let

J ∗ := { j ∈N : there exist i ∈J with a corner point x j ∈ ωi}, (5.5)

J∗ := { j ∈J : 1≤ j ≤ N}. (5.6)

Note that J∗ is the collection of those corner points in J that are in interior of Ω and J ∗

denotes the collection of corner points which lie in the union of elements which support the
vertices in J . Let K ∈ Th and vh ∈ Vh be such that vh is locally minimal (resp., maximal) on
an interior corner point xi in K and if ∀ i ∈I := {1,2, · · · ,N}, the following holds

A SIP
K (vh,φ

K
i )≤− ∑

zi∈e,e∈∂K
Γeh−1

e

∫
e
|[[vh]]|−δKh−1

K

∫
K
|∇vK

h |, (5.7)

where Γe > 0 and δK > 0 are positive constants
(resp., A SIP

K (vh,φ
K
i )≥−∑zi∈e,e∈∂K Γeh−1

e
∫

e |[[vh]]|−δKh−1
K
∫

K |∇vK
h | i ∈I = {1,2, · · · ,N}),

then vh has no strict local discrete minimum (resp., maximum) in any interior corner point.
Moreover, the global minimum (resp., maximum) is on the boundary, i.e.,

vK
h (x j)≤max{0,M} ∀ j ∈J∗, (5.8)

where M := max
j∈J ∗\J∗

vK
h (x j).
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Remark 5.2. In our analysis, we will be using the following variant of the discrete maximum
principle. If

A SIP
K (vh,φ

K
i )≤ 0 ∀ i ∈I := {1,2, · · · ,N}, (5.9)

(resp., A SIP
K (vh,φ

K
i )≥ 0 i ∈I = {1,2, · · · ,N}), then vh has no strict local discrete minimum

(resp., maximum) at any interior corner point. We note that the right hand side of (5.7) is strictly
less than zero and hence (5.9) holds true.

Next, for given z ∈ L2(Ω), we discuss the improved L2-error estimates for the obstacle prob-
lem (2.2)–(2.3).

Theorem 5.2. Let the assumptions of Theorem 2.1 and Proposition 3.1 hold and additionally
g ∈W 2,∞(Ω) holds.

Let u and uh be the solutions of (2.2)–(2.3) and (4.19)–(4.20), respectively. For any Ω0 ⊂⊂
Ω, the following error estimate holds:

‖S(z)−Sh(zh)‖L2(Ω0)
= ‖u−uh‖L2(Ω0)

≤Ch1+β
(
‖u‖W 2,p(Ω)+‖g‖W 2,∞(Ω)

)
, (5.10)

where β := 1− d
p and the positive constant C is independent of h and the penalty parameter

η > 0. Further, let 0 < ε < d
2p , then (5.10) implies

‖u−uh‖L2(Ω0)
≤Ch2−2ε

(
‖u‖W 2,p(Ω)+‖g‖W 2,∞(Ω)

)
. (5.11)

Proof. We note that

‖u−uh‖L2(Ω0)
≤ ‖u−Pu‖L2(Ω0)

+‖Pu−uh‖L2(Ω0)
, (5.12)

where P : H2(Ω)∩H1
0 (Ω)→ Vh is a projection operator which is defined as the unique solution

to the following equation

A SIP(Pu,vh) =−
∫

Ω

∆uvh dx ∀ vh ∈ Vh. (5.13)

The operator Pu ∈ Vh is indeed the SIPG finite element approximation to u which solves the
following Poisson equation

a(u,v) =
∫

Ω

wv dx ∀ v ∈ V , (5.14)

where w = −∆u. Using the standard duality arguments (see [7, Section 10.5]) and the ideas in
the article [11, Theorem 5.1], we have the following L2-error estimate and maximum (L∞-norm)
error estimate for the Poisson equation, i.e.,

‖u−Pu‖L∞(Ω) ≤Ch inf
vh∈Vh

‖u− vh‖W 1,∞(Ω) ≤Ch2− d
p‖u‖W 2,p(Ω) , 1≤ p < ∞, (5.15)

‖u−Pu‖L2(Ω) ≤Ch2(η +η
−5), (5.16)

where η is the penalty parameter defined in the A SIP(·, ·) (equation (4.5)) and the positive
constant C (in (5.15) and (5.16)) is independent of h. Next, we employ the discrete maximum
principle (Lemma 5.1) to deal with the second error term ‖Pu−uh‖L2(Ω0)

(in (5.12)). We will
proceed in few steps
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Step 1. • Let K ∈ Th be a fixed element such that K ∩Ω0 6= /0 and note that both Pu and uh
belong to Vh. For i ∈ {1,2,3}, let PuK

i and uK
h,i denote the components of the coefficient vectors

PuK and uK
h , respectively. Next, we estimate the following differences

PuK
i −uK

h,i and uK
h,i−PuK

i where K ∈Th, (5.17a)

where uK
h,i = uK

h (xi) and {xi}3
i=1 are the vertices of K. Note that, we are interested in the max-

imum error estimates around the set Ω0 ⊂⊂ Ω. Let us denote the continuous active set as
Q := {x ∈Ω : u(x) = g(x)}. Let {xi}n

i=1 and {xi}m
i=n+1 be the set of all interior and boundary

corner points of the triangulization associated with Ω0, respectively. Next, we introduce the
index sets

Q1 := {i ∈ {1,2, · · · ,n} : ωi∩Q 6= φ}, (5.17b)

L1 := {i ∈ {1,2, · · · ,N} : ωi∩Q 6= φ}, (5.17c)

Q2 := {i ∈ {1,2, · · · ,n} : uK
h (zi) = gK

h (zi)}, (5.17d)

L2 := {i ∈ {1,2, · · · ,N} : uK
h (zi) = gK

h (zi)}, (5.17e)

H1 := {1,2, · · · ,n}\Q1 ; H2 := {1,2, · · · ,n}\Q2, (5.17f)

F1 := {1,2, · · · ,N}\L1 ; F2 := {1,2, · · · ,N}\L2, (5.17g)

Qh,1 :=
⋃

i∈Q1

ωi and Qh,2 :=
⋃

i∈Q2

ωi, (5.17h)

Lh,1 :=
⋃

i∈L1

ωi and Lh,2 :=
⋃

i∈L2

ωi. (5.17i)

Step 2. • Next, we prove the following estimate for all i ∈ {1,2, · · · ,n,n+ 1, · · · ,m}, (i.e.,
the interior and boundary corner points of Ω0)

PuK
i −uK

h,i ≤ ‖Pu−u‖L∞(Lh,1)+max
i∈L1
|u(xi)−gh(xi)|. (5.18)

Note that Q1 ∪H1 ∪{n+ 1, · · · ,m} := {1,2, · · · ,n,n+ 1, · · · ,m}. In view of Ω0 ⊂⊂ Ω, then
observe that if i∈ {n+1, · · · ,m} then i∈ {1,2, · · · ,N} and the proof follows on the similar lines
as in [29, Lemma A.2 and A.3]. Next, let i ∈Q1 which implies uK

h (xi) ≥ gK
h (xi) and K ∈ ωi

such that

PuK
i −uK

h,i = PuK
i −u(xi)+u(xi)−uK

h,i

≤ ‖Pu−u‖L∞(Qh,1)+u(xi)−gK
h (xi)

≤ ‖Pu−u‖L∞(Lh,1)+max
i∈L1
|u(xi)−gh(xi)|.

Now, let i ∈H1, i.e., i ∈ {1,2, · · · ,n} and i /∈Q1, then we have u(x)− g(x) > 0 ∀ x ∈ K ∈ ωi
and using (2.3), we have ζK,i(x) = 0. For K ∈ ωi and with the help of (5.13) and (2.2), it holds
that

0 =
∫

K
(−∆u− z)φ K

i dx =
∫

K
−∆uφ

K
i dx−A SIP

K (uh,φ
K
i )+ζK,i

= A SIP
K (Pu,φ K

i )−A SIP
K (uh,φ

K
i )+ζK,i

≥A SIP
K (Pu,φ K

i )−A SIP
K (uh,φ

K
i )
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= A SIP
K (Pu−uh,φ

K
i ) ∀i ∈H1.

Using Remark 5.2 and H1 = (H1)∗, we deduce

PuK
i −uK

h,i ≤max
{

0, max
i∈H ∗

1 \(H1)∗
(PuK

i −uK
h,i)

}
, (5.19)

= max
{

0, max
i∈H ∗

1 \H1
(PuK

i −uK
h,i)

}
≤max

i∈L1
(PuK

i −uK
h,i) (using H ∗

1 \H1 ⊆L1) (5.20)

≤ ‖Pu−u‖L∞(Lh,1)+max
i∈L1
|u(xi)−gh(xi)|. (5.21)

Finally, we have the estimate for PuK
i −uK

h,i.

Step 3. • Using the similar arguments in Step 2 along with definitions of the sets Q2 and L2,
we have the following estimate for uK

h,i−PuK
i

uK
h,i−PuK

i ≤ ‖u−Pu‖L∞(Lh,2)+‖gh−g‖L∞(Lh,2).

Step 4. • Using Steps 1, 2 and 3, we conclude

‖Pu−uh‖L∞(Ω0) ≤C
(
‖u−Pu‖L∞(Lh,2∪Lh,1)+‖gh−g‖L∞(Lh,2)

+max
i∈L1
|u(xi)−gh(xi)|

)
. (5.22)

Lastly, we bound the third term on the right side of (5.22). Let m ∈ {0,1} and u,g ∈
Cm,β (Lh,1). Notice that this Hölder regularity follows from the respective regularity on u and
g. Since j ∈L1, there exists a y ∈ ω j ∩Q such that |x j− x′| ≤Ch and u(y) = g(y). Next, we
show the following estimate for m ∈ {0,1}:

0≤ u(x j)−gh(x j)≤Chm+β

(
‖u‖Cm,β (Lh,1)

+‖g‖Cm,β (Lh,1)

)
+‖gh−g‖L∞(Lh,1), (5.23)

where C is a positive constant independent of h. For m = 0,

u(x j)−gh(x j) = u(x j)−u(y)+u(y)−g(x j)+g(x j)−gh(x j)

= (u(x j)−u(y))+(g(y)−g(x j))+(g(x j)−gh(x j))

≤
(
‖u‖C0,β (Lh,1)

+‖g‖C0,β (Lh,1)

)
|z j− y|β +‖gh−g‖L∞(Lh,1). (5.24)

Next, for m = 1, we employ the same ideas as in articles [29, Lemma A.5] and [14, Step 4, Pg.
660] to conclude

u(x j)−gh(x j)≤Ch1+β
(
‖u‖C1,β (Lh,1)

+‖g‖C1,β (Lh,1)

)
. (5.25)

Using the following standard interpolation estimate [7], ‖gh− g‖L∞(Lh,1) ≤ Ch2‖g‖W 2,∞(Ω) to-
gether with Steps 1, 2, 3 and 4 and inserting the Sobolov embedding W 2,p(Ω) ↪→C1,β (Ω) for
β = 1− d

p (or with equations (5.12), (5.15), (5.16), (5.21), (5.22) and (5.23)), we have the proof
of Theorem 5.2. �
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5.3. Error estimates for the state and control: global matching. For the error estimates for
the control and state in the global matching case (Ω̂ = Ω in (A)), we first state the existence of
a sequence of discrete optimal solutions to (4.7), say {z̃h}h>0 such that {z̃h}h>0→ z̃ in L2(Ω).
We skip the proof for the sake of brevity, as it follows along the lines of [29, Lemma 5.5].

Lemma 5.2. Let z̃ ∈ L2(Ω) satisfies (3.4) (quadratic growth condition) and Theorem 5.1 holds.
Then, we have existence of a sequence {z̃h}h>0 of the local optimal solutions to (4.7) which
converge to z̃ in L2(Ω) as h→ 0.

The sequence {z̃h}h>0 in Lemma 5.2 is generated by standard arguments [10, 29] through
solving the following auxiliary problem{

min Fh(z) := 1
2‖Sh(z)−ud‖2

L2(Ω)
+ ν

2‖z‖
2
L2(Ω)

,

such that z ∈ Bγ(z̃),
(5.26)

where Bγ(z̃) is defined in Proposition 3.1. Next, we state and prove the control error estimate in
the setting under consideration.

Theorem 5.3. Let z̃ satisfies Lemma 5.2 and the error estimate (5.3) holds. Then, there exists a
constant C > 0, independent of h, such that

‖z̃− z̃h‖L2(Ω) ≤C
√

h(1+h), (5.27)

where h is sufficiently small and z̃ is the limit of a sequence {z̃h}h>0 of local solutions to (4.7).

Proof. In view of Lemma 5.2, we have existence of sequence of local solutions to (4.7) con-
verging strongly to z̃ in L2(Ω). and hence, for sufficiently small choices of h > 0 and γ , z̃h
satisfies

Fh(z̃h)≤ Fh(z̃) and z̃h ∈ Bγ(z̃). (5.28)

The quadratic growth condition (Assumption 3.1) and (5.28) yield the following

F(z̃)≤ F(z̃h)−κ‖z̃h− z̃‖2
L2(Ω) =⇒ κ‖z̃h− z̃‖2

L2(Ω) ≤ F(z̃h)−F(z̃) (5.29)

=⇒ κ‖z̃h− z̃‖2
L2(Ω) ≤ F(z̃h)−Fh(z̃h)+Fh(z̃h)+Fh(z̃)−Fh(z̃)−F(z̃)

≤ |F(z̃h)−Fh(z̃h)|+ |Fh(z̃)−F(z̃)|. (5.30)

First, we bound the term |F(z̃h)−Fh(z̃h)| using the definition (4.7) and exploit the error bound
for term ‖Sh(z̃h)− S(z̃h)‖2

L2(Ω)
using (5.3) and Remark 5.1 (by taking right hand side as z̃h in

the elliptic variational equality of Problem (A)).

|F(z̃h)−Fh(z̃h)|=
1
2

∣∣∣∣‖S(z̃h)−ud‖2
L2(Ω)−‖Sh(z̃h)−ud‖2

L2(Ω)

∣∣∣∣
=

1
2

∣∣∣∣‖S(z̃h)−ud‖2
L2(Ω)−‖Sh(z̃h)−S(z̃h)+S(z̃h)−ud‖2

L2(Ω)

∣∣∣∣
≤ 1

2
‖Sh(z̃h)−S(z̃h)‖2

L2(Ω)+‖Sh(z̃h)−S(z̃h)‖L2(Ω)‖S(z̃h)−ud‖L2(Ω)

≤Ch2 +Ch‖S(z̃h)−ud‖L2(Ω). (5.31)
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Next, we prove the uniform boundedness of z̃h ∀ h > 0. Using (4.24d), (4.24e), (4.24f) and the
coercivity of A SIP, it holds that

‖z̃h‖L2(Ω) ≤
1
ν
‖p̃h‖L2(Ω) (5.32)

and

‖p̃h‖2
L2(Ω) ≤ |||p̃h|||2 ≤A SIP(p̃h, p̃h) =

∫
Ω

(ũh−ud)p̃h dx+ 〈λh, p̃h〉h

≤
∫

Ω

(ũh−ud)p̃h dx

≤ ‖ũh−ud‖L2(Ω)‖ p̃h‖L2(Ω)

≤
(
‖ũh‖L2(Ω)+‖ud‖L2(Ω)

)
‖ p̃h‖L2(Ω). (5.33)

The Lipschitz continuity of S (see Lemma 2.1 in [27]) and the strong convergence of z̃h (Lemma
5.2) provide the convergence of ũh and hence ũh is uniformly bounded. Using (5.33), the uni-
form boundedness of p̃h follows and from (5.32) we have the uniform boundedness of z̃h. Fi-
nally (5.31) implies the following estimate

|F(z̃h)−Fh(z̃h)| ≤Ch(1+h).

We apply the same arguments for estimating the second term |Fh(z̃)−F(z̃)| and this finishes the
proof of Theorem 5.3 using (5.30). �

For the state variable, we employ S(z̃) = ũ and Sh(z̃h) = ũh, together with the triangle in-
equality, estimates (5.3), (5.27) and the Lipschitz continuity of Sh gives the following

‖ũ− ũh‖h = ‖S(z̃)−Sh(z̃h)‖h = ‖S(z̃)−Sh(z̃)+Sh(z̃)−Sh(z̃h)‖h

≤ ‖S(z̃)−Sh(z̃)‖h +‖Sh(z̃)−Sh(z̃h)‖h ≤Ch+‖z̃− z̃h‖L2(Ω)

≤C
√

h(1+h)

which immediately implies

‖ũ− ũh‖L2(Ω) ≤C
√

h(1+h). (5.34)

5.4. Error estimates for the state and control: local matching. In this subsection, we prove
the quasi-optimal a priori error estimates of z̃ and ũ which satisfies (A) for Ω̂ = Ω0 ⊂⊂Ω. We
present the main result of this subsection in the next theorem.

Theorem 5.4. (Error estimate for control). Let ε be such that 0 < ε < d
2p . Then, the following

estimate holds

‖z̃− z̃h‖L2(Ω) ≤Ch1−ε , (5.35)

where z̃ is the control variable in (A), {z̃h}h is a sequence which is obtained using Lemma 5.2
(i.e., {z̃h} converges to z̃) and the positive constant C is independent of h and depends on the
bounds ‖g‖W 2,∞(Ω) and ‖u‖W 2,p(Ω).

Proof. From estimate (5.30), we have

κ‖z̃h− z̃‖2
L2(Ω) ≤ |F(z̃h)−Fh(z̃h)|+ |Fh(z̃)−F(z̃)|.
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Using (5.31), it is sufficient to bound the term ‖Sh(z̃h)−S(z̃h)‖L2(Ω0)
. Employing Theorem 5.2

and same ideas as in Theorem 5.3, it holds that

‖Sh(z̃h)−S(z̃h)‖L2(Ω0)
≤Ch2−2ε

(
‖u‖W 2,p(Ω)+‖g‖W 2,∞(Ω)

)
,

and we finally obtain the desired result

‖z̃− z̃h‖L2(Ω) ≤Ch1−ε . (5.36)

�

We conclude this subsection by stating the error estimates for the state variable.

Corollary 5.1. (Error estimate for state). Let ũ and ũh be the corresponding continuous and
discrete state variables, respectively. Then, it holds that ‖ũ− ũh‖h ≤Ch1−ε .

6. CONCLUSIONS

In this paper, we derived the a priori error estimates for the discontinuous Galerkin approx-
imation to the optimal control of obstacle problem. The key ingredients of the analysis are
the quadratic growth condition, the discrete maximum property and improved a priori error
estimates for solutions of the obstacle problem. The error estimates are quasi-optimal when
Ω̂ = Ω0 ⊂⊂Ω in (A). As a part of future work, we plan to develop a posteriori error estimates
by using the results from this paper.

APPENDIX A. PROOF

Proof of Lemma 4.1. For any w ∈ H1(Ω,Th), define the function v ∈ V ∩H2(Ω) that satisfies

−∆v = w in Ω,

v = 0 on ∂Ω.

Using the integration by parts formula [15, Appendix C] and discrete Cauchy-Schwarz inequal-
ity [15, Appendix C], it holds that

‖w‖2
L2(Ω) =

∫
Ω

w (−∆v) dx = ∑
K∈Th

∫
K

∇w ·∇v dx− ∑
e∈Eh

∫
e
[[w]]

∂v
∂n

ds,

≤ ∑
K∈Th

‖∇w‖L2(K)‖∇v‖L2(K)+

(
∑

e∈Eh

h−
1
2

e
∥∥[[w]]∥∥L2(e)h

1
2
e
∥∥∂v

∂n

∥∥
L2(e)

)
,

≤
(

∑
K∈Th

‖∇w‖2
L2(K)

) 1
2
(

∑
K∈Th

‖∇v‖2
L2(K)

) 1
2

+

(
∑

e∈Eh

1
he

∥∥[[w]]∥∥2
L2(e)

) 1
2
(

∑
e∈Eh

he
∥∥∂v

∂n

∥∥2
L2(e)

) 1
2

,

.

(
∑

K∈Th

∥∥∇w
∥∥2

L2(K)
+ ∑

e∈Eh

1
he

∥∥[[w]]∥∥2
L2(e)

) 1
2
(

∑
K∈Th

‖∇v‖2
L2(K)+ ∑

e∈Eh

he
∥∥∂v

∂n

∥∥2
L2(e)

) 1
2

.
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Employing the standard discrete trace inequality [7, equation (10.3.8) on Pg. 282], the follow-
ing holds

he
∥∥∂v

∂n

∥∥2
L2(e) ≤C‖v‖2

W 2,2(K),

where C is a positive constant. Finally using −∆v = w, we have the proof. �
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et informatique de Rennes, S3 (1975), 1-17.

[34] J.F. Rodrigues, Obstacle Problems in Mathematical Physics, volume 134 of North-Holland Mathematics
Studies, North-Holland Publishing Co., Amsterdam, 1987.

[35] H. Scheel, S. Scholtes, Mathematical programs with complementarity constraints: Stationarity, optimality,
and sensitivity, Math. Oper. Res. 25 (2000), 1-22.
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