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A LINE DECOMPOSITION ALGORITHM FOR MULTIOBJECTIVE
OPTIMIZATION
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Abstract. Decomposition techniques are proven highly effective in addressing complexity of optimiza-
tion problems. For multiobjective optimization problems (MOPs), a variety of objective-space decom-
position approaches are developed and applied in practice, while decision-space decomposition remains
rather underexplored. We develop a line-decomposition algorithm for computing an approximation of
the efficient set of strictly convex MOPs. The feasible region is decomposed into lines whose efficient
sets are used to reconstruct the overall efficient set. Because the algorithm relies on solving a collection
of single objective line search problems, it is immediately applicable to single-objective optimization
with no modifications. We prove the algorithm convergence and provide a preliminary error analysis.
The algorithm is implemented in Python and tested on biobjective and single objective problems with
bounded variables. Numerical results are also included.
Keywords. Decision-space decomposition; Efficient set; Multiobjective line search.
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1. INTRODUCTION

Real-world decision problems are often large-scale due to the number of decision variables or
the complexity of objective and constraint functions. This can make the resulting optimization
models numerically challenging or even infeasible to solve as a single problem. Decomposi-
tion techniques have proven highly effective in addressing this complexity across various opti-
mization problems [1]. This technique involves dividing the original problem into a collection
of subproblems, solving each subproblem individually, and then combining their solutions to
construct the solution to the original problem. For example, a subproblem might focus on opti-
mizing only a subset of the objectives or apply a relaxation or restriction to the decision space.
In any case, solving these subproblems shall be computationally much easier than tackling the
original problem directly.

Multiobjective optimization problems (MOPs) can be decomposed based on various model-
ing aspects, including the scientific or engineering disciplines used to create the mathematical
model, the objective functions, the scenarios in which the system is expected to operate, the
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involvement of decision-makers in the process, and more. As discussed in [2], current state-of-
the-art decomposition approaches to MOPs include objective-space decomposition algorithms
which have been developed and applied in practice. In contrast, decision-space decomposition
remains relatively underexplored. Theoretical findings for decision-space decomposition are
provided in [3, 4, 5], while [6] presents applications in location science and public transporta-
tion, which benefit from this type of decomposition, and provide a preliminary study on the
block coordinate descent [7] for bi-objective problems.

The goal of this paper is to develop a decision-space decomposition algorithm to compute an
approximation of the efficient set for strictly convex MOPs. The algorithm is based on an ear-
lier theoretical study on decomposition for the efficient set and accompanying set-convergence
in the Painlevé-Kuratowski sense [8]. That study had originally been inspired by the block-
coordinate descent for single-objective problems and a decomposition theorem in [5]. The
proposed algorithm is referred to as a line-decomposition algorithm since the feasible region
is decomposed into lines whose efficient sets are used to reconstruct the overall efficient set.
We prove the convergence of this algorithm and provide a preliminary error analysis for an
implementation in Rn. We implement this algorithm in Python and test for biobjective and
single-objective problems with bounded variables. Due to the decomposition into lines, the al-
gorithm conceptually relies on solving a multiobjective line search problem, which is executed
as solving a collection of single-objective line-search problems. This execution reduces the
complexity of computing the efficient set as well as makes the algorithm immediately applica-
ble to single-objective optimization with no modifications.

The structure of this paper is as follows. In Section 2, the necessary background and the line
decomposition theorem are presented. The approach to implementing the decomposition algo-
rithm is outlined in Section 3, while the error accumulation and convergence of the algorithm
are analyzed in Section 4. In Section 5, we provide computational results for the algorithm ap-
plied to both bi-objective and single-objective problems, and present the implementation details
of the algorithm. The paper is concluded in Section 6.

2. PRELIMINARIES

We first review foundational concepts for MOPs and basic results, then introduce a notion of
set convergence, and lastly present the line decomposition theory which is implemented in later
sections.

2.1. Multiobjective optimization. A multiobjective optimization problem can be formulated
as below.

min f (x) = [ f1(x) , f2(x) , . . . , fp(x)], (2.1)

s.t. x ∈ X

where X ⊆ Rn, f : X → Rp, and p ≥ 2. We refer to the set X as the feasible set, and the set
Y := f (X) = {y ∈ Rp : y = f (x),x ∈ X} as the image set.

A partial order must be prescribed to define optimal solutions to (2.1) that are referred to as
efficient solutions. Let u,v ∈ Rp. We define the binary relations which are partial orders: u < v
if ui < vi for all i ∈ [p]; u ≤ v if ui ≤ vi, for all i ∈ [p] with at least one strict inequality; and
u 5 v if ui ≤ vi, for all i ∈ [p]. The most commonly used partial order is the relation ≤ which
defines efficient solutions.
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A point x ∈ X is said to be an efficient solution to (2.1) if there is no x̂ ∈ X such that f (x̂)≤
f (x). The set of all efficient solutions in X is denoted by E (X) and is called the efficient set of
X . When p = 1, problem (2.1) reduces to a single-objective problem, and the definition of an
efficient point reduces to the definition of a minimizer in single-objective optimization.

The image of an efficient solution is called a Pareto point for (2.1). The set of all Pareto
points is denoted by P(Y ) := {y ∈ Rp : y = f (x) for x ∈ E (X)} and is called the Pareto set of
Y .

The computation of the efficient set on a line is performed using Theorem 2.1 that allows to
obtain this set in a closed form by solving multiple single-objective problems.

Theorem 2.1. [9] Let f : Rn → Rp be strictly convex, and let the feasible set be a line seg-
ment, L = {x̄+αd | l ≤ α ≤ u}, where x̄,d ∈ Rn, l,u ∈ R. For each r ∈ [p], define α∗r :=
argminα∈[l,u] fr(αd + x̄) to be the unique minimizer of fr. Then, the efficient set of L is exactly

E (L) =
{

x̄+αd | min
r∈[p]
{α∗r } ≤ α ≤max

r∈[p]
{α∗r }

}
.

Since the line decomposition algorithm proposed in the next section produces approximations
of the efficient set, a measure of approximation quality is needed. To compare approximate
solutions to the true efficient set, we introduce the notion of Hausdorff distance of sets and
Painlevé-Kuratowski convergence of sets below.

2.2. Set convergence. Throughout this paper we use || · || to denote the `2−norm and || · ||op to
denote the operator norm. Let X ⊆ Rn. Then, for A,B⊆X the Hausdorff distance from A to
B is ∆H(A,B) := max

(
supb∈B dist(b,A) , supa∈A dist(a,B)

)
, where dist(x,A) := infa∈A ||x−a||.

Let {AN}∞
N=1 ⊆X be a sequence of subsets of X . The set A is called the Painlevé-Kuratowski

limit of {AN} if Liminf
N→∞

AN = Limsup
N→∞

AN = A where

Liminf
N→∞

AN := {x ∈X : ∀ε > 0, B(x,ε)∩AN 6= /0 for all but finitely many N},

Limsup
N→∞

AN := {x ∈X : ∀ε > 0, B(x,ε)∩AN 6= /0 for infinitely many N}.

We denote this type of convergence by AN
K→ A. If X is a compact space, the Painlevé-

Kuratowski convergence is equivalent to the Hausdorff convergence, i.e., ∆H(AN ,A)→ 0 ⇐⇒
AN

K→ A.

2.3. Line decomposition. We now introduce the notation used to decompose the decision
space using lines.

Definition 2.1. Let Sn−1 denote the unit sphere in Rn. Then, for each d ∈ Sn−1 define the set
P(d) := projd(X), where projd(X) denotes the orthogonal projection of X onto the hyperplane
{x ∈ Rn : dT x = 0}.

Below is a useful property of the projection operator.

Proposition 2.1. Let v ∈ Rn. Then, ||projd(v)|| ≤ ||v||.

The proof follows immediately from the fact that the operator norm of the projection operator
is ||projd||op := sup||v||=1 ||projd(v)||= 1.
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Definition 2.2. For a fixed d ∈ Sn−1 and x ∈ P(d), define the feasible line segment X(d,x) by

X(d,x) := {x+αd : α ∈ R}∩X .

Note that if X is convex, then every set X(d,x) may be written as a single line segment of the
form {x+αd : α ∈ R s.t. αl ≤ α ≤ αu} for some αl,αu ∈ R∪{±∞}. To simplify the notation
used for line search subproblems, we also define the variables that describe the feasible step
sizes range for a line segment X(d,x).

Definition 2.3. For a fixed direction d ∈ Sn−1 and x ∈ P(d) we define the feasible step size
bounds for a line segment X(d,x) by

α
x
l := min{α ∈ R : l ≤ xi +αdi ≤ u,∀di 6= 0},

α
x
u := max{α ∈ R : l ≤ xi +αdi ≤ u,∀di 6= 0}.

The line decomposition theorem which gives a foundation for the proposed algorithm is stated
below in Theorem 2.2. This decomposition method involves decomposing X into a collection of
line segments, denoted by X(d,x), and then finding the efficient set on each of these lines. The
efficient line segments are denoted by E (X(d,x)). Theorem 2.2 specifies the exact collection of
efficient line segments needed to recover the overall efficient set to the MOP, E (X).

Theorem 2.2 ([8]). Let X ⊆ Rn be compact and f : X → Rp be a continuous function, p ≥ 1.
Then E (X) =

⋂
d∈Sn−1

⋃
x∈P(d)E (X(d,x)).

Remark 2.1. Only direction vectors in the upper half of Sn−1 are needed since vectors in the
lower half of the sphere will define the same lines.

Remark 2.2. For p = 1, Theorem 2.1 can still be used to solve each line-search subproblem.
Thus, the proposed decomposition can be applied to multi- or single-objective optimization
interchangeably in contrast to other optimization methods that are suitable only to either scalar
or vector optimization.

Intuitively, the set
⋃

x∈P(d)E (X(d,x)) gives the points which are efficient in the direction d.
Then, taking an intersection over all d ∈ Sn−1 will give points which are efficient in all directions
(i.e., efficient points to the original MOP).

A notable trait of this decomposition theorem is that no additional optimization is needed
after decomposing the MOP. The efficient set can be recovered by only taking a union and
intersection of subproblem solutions. Note that the sets Sn−1 and P(d) which define the inter-
section and union in Theorem 2.2 are continuous, and therefore infinitely many subproblems
must be solved to recover the efficient set. However, in practical implementation only a finite
number of subproblems can be solved. Theorem 2.3 below establishes convergence of the line
decomposition method as discrete indexing sets converge to the continuous sets Sn−1 and P(d).

Theorem 2.3 ([8]). Let X ⊆ Rn be a polytope with non-empty interior, and f : X → Rp be a
continuous and strictly convex function. Let {SM}∞

M=1 ⊆ Sn−1 be a monotonic non-decreasing

sequence of finite subsets SM ⊆ Sn−1 such that SM
K→ Sn−1 as M→ ∞. For each d ∈ Sn−1 let

{P(d)
N }∞

N=1 ⊆ P(d) be a monotonic non-decreasing sequence of finite subsets P(d)
N ⊆ P(d) such

that P(d)
N

K→ P(d) as N→ ∞. Then limM→∞

⋂
d∈SM

limN→∞

⋃
x∈P(d)

N
E (X(d,x)) = E (X).
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2.4. Error analysis. In our error analysis presented in Section 4, we use a theorem by Sub-
otić, Hauswirth, and Dörfler [10] to help describe the distance between parallel efficient line
segments. In Theorem 2.4 we state their result in a form which is relevant to our work.

Theorem 2.4 (Subotic et al., [10] Theorem 3). Let Ξ ⊆ Rt and φ : Rn→ R be strictly convex
and twice continuously differentiable. Let g : Rn×Ξ→ Rm and h : Rn×Ξ→ R` be linear
functions. Consider the parametric nonlinear optimization problem below,

min
x∈Rn

φ(x,ξ ),

s.t. h(x,ξ ) = 0,

g(x,ξ )≤ 0

(2.2)

where ξ ∈ Ξ. Let x∗ be a minimizer to (2.2) for ξ̄ which satisfies the linear independence
constraint qualification condition. Then on a neighborhood N ⊆Ξ of ξ̄ there exists a Lipschitz
continuous map x̂ : N → Rn such that

(1) x̂(ξ̄ ) = x∗,
(2) for all ξ ∈N , x̂(ξ ) is a local minimizer for (2.2).

Having established the necessary theoretical and methodological concepts, we apply them to
develop the line decomposition algorithm in the next section.

3. LINE DECOMPOSITION ALGORITHM

In this section we present the line decomposition algorithm which is an application of The-
orem 2.2. For our implementation of the algorithm, we assume the set X ⊆ Rn is a hypercube
defined by X = [l,u]n, and f : X → Rp is continuous and strictly convex. In order to apply
Theorem 2.2 in practice, we must convert Sn−1 and P(d) into finite discrete sets that will serve
as indexing sets in implementation. Intuitively, the set of vectors used to represent Sn−1 are the
directions in which we check for efficiency in the decision space.

Before presenting a pseudocode, we provide an overview of the process for the line decom-
position algorithm by describing its key steps and introducing notation for the discrete variables
used. The first two steps are to represent Sn−1 and X as discrete sets. Let S ⊆ Sn−1 such that
|S|= k < ∞ denote a discrete set of unit vectors. To represent the feasible hypercube X = [l,u]n,
we first represent the interval [l,u] using m equally spaced points. Denote this discrete set by
D ⊆ [l,u]. Then a discrete representation of X is defined by Xm := D×·· ·×D ⊆ [l,u]n. Once
the discrete sets S and Xm are defined, we may begin the first iteration of the algorithm. The
outermost for-loop in the pseudocode which iterates through each unit vector di ∈ S, outlines the
steps for each iteration of the algorithm. The first step inside this loop is to compute a discrete
representation of P(di). Then the set P(di) is approximated by projecting each point x ∈ Xm

onto the hyperplane {x ∈ Rn : (di)T x = 0} using the formula, projdi(x) = x− (di)T xdi. This
representation of P(di) is saved into a set P, and then we enter the second for-loop in the pseu-
docode. This loop iterates over each point in x ∈ P and each time the efficient set E (X(di,x)) is
computed as follows. First, the range of feasible step sizes for the line search optimization are
determined, αx

l ,α
x
u . Then we enter the third for-loop in the pseudocode and solve a line search

problem for each objective. For fixed di ∈ S and x̄ ∈ X , a single-objective line search problem
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is solved for each r ∈ [p],

min
α∈[l,u]

fr(x̄+αdi) (3.1)

whose optimal solution, α∗r , is then used to determine the efficient set, E (X(di,x)), on the
line segment X(di,x) by applying Theorem 2.1, E (X(di,x)) =

{
x̄+αdi | minr∈[p]{α∗r } ≤ α ≤

maxr∈[p]{α∗r }
}
.

Algorithm: Line Decomposition Algorithm

Input:
Objective function: f : Rn→ Rp ;
Variable bounds: [l,u]⊆ R;
Number of points to represent the interval [l,u]: m ∈ N;
Number of direction vectors to be used: k ∈ N;

Output:
Approximate efficient set: E;

Discretize unit sphere: S = {d1, . . . ,dk};
Discretize feasible set: Xm = {x1,x2, . . . ,xmn};

Initialize:
Ui = /0 for each i ∈ [k];
E = /0 ;

for 1≤ i≤ k do
Set P = projdi(Xm);

for x ∈ P do
Calculate αx

l and αx
u ;

for 1≤ r ≤ p do
Solve α∗r := argmin

α∈R
{ fr(x+αdi) : αx

l ≤ α ≤ αx
u} ;

end

Compute αmin := min{α∗r : r ∈ [p]} and αmax := max{α∗r : r ∈ [p]} ;

Set E (X(di,x)) = {x+αdi : αmin ≤ α ≤ αmax};
Set Ui =Ui∪E (X(di,x));

end
if i = 1 then

E =Ui ;
else

E = E ∩Ui ;
end

end

Each solution set E (X(di,x)) is saved in a list, Ui. Once all subproblem solution sets are saved
into Ui for a fixed direction di ∈ S, the approximation of the overall efficient set is updated. Let
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E denote the approximation of E (X) generated by the algorithm. If i = 1, then there is only one
collection of subproblem solutions, U1, and therefore the initial approximation of E (X) is set to
be E =U1. If i≥ 2, then E is updated by taking the intersection of itself with the new collection
of subproblem solutions Ui. Once this update has been performed for each direction di ∈ S, the
algorithm is complete.

In the next section, we analyze the error accumulated in the steps of the algorithm. We
approach error from two perspectives, theoretic and experimental. In Section 4, we prove theo-
retic error bounds and in Section 5.4 we describe measures taken to reduce experimental error.
Specifically, experimental error is reduced by implementing a modified intersection during the
update of E.

Observe that updating E at the end of an iteration requires taking an intersection with the set
Ui. The set Ui is a discrete representation of the continuous set

⋃
x∈P(di)E (X(d,x)). In theory,

E should be updated by taking the intersection E ∩
⋃

x∈P(di)E (X(d,x)). In our implementation,
we apply a modified intersection method that reduces experimental error in the update of E.
Without this modified intersection method, the updated set E could quickly become sparse or
empty since both Ui and E are discrete collections of line segments. Details of this modified
intersection method are given in Section 5.4.

4. ERROR ANALYSIS

To evaluate the accuracy of the approximate efficient set generated by the line decomposition
algorithm, we conduct an error analysis by examining the accumulation of error at each iter-
ation. An iteration of the algorithm consists of computing the set

⋃
x∈P E (X(d,x)) for a fixed

direction d and updating the approximate efficient set E. It follows from Theorem 2.2 that using
finitely many directions d ∈ Sn−1 for line decomposition will produce an approximation of the
efficient set:

k⋂
i=1

⋃
x∈P(di)

E (X(di,x))≈
⋂

d∈Sn−1

⋃
x∈P(di)

E (X(di,x)).

In the implementation of the line decomposition algorithm, we take a finite union using indexing
sets Pdi

m = projdi(Xm) rather than the continuous set P(di). Using Theorem 2.3, it has been
proven that the sets

⋂k
i=1
⋃

x∈Pdi
m

E (X(di,x)) converge to this approximate efficient set as m→∞.
This result is stated below in Corollary 4.1. Following this corollary, we provide upper bounds
on the error accumulated while computing a set

⋃
x∈P(d)E (X(d,x)) in Propositions 4.1 through

4.5 and Theorem 4.1.

Corollary 4.1 ([8]). Let X = [l,u]n be a hypercube with non-empty interior, and f : X →
Rp be continuous and strictly convex. Let S ⊆ Sn−1 be a finite subset of the unit sphere in
Rn. For each d ∈ S, let Pd

m = projd(X
m) ⊆ P(d). Then, limm→∞

⋂
d∈S

⋃
x∈Pd

m
E (X(d,x)) =⋂

d∈S
⋃

x∈P(d)E (X(d,x)) in the Painlevé-Kuratowski sense.

We begin our error analysis by proving Proposition 4.1 which gives an upper bound of the
error for computing P(d). In particular, this result quantifies how far apart neighboring points
are in the set P.
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Proposition 4.1. Let n,m≥ 2,d ∈ Sn−1, and P = projd(X
m). Then, for any fixed x1 ∈ P,

min
x2∈P
x2 6=x1

||x1− x2|| ≤ u− l
m−1

.

Proof. Let x1 ∈ P be fixed. Then there exists v1 ∈ Xm such that x1 = projd(v
1). By construction

of the discrete hypercube Xm, each point in Xm has neighboring points in at least two different
coordinate directions. Therefore, v1 has a neighboring point, v2 ∈Xm, such that ||v1−v2||= u−l

m−1
and projd(v

1) 6= projd(v
2). Let x2 = projd(v

2). Applying Proposition 2.1 we obtain,

||x1− x2||= ||projd(v
1− v2)|| ≤ ||v1− v2||= u− l

m−1
.

It follows that

min
x2∈P
x2 6=x1

||x1− x2|| ≤ u− l
m−1

.

�

In Proposition 4.2, we establish a bound on the distance between two line segments in the
discrete partition of X defined by

⋃
x∈P X(d,x). This result is then used in Proposition 4.5 to

describe the distance between efficient sets on parallel line segments.
To prove Proposition 4.2 we use the following basic lemma.

Lemma 4.1. Let {x1 +αd : l1 ≤ α ≤ u1},{x2 +αd : l2 ≤ α ≤ u2} ⊆ Rn be parallel line seg-
ments. Then the largest distance between these two line segments occurs at their endpoints.
Specifically,

∆H({x1 +αd : l1 ≤ α ≤ u1},{x2 +αd : l2 ≤ α ≤ u2})

=max(||x1 + l1d− (x2 + l2d)||, ||x1 +u1d− (x2 +u2d)||).

Proposition 4.2. Let X = [l,u]n,d ∈ Sn−1 and p,q∈P(d). Then the Hausdorff distance between
the parallel line segments X(d, p) and X(d,q) is

∆H(X(d, p),X(d,q))≤ ||p−q||

√
1+
(

max
{

1
|di|

: di 6= 0
})2

,

and the difference in step sizes at the endpoints of X(d, p) and X(d,q) is bounded by

max{|α p
l −α

q
l |, |α

p
u −α

q
u |} ≤ ||p−q||max

{
1
|di|

: di 6= 0
}
.

Proof. We start by proving the upper bound for the difference in step sizes |α p
l −α

q
l | and

|α p
u −α

q
u |. Without loss of generality, we assume α

p
u ≤ α

q
u . By definition of α

p
u and α

q
u , we

have

α
p
u := max{α ∈ R : l ≤ pi +αdi ≤ u ,∀i}= min

{
l− pi

di
for di < 0 ,

u− pi

di
for di > 0

}
,

α
q
u := max{α ∈ R : l ≤ qi +αdi ≤ u ,∀i}= min

{
l−qi

di
for di < 0 ,

u−qi

di
for di > 0

}
.

(4.1)
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Therefore α
p
u =

l−p j
d j

or α
p
u =

u−p j
d j

for some j ∈ [n]. Without loss of generality, we suppose

α
p
u =

u−p j
d j

. By α
p
u ≤ α

q
u and (4.1), one has

α
p
u =

u− p j

d j
≤ α

q
u ≤

u−q j

d j
.

Subtracting α
p
u from both sides of both inequalities, we obtain

0≤ α
q
u −α

p
u ≤

u−q j

d j
−

u− p j

d j
=

p j−q j

d j
.

Since these terms are non-negative, it follows that

|αq
u −α

p
u | ≤

∣∣∣∣ p j−q j

d j

∣∣∣∣ . (4.2)

A similar argument shows that

|αq
l −α

p
l | ≤

∣∣∣∣ pi−qi

di

∣∣∣∣ (4.3)

for some i ∈ [n]. Using (4.2), (4.3), and the fact that |pi−qi| ≤ ||p−q|| for all i ∈ [n], we may
bound the maximum difference in step sizes by

max{|αq
u −α

p
u |, |α

q
l −α

p
l |} ≤ ||p−q||max

{
1
|di|

: di 6= 0
}
. (4.4)

We now prove the upper bound for ∆H(X(d, p),X(d,q)). Observe that X being convex implies
that

X(d, p) = {p+αd : α
p
l ≤ α ≤ α

p
u }

and

X(d,q) = {q+αd : α
q
l ≤ α ≤ α

q
u}.

By Lemma 4.1, the largest distance between these sets occurs at their endpoints. In particular,

∆H(X(d, p),X(d,q)) = max
(
||p+α

p
l d− (q+α

q
l d)||, ||p+α

p
u d− (q+α

q
u d)||

)
.

We will bound this maximum distance between the endpoints by analyzing right triangles,
where the hypotenuse represents the line segment connecting the two endpoints. Consider Fig-
ure 1 and the triangle defined by the points

A := p+α
p
u d , B := q+α

p
u d , C := q+α

q
u d .

It can be shown that these points form a right triangle by using the fact that (p− q) ⊥ d and
verifying that side AB is in the direction of p−q and side BC is in the direction of d. Note that
the hypotenuse, AC, of this right triangle is exactly the line segment connecting the endpoints
p+α

p
u d and q+α

q
u d.
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FIGURE 1. Triangle ABC

First, we calculate the two side lengths AB and BC by

||A−B||= ||p+α
p
u d− (q+α

p
u d)||= ||p−q||,

||B−C||= ||q+α
p
u d− (q+α

q
u d)||= |α p

u −α
q
u | · ||d||= |α p

u −α
q
u |.

Then the hypotenuse, AC, is bounded above by

||A−C||2 = ||A−B||2 + ||B−C||2 = ||p−q||2 + |α p
u −α

q
u |2

≤ ||p−q||2 + ||p−q||2 ·
(

max
{

1
|di|

: di 6= 0
})2

,

where the last inequality results from (4.4). Taking a square root on both sides of this inequality
yields

||p+α
p
u d− (q+α

q
u d)||= ||A−C|| ≤ ||p−q||

√
1+
(

max
{

1
|di|

: di 6= 0
})2

.

A similar argument holds for computing a bound on the distance between the lower endpoints,
p+α

p
l d and q+α

q
l d. Therefore the distance between the line segments is bounded by

∆H(X(d, p),X(d,q))≤ ||p−q||

√
1+
(

max
{

1
|di|

: di 6= 0
})2

.

�

Next, we bound the distance between parallel efficient line segments. To do this, we apply
Theorem 2.4. Fix d̄ ∈ Sn−1 and define the set of parameters Ξ(d̄)⊂ Rn+2 by

Ξ(d̄) := {(x,αx
l ,α

x
u) : x ∈ P(d̄)} , where α

x
l and α

x
u are defined in Definition 2.3.

For any ξ = (x,αx
l ,α

x
u) ∈ Ξ(d̄), line search problem (3.1) can be reformulated to assume the

form of the parametric nonlinear problem (2.2). Introducing an auxiliary variable v ∈ Rn, that
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yields equality constraints, and converting the line search bounds into inequality constraints, we
obtain problem NLP(ξ ) below

min
v∈Rn,α∈R

fr(v)(NLP(ξ ))

s.t. h j(v,α,ξ ) = v j− (x j +α d̄ j) = 0 ,∀ j ∈ [n],

g1(v,α,ξ ) = α−α
x
u ≤ 0,

g2(v,α,ξ ) = α
x
l −α ≤ 0.

In NLP(ξ ), v and α are the decision variables. Theorem 2.4 describes the behavior of the
solutions to NLP(ξ ) in a neighborhood of ξ̄ ∈Ξ(d̄). Specifically, Theorem 2.4 ensures Lipschitz
continuity of the solution maps to NLP(ξ ), which are denoted by v̂ : Ξ(d̄)→Rn and α̂ : Ξ(d̄)→
R. For more details on quantifying the Lipschitz constant, we refer the reader to [10] as this is
highly problem specific.

Proposition 4.3 ensures that one of the necessary conditions of Theorem 2.4 is satisfied, while
Proposition 4.4 applies this theorem to conclude that the solution maps v̂, α̂ are defined on all
of Ξ(d̄) and are Lipschitz continuous.

Proposition 4.3. Let d̄ ∈ Sn−1 be fixed. Then every feasible point (v,α) of NLP(ξ ) satisfies the
linear independence constraint qualification (LICQ) condition for all ξ ∈ Ξ(d̄).

Proof. Let (v,α) ∈ Rn+1 be feasible to NLP(ξ ). By definition of Ξ(d̄), there exists x ∈ P(d̄)
such that ξ = (x,αx

l ,α
x
u). Furthermore, by Definition 2.3, we must have αx

l ≤ αx
u .

First, we consider the case when αx
l < αx

u and suppose that g1 is active at (v,α). This implies
α = αx

u . Then, using the fact that αx
l < αx

u , we may conclude that g2(v,α,ξ ) = αx
l −α =

αx
l −αx

u < 0. Thus g2 is inactive. A similar argument can show that g2 being active at (v,α)
implies g1 is inactive. Therefore, both g1 and g2 cannot be simultaneously active. It follows
that the set of active constraints at (v,α) is either {∇g1,∇h1, . . . ,∇hn}, {∇g2,∇h1, . . . ,∇hn}, or
{∇h1, . . . ,∇hn}. Observe that

∇h j(v,α,ξ ) = (e j,−d j) ∈ Rn+1, (4.5)

∇g1(v,α,ξ ) = (0n,1) ∈ Rn+1, (4.6)

∇g2(v,α,ξ ) = (0n,−1) ∈ Rn+1. (4.7)

Using equations (4.5)-(4.7), it can easily be verified that the gradient vectors in each set are
linearly independent. Thus, (v,α) satisfies LICQ.

Next, we consider the case when αx
l = αx

u . Then g1 = −g2 and hence these two inequality
constraints are equivalent to the following equality constraint, g1(v,α,ξ ) = α −αx

u = 0. Thus
NLP(ξ ) can be reformulated into a problem with only equality constraints defined by the func-
tions g1 and h j for all j ∈ [n]. Since the gradient vectors in {∇g1,∇h1, . . . ,∇hn} are linearly
independent, then (v,α) satisfies LICQ. �

Proposition 4.4. Let d̄ ∈ Sn−1 be fixed, and fr :Rn→R be twice continuously differentiable and
have a positive definite Hessian matrix. Then there exist Lipschitz continuous maps v̂ : Ξ(d̄)→
Rn and α̂ : Ξ(d̄)→ R such that (v̂(ξ ), α̂(ξ )) is a minimizer to NLP(ξ ) for all ξ ∈ Ξ(d̄).

Proof. To prove this result, we apply Theorem 2.4 and first show that there exists a minimizer,
(v∗,α∗), to NLP(ξ ) such that:
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i) the LICQ condition holds at (v∗,α∗), and
ii) the Hessian matrix of fr is positive definite at (v∗,α∗).

Let ξ ∈ Ξ(d̄). Since the Hessian matrix of fr is positive definite, then fr is strictly convex.
Note that the feasible set of NLP(ξ ) is also convex. Therefore there exists a unique minimizer,
(v∗,α∗) ∈ Rn+1, to NLP(ξ ). It follows from Proposition 4.3 that (v∗,α∗) satisfies the LICQ
condition. Also, by assumption the Hessian matrix of fr is positive definite. Therefore (v∗,α∗)
satisfies condition ii). By Theorem 2.4, there exist Lipschitz continuous solution maps defined
on a neighborhood of ξ ∈ Ξ(d̄). Since ξ ∈ Ξ(d̄) is arbitrary, then there exist Lipschitz continu-
ous solution maps around every ξ ∈ Ξ(d̄). Also, Ξ(d̄) is compact for each d̄ and therefore the
solution maps exist globally on Ξ(d̄) and are Lipschitz continuous. �

Below, in Proposition 4.5, we bound the distance between efficient sets on two parallel line
segments X(d,x1) and X(d,x2).

Proposition 4.5. Let X = [l,u]n ⊆Rn and f : X→Rp be strictly convex and twice continuously
differentiable. Fix d ∈ Sn−1 and let x1,x2 ∈ P(d). Then there exists C > 0 such that

∆H(E (X(d,x1)),E (X(d,x2)))≤C||x1− x2|| ·max
{

1
|di|

: di 6= 0
}
.

Proof. First, we show that E (X(d,x1)) and E (X(d,x2)) can be written as line segments of the
form

{x+αd : l1 ≤ α ≤ u1},
and apply Lemma 4.1 to find ∆H(E (X(d,x1)),E (X(d,x2))). Then we use geometric argu-
ments and apply Proposition 4.4 to obtain an upper bound on this distance. Define ξ 1 :=
(x1,αx1

l ,αx1

u ) and ξ 2 := (x2,αx2

l ,αx2

u ). By Theorem 2.1, the efficient line segments, E (X(d,x1))

and E (X(d,x2)), are defined by the minimizers of NLP(ξ 1) and NLP(ξ 2) for each objective
function fr,r ∈ [p]. We compute these efficient sets by solving the following line search prob-
lems.

(v̂r(ξ 1), α̂r(ξ
1)) := argmin

(v,α)∈Rn+1
fr(v),

s.t. v− (x1 +αd) = 0,

α
x1

l ≤ α ≤ α
x1

u ,

(v̂r(ξ 2), α̂r(ξ
2)) := argmin

(v,α)∈Rn+1
fr(v),

s.t. v− (x2 +αd) = 0,

α
x2

l ≤ α ≤ α
x2

u .

Let j, t,s,w ∈ [p] be the indices of the objective functions that determine the efficient sets on
the two parallel line segments

α̂ j(ξ
1) = min

r
α̂r(ξ

1) , α̂t(ξ
1) = max

r
α̂r(ξ

1),

α̂s(ξ
2) = min

r
α̂r(ξ

2) , α̂w(ξ
2) = max

r
α̂r(ξ

2).
(4.8)
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Then, by Theorem 2.1, the efficient sets are

E (X(d,x1)) = {x1 +αd : α̂ j(ξ
1)≤ α ≤ α̂t(ξ

1)}

and

E (X(d,x2)) = {x2 +αd : α̂s(ξ
2)≤ α ≤ α̂w(ξ

2)}.

Applying Lemma 4.1, the Hausdorff distance between parallel efficient line segments is,

∆H(E (X(d,x1)),E (X(d,x2)))

= max{||x1 + α̂ j(ξ
1)d− (x2 + α̂s(ξ

2)d)||, ||x1 + α̂t(ξ
1)d− (x2 + α̂w(ξ

2)d)||}.

Since the optimal solutions, (v̂r(ξ 1), α̂r(ξ
1)) and (v̂r(ξ 2), α̂r(ξ

2)), must be feasible to the two
line search problems above, it follows that, for all r ∈ [p],

v̂r(ξ 1) = x1 + α̂r(ξ
1)d, (4.9)

v̂r(ξ 2) = x2 + α̂r(ξ
2)d. (4.10)

Using equations (4.9) and (4.10), the Hausdorff distance between parallel efficient line segments
can be re-written as

∆H(E (X(d,x1)),E (X(d,x2))) = max{||v̂ j(ξ 1)− v̂s(ξ 2)||, ||v̂t(ξ 1)− v̂w(ξ 2)||}. (4.11)

We bound this Hausdorff distance by first analyzing the distance ||v̂ j(ξ 1)− v̂s(ξ 2)|| using geo-
metric arguments. Without loss of generality, assume α̂ j(ξ

1) ≤ α̂s(ξ
2). Consider the right

triangle depicted below in Figure 2 and defined by the points

v̂ j(ξ 1) , v̂s(ξ 2) , x2 + α̂ j(ξ
1)d.

FIGURE 2. Right triangle
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The length of the hypotenuse, v̂ j(ξ 1)− v̂s(ξ 2), of this triangle can be calculated applying the
Pythagorean theorem

||v̂ j(ξ 1)− v̂s(ξ 2)||2 = ||x2 + α̂ j(ξ
1)d− v̂s(ξ 2)||2 + ||v̂ j(ξ 1)− (x2 + α̂ j(ξ

1)d)||2.

Expanding v̂s(ξ 2) and v̂ j(ξ 1), using (4.9) and (4.10), and using the fact that ||d|| = 1, we may
simply terms to obtain

||v̂ j(ξ 1)− v̂s(ξ 2)||2 = |α̂ j(ξ
1)− α̂s(ξ

2)|2 + ||x1− x2||2. (4.12)

To bound the right-hand side, note that (4.8) implies α̂s(ξ
2) ≤ α̂ j(ξ

2). Since we assumed
α̂ j(ξ

1)≤ α̂s(ξ
2), then we must have

0≤ |α̂ j(ξ
1)− α̂s(ξ

2)|= α̂s(ξ
2)− α̂ j(ξ

1)

≤ α̂ j(ξ
2)− α̂ j(ξ

1)

= |α̂ j(ξ
2)− α̂ j(ξ

1)|.

Using this, we may bound equation (4.12) by

||v̂ j(ξ 1)− v̂s(ξ 2)||2 = |α̂ j(ξ
1)− α̂s(ξ

2)|2 + ||x1− x2||2

≤ |α̂ j(ξ
1)− α̂ j(ξ

2)|2 + ||x1− x2||2. (4.13)

Next, it follows from Proposition 4.4 that α̂ j : Ξ(d)→ R is Lipschitz continuous. Therefore
there exists a Lipschitz constant C j ∈ R such that

|α̂ j(ξ
1)− α̂ j(ξ

2)| ≤C j · ||ξ 1−ξ
2||.

To further simplify the right-hand side of the inequality above, we observe that

||ξ 1−ξ
2||=

√
n

∑
i=1

(x1
i − x2

i )
2 +(αx1

l −αx2

l )2 +(αx1
u −αx2

u )2

≤ ||x1− x2||+ |αx1

l −α
x2

l |+ |α
x1

u −α
x2

u |

≤ ||x1− x2||+2||x1− x2||max
{

1
|d̄i|

: d̄i 6= 0
}

= ||x1− x2||
(

1+2max
{

1
|di|

: di 6= 0
})

,

where the second inequality follows from Proposition 4.2. Thus

|α̂ j(ξ
1)− α̂ j(ξ

2)| ≤C j · ||x1− x2||
(

1+2max
{

1
|di|

: di 6= 0
})

.

To obtain a more general upper bound which does not depend on j, we take a maximum over
all objective functions to obtain

|α̂ j(ξ
1)− α̂ j(ξ

2)| ≤max
r
|α̂r(ξ

1)− α̂r(ξ
2)|

≤Cmax · ||x1− x2||
(

1+2max
{

1
|di|

: di 6= 0
})

,
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where Cmax = maxr∈[p](Cr). Finally, using this in equation (4.13), we have

||v̂ j(ξ 1)− v̂s(ξ 2)||2 ≤C2
max · ||x1− x2||2

(
1+2max

{
1
|di|

: di 6= 0
})2

+ ||x1− x2||2.

A similar argument shows that the distance between the right-most endpoints of the parallel
efficient line segments, vt and vw, is also bounded by the same constants

||v̂t(ξ 1)− v̂w(ξ 2)||2 ≤C2
max · ||x1− x2||2

(
1+2max

{
1
|di|

: di 6= 0
})2

+ ||x1− x2||2.

Taking the square root on both sides of the inequality and factoring out the term ||x1− x2||, we
have

max{||v̂ j(ξ 1)− v̂s(ξ 2)|| , ||v̂t(ξ 1)− v̂w(ξ 2)||}

≤ ||x1− x2||

√
C2

max ·
(

1+2max
{

1
|di|

: di 6= 0
})2

+1. (4.14)

It can be shown that there exists C > 0 such that√
C2

max ·
(

1+2max
{

1
|di|

: di 6= 0
})2

+1≤C ·max
{

1
|di|

: di 6= 0
}
.

Applying this to Equation (4.14), we obtain

max{||v̂ j(ξ 1)− v̂s(ξ 2)|| , ||v̂t(ξ 1)− v̂w(ξ 2)||} ≤C||x1− x2|| ·max
{

1
|di|

: di 6= 0
}
.

Finally, using (4.11) it follows that the Hausdorff distance of efficient line segments is bounded
by,

∆H(E (X(d,x1)),E (X(d,x2)))≤C||x1− x2|| ·max
{

1
|di|

: di 6= 0
}
.

�

With the distance between parallel efficient line segments established, we now prove Theo-
rem 4.1, which provides an upper bound on the error in the computation of a set

⋃
x∈P(d)E (X(d,x)).

The error is calculated as the Hausdorff distance between two collections of efficient line seg-
ments in the direction d. Both collections are calculated as the union of efficient line segments
with the difference that one union is taken with respect to the true projection of the feasible set,
while the other is taken with respect to a discrete representation of this set.

Theorem 4.1. Let X = [l,u]n ⊆ Rn and f : X → Rp be strictly convex and twice continuously
differentiable. Let m≥ 2,d ∈ Sn−1 and P = projd(X

m). Then there exists C > 0 such that

∆H

⋃
x∈P

E (X(d,x)),
⋃

x∈P(d)

E (X(d,x))

≤C
√

2
u− l

(m−1)
·max

{
1
|di|

: di 6= 0
}
.

Proof. Since ⋃
x∈P

E (X(d,x))⊆
⋃

x∈P(d)

E (X(d,x)),
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then the Hausdorff distance in the theorem statement is calculated by

∆H

⋃
x∈P

E (X(d,x)),
⋃

x∈P(d)

E (X(d,x))

= sup
u∈

⋃
x∈P(d)

E (X(d,x))
inf

v∈
⋃

x∈P
E (X(d,x))

||u− v||. (4.15)

To prove the inequality in the theorem statement, we calculate an upper bound on

inf
v∈
⋃

x∈P
E (X(d,x))

||u− v||

for an arbitrary u ∈
⋃

x∈P(d)E (X(d,x)) and apply it to (4.15).
Fix u∈

⋃
x∈P(d)E (X(d,x)) and let v∈

⋃
x∈P E (X(d,x)). Then it can be shown that projd(u)∈

P(d),projd(v) ∈ P, and

u ∈ E (X(d,projd(u))), (4.16)

v ∈ E (X(d,projd(v))).

From Proposition 4.5, there exists C > 0 such that

∆H(E (X(d,projd(u))),E (X(d,projd(v))))≤C||projd(u)−projd(v)|| ·max
{

1
|di|

: di 6= 0
}
.

Using (4.16) and the definition of Hausdorff distance, we have

inf
v′∈E (X(d,projd(v)))

||u− v′|| ≤C||projd(u)−projd(v)|| ·max
{

1
|di|

: di 6= 0
}
.

Taking an infimum over v on both sides we obtain

inf
v∈
⋃

x∈P
E (X(d,x))

inf
v′∈E (X(d,projd(v)))

||u− v′||

≤ inf
v∈
⋃

x∈P
E (X(d,x))

C||projd(u)−projd(v)|| ·max
{

1
|di|

: di 6= 0
}
. (4.17)

Note that the left-hand side of (4.17) can be simplified to

inf
v∈
⋃

x∈P
E (X(d,x))

inf
v′∈E (X(d,projd(v)))

||u− v′||= inf
v∈
⋃

x∈P
E (X(d,x))

||u− v||. (4.18)

To simplify the right-hand side of (4.17), we bound the infimum of ||projd(u)−projd(v)||. By
construction of Xm, it can be shown that ∆H(Xm,X) =

√
2 u−l
(m−1) . Since u ∈ X , there exists

u′ ∈ Xm such that ||u−u′|| ≤
√

2 u−l
(m−1) . Applying Proposition 2.1, we also have

||projd(u−u′)|| ≤ ||u−u′|| ≤
√

2
u− l

(m−1)
. (4.19)
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Then we may bound the following infimum by

inf
v′∈
⋃

x∈P E (X(d,x))
||projd(u)−projd(v

′)||= inf
v′∈
⋃

x∈P E (X(d,x))
||projd(u−u′)−projd(v

′−u′)||

≤ inf
v′∈
⋃

x∈P E (X(d,x))
||projd(u−u′)||+ ||projd(v

′−u′)||

= ||projd(u−u′)||+ inf
v′∈
⋃

x∈P E (X(d,x))
||projd(v

′−u′)||

≤
√

2
u− l

(m−1)
+ inf

v′∈
⋃

x∈P E (X(d,x))
||projd(v

′−u′)||,

(4.20)
where the first equality uses the linearity property of projection operators, the first inequality
comes from the triangle inequality, and the second inequality comes from (4.19). To compute
the infimum in (4.20), observe that u′ ∈ Xm implies that projd(u

′) ∈ P and u′ ∈ X(d,projd(u
′)).

Therefore, u′ ∈
⋃

x∈P E (X(d,x)) and hence

0≤ inf
v′∈
⋃

x∈P E (X(d,x))
||projd(v

′−u′)|| ≤ ||projd(u
′−u′)||= 0,

which implies the value of the above infimum is zero. Therefore, we may simplify (4.20) to
obtain

inf
v′∈
⋃

x∈P E (X(d,x))
||projd(u)−projd(v

′)|| ≤
√

2
u− l

(m−1)
.

Applying the above inequality to simplify the right-hand side of (4.17), and using (4.18) to
simplify the left-hand side of (4.17), we have

inf
v∈
⋃

x∈P
E (X(d,x))

||u− v|| ≤C
√

2
u− l

(m−1)
·max

{
1
|di|

: di 6= 0
}
.

Since u ∈
⋃

x∈P(d)E (X(d,x)) was arbitrary, then

∆H

⋃
x∈P

E (X(d,x)),
⋃

x∈P(d)

E (X(d,x))

≤C
√

2
u− l

(m−1)
·max

{
1
|di|

: di 6= 0
}
.

�

Theorem 4.1 indicates that the error in the computation of a set
⋃

x∈P(d)E (X(d,x)), depends
on the MOP data and the algorithm parameters. The former includes the size of the feasible
set and the Lipschitz constant associated with line search solutions, while the latter includes the
number of discretization points and the optimization directions.

In the pseudocode, each iteration of the algorithm consists of two steps: computing a set
Ui and updating the approximate efficient set, E. In Theorem 4.1, we quantify the error in
computing the set Ui. However, evaluating the error associated with updating E is significantly
more challenging. This difficulty arises because updating E essentially involves analyzing the
intersection of two sets, U1 and U2, and determining the distance of their intersection to the true
efficient set. Describing such intersections requires detailed information about the boundaries
of these sets.

According to Theorem 2.1, the efficient line segments in the union Ui are determined by the
solutions to NLP(ξ ) for each objective function fr, where r ∈ [p]. Consequently, the boundary
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of Ui can, in principle, be described by the solution maps (v̂r, α̂r). However, these solution maps
are highly problem-specific, and explicit formulas for them are not always obtainable. For this
reason, the available information seems to be insufficient to determine the intersection error
analytically. In the next section, we provide experimental results of the error of the approximate
solution set E for various examples.

5. COMPUTATIONAL RESULTS

In this section, we apply the line decomposition algorithm to various bi-objective and single-
objective test problems. The source code for all examples was executed on a MacBook Pro with
Dual-Core Intel Core i7 processor. For the biobjective problems (BOPs) we use quadratic ob-
jective functions, and the single-objective problems are built on polynomial functions selected
from [11]. For each example we report the algorithm input parameters including the number of
discretization points, m, and the number of directions, k, as well as the error of the approximate
solution. The metric used to measure error is the Hausdorff distance of the approximate efficient
set, E, to the true efficient set, E (X).

∆H(E (X),E) = max

(
sup

u∈E (X)

inf
v∈E
||u− v|| , sup

v∈E
inf

u∈E (X)
||v−u||

)
.

For all our examples, we choose the set of line directions, S, so that it grows monotonically.
Meaning that as the number of directions used increases from k1 ∈ N to k2 ∈ N, the first k1
directions in S will remain the same while (k2− k1) new directions are added. By consistently
using the same directions at the beginning of the algorithm, we are able to observe the impact
of performing additional iterations, and help the approximation error decrease as the parameter
k increases.

5.1. Biobjective examples in R2. In Examples 5.1 - 5.4, we display pictures of the approxi-
mate solution sets generated by the algorithm. In each picture, the true efficient set is the portion
of the blue curve between the two marked points, that are the individual minimizers to each ob-
jective function. This blue curve is drawn according to the formula in [12] for the efficient set of
biobjective quadratic problems. The collection of red line segments is the approximate solution
set produced by the algorithm. In our implementation, these red lines are always horizontal
since the line direction we use to generate the initial approximation, U1, is always d1 = (1,0).

Example 5.1. Consider the BOP below

min f1(x) = 0.5 · xT
[

12 3
3 26

]
x+
[
23 15

]
x

f2(x) = 0.5 · xT
[

20 −6
−6 15

]
x+
[
5 −3

]
x

s.t. −3≤ xi ≤ 3 , i = 1,2.

Using various values for parameters m and k, we run the line decomposition algorithm to pro-
duce the approximate solutions that are depicted in Figure 3.
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(A) k = 4,m = 50 (B) k = 8,m = 50

(C) k = 10,m = 100 (D) k = 10,m = 150

(E) k = 12,m = 150 (F) k = 16,m = 150

FIGURE 3. Approximate efficient sets for Example 5.1

The error for each approximate solution produced is given in Table 1.
TABLE 1. Example 5.1 results summary

k 4 8 10 10 12 16
m 50 50 100 150 150 150

approximation error 0.1794 0.1440 0.1368 0.1012 0.1021 0.0986

In Table 1, we observe the approximation error consistently decreases as k increases.
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Example 5.2. Consider the BOP below

min f1(x) = 0.5 · xT
[

0.1 0.028
0.004 0.6

]
x+
[
0.5 0

]
x

f2(x) = 0.5 · xT
[

0.35 0.015
0.015 0.25

]
x+
[
−5 −3

]
x

s.t. −11≤ xi ≤ 18 , i = 1,2.

Using various parameter values, we run the line decomposition algorithm to produce the
approximate solution sets in Figure 4.

(A) k = 4,m = 50 (B) k = 8,m = 50

(C) k = 12,m = 100 (D) k = 16,m = 100

FIGURE 4. Approximate efficient sets for Example 5.2

A summary of the computational results is given in Table 2.

TABLE 2. Example 5.2 results summary

k 4 8 12 16
m 50 50 100 100

approximation error 2.8728 1.9371 1.7502 1.4528

In Table 2, we again observe the approximation error decreases as k increases. However, the
magnitude of the approximation error is much larger than in Example 5.1. This results from
the fact that the feasible region in Example 5.2 is larger than in Example 5.1, but the number of
points used to represent X remains the same (i.e., we use similar values of m in both examples).
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Example 5.3. Consider the BOP below

min f1(x) = 0.5 · xT
[

6 1
1 2

]
x+
[
28 1

]
x

f2(x) = 0.5 · xT
[

2 −1
−1 2

]
x+
[
−7 −1

]
x

s.t. −16≤ xi ≤ 14 , i = 1,2.

Using various parameter values, we run the line decomposition algorithm to produce the ap-
proximate solution sets in Figure 5.

(A) k = 3,m = 50 (B) k = 8,m = 100

(C) k = 12,m = 100 (D) k = 20,m = 150

FIGURE 5. Approximate efficient sets for Example 5.3

A summary of the computational results is given in Table 3.

TABLE 3. Example 5.3 results summary

k 3 8 12 20
m 50 100 100 150

approximation error 2.6926 0.9593 0.9311 0.6003

Observe that the errors reported in Table 3 for k = 8 and k = 12 are very close in decimal value
to each other. Visually, however, we observe a significant improvement in the approximate so-
lution sets from Figures 5 b) and 5 c). Specifically, the approximation in 5 c) closer fits the blue
curve, E (X), on its left half. The reason the error does not reflect a significant improvement is
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because the Hausdorff distance is measured by taking the farthest point in the red approxima-
tion to the blue curve. Therefore the error will only decrease significantly if the worst points in
the approximation get much closer to E (X).

Example 5.4. Consider the BOP below

min f1(x) = 0.5 · xT
[

16 3
1 10

]
x+
[
2 5

]
x

f2(x) = 0.5 · xT
[

0.5 −0.1
−0.1 0.25

]
x+
[
−10 −3

]
x

s.t. −6≤ xi ≤ 29 , i = 1,2.

The approximate solution sets produced by the algorithm are depicted in Figure 6.

(A) k = 3,m = 20 (B) k = 4,m = 20

(C) k = 8,m = 50 (D) k = 12,m = 50

(E) k = 12,m = 80 (F) k = 15,m = 80

FIGURE 6. Approximate efficient sets for Example 5.4
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A summary of the computational results is given in Table 4.

TABLE 4. Example 5.4 results summary

k 3 4 8 12 12 15
m 20 20 50 50 80 80

approximation error 12.5797 7.1546 2.8210 2.8378 2.7305 1.5037

In Table 4, we observe an instance where the error decreases when m increases but k remains
constant at k = 12.

This occurs because as m increases, the set Xm more closely represents the feasible set X .
Consequently more lines are used to decompose X which improves accuracy of the algorithm.

Note that in Figure 6 the approximate efficient set improves greatly when increasing k from
3 to 8. However in Figure 5, the shape of the approximate efficient set in Example 5.3 does not
change significantly when using k = 3 versus using k = 8.

Therefore the line directions d4 through d8 have a greater impact in improving the approxi-
mate efficient set in Example 5.4 versus Example 5.3.

From this, we can conclude that the best choice of line directions might be problem dependent
and can greatly influence the accuracy of the approximation.

In addition to Examples 5.1 - 5.4, we test the line decomposition algorithm on randomly
generated biobjective quadratic problems of the form

min f1(x) = 0.5 · xT Q1x+(p1)T x (BOQP)

f2(x) = 0.5 · xT Q2x+(p2)T x

s.t. l ≤ xi ≤ u , i = 1,2,

where Q1,Q2 ∈ Rn×n are symmetric positive definite matrices, p1, p2 ∈ Rn, and l,u ∈ R. After
the objective functions are defined, the variable bounds l and u are chosen so that the feasible
region contains the global individual minimizers of f1 and f2.

We run the line decomposition algorithm using k = 4,8, and 16 line directions, and m =
50,100, and 150 discretization points respectively. Depending of the size of the feasible region,
the set Xm may be a sparse or dense representation of the hypercube X , which will directly
influence the magnitude of the error for most problems.

Therefore, to better compare approximation error of different examples, we state the length
of the interval [l,u] for each test problem in the summary of the computational results.

Tables 5 - 7 present the computational results of these test problems. See Table 16 in the
appendix for the specific instances of the randomly generated BOPs that we solve.
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TABLE 5. Line de-
composition algorithm
with parameters k = 4
and m = 50

BOP length of approximation
# interval [l,u] error
9 3 0.0651
2 5 0.2474
3 7 0.3624
4 8 0.3329
8 8 0.6926
5 9 0.2247
7 13 0.7750
6 15 1.1359
10 19 2.0513
1 28 1.1890

TABLE 6. Line de-
composition algorithm
with parameters k = 8
and m = 100

BOP length of approximation
# interval [l,u] error
9 3 0.0394
2 5 0.1125
3 7 0.2596
4 8 0.2005
8 8 0.5403
5 9 0.1615
7 13 0.3629
6 15 0.5203

10 19 0.8073
1 28 1.0986

TABLE 7. Line de-
composition algorithm
with parameters k = 16
and m = 150

BOP length of approximation
# interval [l,u] error
9 3 0.0247
2 5 0.0864
3 7 0.0891
4 8 0.1992
8 8 0.3690
5 9 0.1145
7 13 0.2984
6 15 0.2974

10 19 0.5223
1 28 0.8112

In Tables 5 - 7 we observe that the error for each BOP decreases as the parameter k increases.
Another key observation is that the approximation error is not necessarily smaller when the
feasible region is smaller (i.e., when the length of [l,u] is smaller). For instance in Table 7,
the error of BOP 8 has a larger approximation error than BOP 6, even though the length of the
interval [l,u] is nearly half the size of BOP 6. This can occur because a direction di ∈ S may or
may not produce a set Ui which improves the current approximation E during the update. The
impact a set Ui has on improving the approximation E depends on both the objective function



A LINE DECOMPOSITION ALGORITHM FOR MULTIOBJECTIVE OPTIMIZATION 445

and the particular direction di. We also observe this behavior when comparing Examples 5.3
and 5.4. As we will see even more clearly in Example 5.6, the choice of direction vectors in S
can heavily influence the accuracy of the approximate solution.

In summary, we observe in Examples 5.1 - 5.4, as well as the randomly generated problems
in Tables 5 - 7, that the approximation error decreases as we increase the parameter k. We also
observe some instances, such as in Example 5.4, where increasing the parameter m causes a
decrease in approximation error.

Additionally, in Figures 3 - 6 we can see that the approximate efficient set closely fits the true
efficient set and matches its curvature when using the largest value for k. Despite observing a
close fit in all of these figures, the magnitude of the approximation error can be greater when
the feasible set is larger. This is observed in Examples 5.1 and 5.2. On the other hand, we show
in Tables 5 and 7 that just having a larger feasible set does not guarantee that the approximation
error will be bigger.

5.2. Biobjective examples in R3. We now test the line decomposition algorithm on biobjec-
tive quadratic problems in R3. Unlike in R2, we observe that arbitrarily choosing k line di-
rections will generally not produce good approximations of the efficient set in R3. However,
for specially structured problems it is possible to identify which line directions produce good
approximations. Example 5.6 demonstrates this by using an analysis from [8] to produce a very
good approximate efficient set by only using 6 line directions.

An additional challenge we face in higher dimensions is that the size of discrete set Xm in-
creases exponentially as the dimension of the decision space increases. For many line directions
di ∈ Sn−1, each point in Xm defines a unique point in P.

Therefore m3 lines are used to decompose X . However if di is a coordinate direction, then
only m2 lines are used to decompose X since not every point in Xm has a unique projection in
P.

For this reason we use two different values of m in the algorithm, denoted mdense and msparse.
If di is a coordinate direction we use mdense ∈ N and P := projdi(Xmdense) for that iteration of
the algorithm. Otherwise, msparse ∈ N and P := projdi(Xmsparse) is used. We select mdense and
msparse so that m2

dense ≈ m3
sparse, which ensures that roughly the same number of lines are used

to decompose X in each iteration.

Example 5.5. Consider the BOP below.

min f1(x) = 0.5 · xT


0.5 0.025 −0.1

0.025 0.08 −0.17

−0.1 −0.17 0.9

x+

−1
0
4

T

x

f2(x) = 0.5 · xT

0.26 0.4 0.16
0.4 0.85 0.5

0.16 0.5 0.7

x+

0
6
2

T

x

s.t. −40.6413≤ xi ≤ 53.9613 , i = 1,2,3.
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Using various parameter values, we run the line decomposition algorithm to produce the ap-
proximate solution sets in Figure 7.

(A) k = 6 (B) k = 10

(C) k = 16 (D) k = 25

FIGURE 7. Approximate efficient sets for Example 5.5 using msparse =
10,mdense = 32.

A summary of the computational results is given in Table 8.

TABLE 8. Example 5.5 results summary

k 6 10 16 25
mdense 32 32 32 32
msparse 10 10 10 10

approximation error 70.9422 61.9973 60.4589 54.9325

In Table 8 we observe the error decreases consistently as k increases, however visually in Figure
7 the approximation does not appear to improve much as k increases. Comparing Figures 7 a)
and 7 d), we see that 7 a) better captures the curvature of the efficient set but this is lost in 7 d).
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This can be caused by the tolerance we allow during the execution of the intersection method
used to update E (refer to Section 5.4 for details). Unlike the examples in R2, the algorithm
struggles to get a close approximation of E (X). The approximate solution sets in this example
only show the general neighborhood where E (X) lies, but we cannot get a good sense of the
true solution from these approximations.

Example 5.6. Consider the BOP below

min f1(x) = 0.5 · xT

10 1 1
1 15 −10
1 −10 12

x+

 0
5
−3

T

x

f2(x) = 0.5 · xT

3 ·

10 1 1
1 15 −10
1 −10 12

x+

 20
−10
70

T

x

s.t. −4.1486≤ xi ≤ 0.2465 , i = 1,2,3.

Using an arbitrary selection of k = 7 direction vectors, the algorithm produced the solution set
depicted in Figure 8.

FIGURE 8. Approximate solution for Example 5.6 using k = 7 and msparse =
10,mdense = 32.

Note that this BOP has a special structure since the quadratic terms of f1 and f2 are multiples.
Applying the analysis done in Theorem 6.1 from [8], we take advantage of this special structure
to identify the line directions that will produce a better approximation. Let Q1 denote the matrix
in f1 defining the quadratic terms. We use line directions which form an orthonormal basis with
respect to the Q1−inner product defined by 〈u,v〉Q1 := uT Q1v, and the standard coordinate
directions. Specifically this Q1−basis includes the direction vector connecting the individual
minimizers of f1 and f2. Using these 6 direction vectors, the algorithm produces the following
solution set depicted in Figure 9.
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(A)
(B)

FIGURE 9. Approximate solution for Example 5.6 using k = 6 and msparse =
10,mdense = 32.

A summary of the computational results is given in Table 9.

TABLE 9. Example 5.6 results summary

k 6 7
mdense 32 32
msparse 10 10

approximation error 0.6852 4.8048

We observe that the approximate solution set produced by using 7 arbitrary directions has a
significantly larger error than the solution set produced using the 6 specially selected directions.
Therefore we may conclude that a large number of line directions is not necessarily needed to
produce a close approximation of the true efficient set.

Example 5.7. We approximate the efficient set for the BOP below.

min f1(x) = 0.5 · xT

10 1 1
1 15 −10
1 −10 12

x+

 0
5
−3

T

x

f2(x) = 0.5 · xT

 8 0 −5
0 9 0.5
−5 0.5 20

x+

 2
−1
7

T

x

s.t. −5.7812≤ xi ≤ 1.585 , i = 1,2,3.

Using various parameter values, we run the line decomposition algorithm to produce the ap-
proximate solution sets in Figure 10.
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(A) k = 6 (B) k = 8

(C) k = 16

FIGURE 10. Approximate efficient sets for Example 5.7 using msparse =
10,mdense = 32.

A summary of the computational results is given in Table 10.
TABLE 10. Example 5.7 results summary

k 6 8 16
mdense 32 32 32
msparse 10 10 10

approximation error 3.5608 3.2990 4.7792

Although the error decreases in Table 10 as k increases, in Figure 10 we observe that the ap-
proximate solution struggles to get a tighter fit of the true efficient set, as is the case in Example
5.5. We may conclude that it becomes necessary in higher dimensions to implement a different
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method for selecting line directions. Choosing a random set of directions in Sn−1 will generally
not produce a good approximate solution.

In summary, we observe in Examples 5.5 - 5.7 that the algorithm struggles to obtain a close
approximation of the efficient set when using an arbitrary selection of line directions. In some
cases, such as in Example 5.7, the approximate efficient set begins to capture the curvature of
the true efficient set but the overall fit around E (X) remains wide. This differs from Examples
5.1 - 5.4 in R2 where we are able to obtain a tight fit around E (X) by simply increasing k. The
only case in R3 where we are able to obtain a tight approximation around E (X) is in Example
5.6 where we select appropriate line directions by analyzing the specific objective functions. We
can therefore conclude that in higher dimensions it becomes necessary to implement a method
for selecting line directions which depends on the objective functions.

5.3. Single-objective examples in R2. In Examples 5.8- 5.11, we test the line decomposition
algorithm on both convex and nonconvex single-objective problems. We no longer require
convexity of the objective function for single-objective problems since this assumption is only
needed in Theorem 2.1 that is used to determine the efficient set on a line segment.

In the single-objective setting we found that only two line directions, k = 2, are needed to
produce a good approximation, whereas the multiobjective case requires numerous line direc-
tions. We use less line directions for single-objective optimization since the set E is always
a collection of points, rather than line segments. Therefore we can easily determine the best
approximate minimizer by evaluating the objective function at these points in E.

To improve efficiency and accuracy of the line decomposition algorithm for single-objective
problems, we apply a small modification to the final update of the set E. The first iteration of
the algorithm is exactly the same for both single and multiobjective problems. In the second
iteration when performing the final update of E, we determine the intersection points of the set
U1∩U2, and evaluate the objective function at these points.

Then E is set equal to the collection of intersection points which have the smallest objective
value. This differs from the multiobjective case where E is just set equal to the intersection
U1 ∩U2. For all single-objective examples, the two line directions used in the algorithm are
S = {(1,0),(0,1)}, but in theory any two line directions can be used.

In Examples 5.8 - 5.11 we display pictures of the sets U1 and U2, as well as their intersec-
tion points from which we select the final approximate minimizers. The sets U1 and U2 are
represented by purple and green points respectively, and the red points are their computed inter-
section. The final approximation is a subset of the red points which have the smallest objective
value.

Example 5.8. Consider the sum of squares problem below.

min f (x) =
2

∑
i=1

ix2
i

s.t. −10≤ xi ≤ 10.
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The sum squares function is strictly convex. Thus, it has no local minimizers except the global
one at x∗ = (0,0). Using various values of m, we run the line decomposition algorithm to
produce Figure 11.

(A) m = 50 (B) m = 200

FIGURE 11. Intersection points,
⋂2

i=1
⋃

x∈P E (X(di,x)) for Example 5.8.

A summary of the computational results is given in Table 11.

TABLE 11. Example 5.8 results summary

k m approximate minimizers decision space error image space error
2 50 {(0.2041,−0.2041) , (0.2041,0.2041) , 0.2886 0.1249

(−0.2041,0.2041) , (−0.2041,−0.2041)}
2 100 {(0.101,−0.101) , (0.101,0.101) , 0.1428 0.0306

(−0.101,0.101) , (−0.101,−0.101)}
2 200 {(0.0503,−0.0503) , (0.0503,0.0503) , 0.0711 0.0076

(−0.0503,0.0503) , (−0.0503,−0.0503)}

In Table 11, we observe that both the decision space error and image space error decrease as m
increases. In this example, all of the red intersection points have the same objective value (up
to 6 decimal places), and therefore are all included in the final approximation.

Example 5.9. Consider the problem of minimizing the Booth function.

min f (x) = (x1 +2x2−7)2 +(2x1 + x2−5)2

s.t. −10≤ xi ≤ 10.

This function is strictly convex and has a global minimizer at x∗ = (1,3). Using various values
of m we run the line decomposition algorithm to produce Figure 12.
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(A) m = 50 (B) m = 200

FIGURE 12. Intersection points,
⋂2

i=1
⋃

x∈P E (X(di,x)) for Example 5.9.

A summary of the computational results is given in Table 12.

TABLE 12. Example 5.9 results summary

k m approximate minimizers decision space error image space error
2 50 {(1.0204,3.0612)} 0.0645 0.0308
2 100 {(1.1111,2.9293)} 0.1317 0.0239
2 200 {(1.0553,2.9648)} 0.0655 0.0059

In Table 12, we observe that the decision space error increases when we increase m to be greater
than 50. However, the image space error decreases consistently as m increases. This occurs
because the final update of E is determined by evaluating the objective value at each intersection
point.

Consequently there could be points which are farther from the true minimizer in the decision
space, but have smaller objective value in the image space. This objective function’s behavior
causes an increase in decision space error but a decrease in image space error.

Example 5.10. Consider the problem of minimizing the three-hump camel function.

min f (x) = 2x2
1−1.05x4

1 +
x6

1
6
+ x1x2 + x2

2

s.t. −5≤ xi ≤ 5.

The function is nonconvex and has three local minimizers and one global minimizer at x∗ =
(0,0). Using various values of m we run the line decomposition algorithm to produce Figure
13.
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(A) m = 50 (B) m = 200

FIGURE 13. Intersection points,
⋂2

i=1
⋃

x∈P E (X(di,x)) for Example 5.10.

A summary of the computational results is given in Table 13.

TABLE 13. Example 5.10 results summary

k m approximate minimizers decision space error image space error
2 50 {(−0.102,0.102) , (0.102,−0.102)} 0.1443 0.0207
2 100 {(−0.0505,0.0505) , (0.0505,−0.0505)} 0.0714 0.0051
2 200 {(−0.0251,0.0251) , (0.0251,−0.0251)} 0.0355 0.0013

In Table 13, we observe that the decision space and image space error decrease consistently
as m increases. Also, we note that the intersection points occur only near the global minimizer,
and not at any of the local minimizers.

Lastly, looking at Figure 13 we can conclude that the sets U1 and U2 do not always rep-
resent lines like in Examples 5.8 and 5.9, rather they can represent piecewise curves. Addi-
tionally, we observe that U1 and U2 get closer to each other around the local minimizers at
(−1.9509,0.9753) and (1.9509,−0.9753).

Example 5.11. Consider the problem of minimizing the Beale function.

min f (x) = (1.5− x1 + x1x2)
2 +(2.25− x1 + x1x2

2)
2 +(2.625− x1 + x1x3

2)
2

s.t. −4.5≤ xi ≤ 4.5

The Beale function is multimodal, with sharp peaks at the corners of the input domain. The
global minimizer occurs at x∗ = (3,0.5). Using various values of m we run the line decomposi-
tion algorithm to produce Figure 14.
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(A) m = 50 (B) m = 200

FIGURE 14. Intersection points,
⋂2

i=1
⋃

x∈P E (X(di,x)) for Example 5.11.

A summary of the computational results is given in Table 14.

TABLE 14. Example 5.11 results summary

k m approximate minimizers decision space error image space error
2 50 {(2.8469,0.4592)} 0.1584 0.0045
2 100 {(2.9545,0.5) , (3.0455,0.5)} 0.0455 0.0033
2 200 {(2.9171,0.4749)} 0.0866 0.0015

Observe that, in Figure 14, there are many red intersection points which occur in different
regions of the decision space. We see many intersection points since the objective function is
very flat in the interior of the domain, and therefore many points in X have similar objective
values. Despite this, in Table 14 both measures of error decrease as m increases.

We additionally observe that only one or two intersection points are ever selected to be in
the final approximation. Examples 5.8 - 5.10 also use a similar number of points for the fi-
nal approximation, even though they all have much fewer intersection points to choose from.
This demonstrates that the algorithm can recognize small differences between points with very
similar objective values.

In summary, we observe that the line decomposition algorithm is able to generate approx-
imate minimizers that are close to the global minimizer in Examples 5.8 - 5.11. Even in the
presence of numerous local minimizers, such as in Example 5.10, the algorithm is able to ap-
proximate the global minimizer. Another benefit of the line decomposition algorithm is that it
provides insight into the behavior of the objective function across the entire domain. This is il-
lustrated through the sets U1 and U2, and their intersection points. In particular, the intersection
points can imply the existence of local minimizers or small changes in objective values.
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5.4. Implementation details. Having presented multiple examples of the line decomposition
algorithm applied in different settings, we now describe relevant details of the implementation.
In particular, we describe the process of computing a set E (X(d,x)) in detail, and the modified
intersection method used to update the approximate solution E.

Given a line segment X(d,x), we compute the efficient set by solving multiple single-objective
line search problems as stated in the pseudocode. To solve these optimization problems, we
use the minimize scalar solver from the scipy package. After the line search problems are
solved, their solutions are used to determine the feasible step size range for the corresponding ef-
ficient line segment. Then the efficient line segment is saved in the list Ui as an efficientLine

object which we defined in Python. This object class represents a line segment in Rn and has
the following attributes listed in Table 15.

TABLE 15. efficientLine object class

Attribute Type Description
x numpy.ndarray Anchor point for line segment
d numpy.ndarray Direction vector for line segment

a min float Smallest feasible step size of line
segment

a max float Largest feasible step size of line
segment

e1 numpy.ndarray Left-most endpoint of line seg-
ment

e2 numpy.ndarray Right-most endpoint of line seg-
ment

c color name (string) or code (numpy.ndarray) Color used to plot the line seg-
ment. All line segments with the
same direction vector should be
assigned the same color.

Once each subproblem is solved for a new line direction, the approximate solution set E must
be updated by intersecting it with the new collection of efficient line segments, Ui. We preform
this update as follows. For each line segment in the current approximation E, we identify points
on the line which intersect Ui. However, we allow a tolerance when checking whether two line
segments intersect. Specifically, we extend the length of both line segments by the tolerance
amount, and then determine whether they intersect. In R3, there is the possibility that the line
segments are skew lines which nearly intersect at a point. In this case, we want to count the
point where the lines nearly intersect. To accomplish this, we solve a least-squares problem to
determine the closest points on each line segment, and then check whether the distance between
the points is less than the tolerance amount.

Once the intersection points are determined, we must update each line segment in E. For a
fixed line segment in E, if there are no intersection points with Ui, then the entire line segment
is removed from E. Otherwise, we shrink the line segment so that it contains exactly the points
where Ui intersect it. Additionally, if Ui intersects the line segment at points which are far apart,
then we break up the line segment into multiple shorter line segments to be added to E. Each of
these shorter line segments then contains a cluster of the intersection points.
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6. CONCLUSION

In this paper, we presented an implementation of a line decomposition algorithm that pro-
duces an approximate solution to strictly convex MOPs, and convex and nonconvex single-
objective problems. Our study has two parts, theoretical and computational. We first outlined
the steps of the algorithm and then analyzed the theoretical error accumulated during the main
steps of the algorithm, which consists of computing a collection of line search solutions, Ui.
Once Ui is computed, the final step in an iteration is to update the approximate efficient set, E,
by intersecting it with Ui. However, the computation of this intersection appears to be highly
problem specific and therefore we provided experimental values of the final approximation er-
ror, ∆H(E,E (X)), through various examples.

We applied the line decomposition algorithm to three classes of problems: bi-objective qua-
dratic problems in R2, biobjective quadratic problems in R3, and single-objective problems in
R2. We found that the algorithm was able to successfully produce close approximate solu-
tions for biobjective and single-objective problems in R2. However, the approximate solutions
became less accurate when the dimension of the decision space increased to R3. In higher
dimensions, the approximate solutions struggled to get a close fit of the true efficient set, de-
spite increasing the number of iterations. There was a special case we considered in Example
5.6, where we were able to utilize the structure of the objective functions to identify better line
directions to use for decomposition in the algorithm. After this modification of selecting line
directions, we were able to produce a very close approximation of the efficient set using only
a few iterations. Therefore we may conclude that the algorithm has the potential to perform
well in higher dimensions, but a more precise method for selecting the line directions must be
developed.

While an increase in dimension of the decision space poses challenges for the algorithm,
we note that an increase in objective functions is easy to handle. In particular, the number of
objective functions only impacts how many single-objective line search problems are performed
in an iteration of the algorithm.

We recognize that there exist methods to compute the efficient set of multiobjective convex
quadratic problems in Rn with any number of objectives and to provide a complete parametric
description of this set [13, 14]. Despite this fact, for our numerical study we chose quadratic
problems for two reasons. Their convexity is easy to establish and the obtained approximations
can be compared to the true efficient sets that are easy to compute.

The presented implementation is an initial effort to approximate the efficient set by decom-
position and opens several avenues for improvement. In future research, we may investigate an
adaptive method for selecting line directions where we first sample a set of random line direc-
tions, and analyze their performance to help select new line directions to be used in the next
iterations. Alternatively, we may analyze more general MOPs to identify the appropriate line
directions as we did in Example 5.6. Another research question we hope to answer is whether a
set of perfect line directions, such as these in Example 5.6, exists for every MOP.
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7. APPENDIX

TABLE 16. Randomly generated BOQP problems

BOP Q1 Q2 p1 p2 l u

1
[

2.8129 0.3970
0.3970 0.9756

] [
2.5044 −0.1798
−0.1798 0.4136

] [
−0.0720
0.2104

] [
−0.9452
9.6834

]
-26 2

2
[

1.8688 −0.8755
−0.8755 0.7934

] [
2.3647 0.6164
0.6164 0.6733

] [
0.5589
0.9975

] [
1.3459
0.1360

]
-4 1

3
[

2.0676 0.4309
0.4309 0.2559

] [
2.2992 0.6681
0.6681 0.5988

] [
−1.2783
−0.5062

] [
0.3122
0.6912

]
-4 3

4
[

2.5253 0.4945
0.4945 0.7845

] [
2.2388 −0.1947
−0.1947 0.2764

] [
−0.2060
−0.8123

] [
1.1874
0.4191

]
-5 3

5
[

2.4598 0.0048
0.0048 0.3469

] [
2.6421 0.4326]
0.4326 0.7927

] [
−0.1495
−1.6455

] [
1.2873
−0.5504

]
-3 6

6
[

2.5945 −0.1544
−0.1544 0.3888

] [
2.0421 −0.5971
−0.5971 0.4286

] [
1.3854
−0.2803

] [
4.8906
1.2917

]
-13 2

7
[

2.4435 −0.2607
−0.2607 0.4392

] [
2.1306 0.3086
0.3086 0.2282

] [
0.5427
1.1444

] [
0.1665
−1.4758

]
-4 9

8
[

2.3749 −0.7193
−0.7193 0.8697

] [
2.3812 0.3150
0.3150 0.3892

] [
−1.1411
−1.0444

] [
1.7958
−0.6339

]
-4 4

9
[

2.6402 −0.2018
−0.2018 0.5425

] [
2.5324 0.2013
0.2013 0.5697

] [
1.5206
−0.3964

] [
0.9038
−0.0985

]
-2 1

10
[

2.6693 0.5435
0.5435 0.9891

] [
2.7051 0.0701
0.0701 0.6549

] [
−0.1277
1.4207

] [
−17.1902

6.2965

]
-12 7
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