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Abstract. We propose a novel Bregman descent algorithm for minimizing a convex function that is ex-
pressed as the sum of a differentiable part (defined over an open set) and a possibly nonsmooth term.
The approach, referred to as the Variable Bregman Majorization-Minimization (VBMM) algorithm, ex-
tends the Bregman Proximal Gradient method by allowing the Bregman function used in the divergence
to adaptively vary at each iteration, provided it satisfies a majorizing condition on the objective func-
tion. This adaptive framework enables the algorithm to approximate the objective more precisely at each
iteration, thereby allowing for accelerated convergence compared to the traditional Bregman Proximal
Gradient descent. We establish the convergence of the VBMM algorithm to a minimizer under mild
assumptions on the family of metrics used. Furthermore, we introduce a novel application of both the
Bregman Proximal Gradient method and the VBMM algorithm to the estimation of the multidimen-
sional parameters of a Dirichlet distribution through the maximization of its log-likelihood. Numerical
experiments confirm that the VBMM algorithm outperforms existing approaches in terms of convergence
speed.

Keywords. Bregman majorization-minimization algorithm; Bregman proximal gradient method; Dirich-
let maximum likelihood estimation.
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1. INTRODUCTION
The objective of this article is to solve the classical convex minimization problem:

minimize F(x), (1.1)
xcRd
where F = f + g. Here, the function f : R? — RU {+oo} is convex and differentiable on an
open set 7 C R4, while g: RY 5 RU {+o0} is proper, convex, and lower semi-continuous, with
domg = {x € R? | g(x) < +oo} C 2.
When 2 = R? and the gradient of f is L-Lipschitz continuous, problem (1.1) can be effi-
ciently solved by the Proximal Gradient (PG) method [1, 2], also known as Forward Backward
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Splitting. Given an initial point x(*) € R?, the PG algorithm generates a sequence (x(9)),cy by
solving

(v eN) x*V = arg min {g(x) + (Vi(xD), x—xOy 4 iux —x() HZ} : (1.2)
xeR4 2y
where 7, < 2/L.

However, in many practical applications the gradient of f is not Lipschitz continuous, or
the domain 2 is a strict subset of R? (see also recent conditions in [3]). This is for instance
the case of minimization problems involving a Kullback-Leibler divergence such as Poisson
restoration [4] or estimation of the parameters of a distribution through a Maximum Likelihood
approach in statistics [5]. For such cases, PG is not directly applicable.

Bregman proximal methods address this limitation. First introduced in [6] and followed
by [7, 8, 9], this family of approaches replace the Euclidean metric in proximal schemes with a
Bregman distance Dj, with respect to a convex and continuously differentiable function /4 : RY —
(—o0,+00] on its domain. We refer to [10] for an overview of Bregman descent methods. In
particular, in the Bregman Proximal Gradient (BPG) algorithm [11, 12] (a.k.a. Mirror Descent
algorithm when the non-differentiable term g is set to zero [13, 14]), the /-th iterates reads

xD = arg min { g(x)+ (Vf(x),x—x1y + lz)h(yc,;c(f))} : (1.3)
xcRd L

for a fixed constant L > 0. This formulation generalizes the PG method in (1.2), which can be

recovered by setting i = || - ||?/2.

The BPG method has proven valuable in a range of applications. In imaging, BPG has shown
effectiveness in addressing Poisson noise in deblurring problems [15, 16, 17] and has recently
been adapted within a Plug-and-Play framework for enhanced performance [18]. In parametric
statistics, BPG is useful for estimating parameters of distributions, in particular distributions
within the exponential family, for which it is closely linked to the Expectation-Maximization
algorithm [19, 20, 21]. Moreover, constrained sampling through mirror-Langevin dynamics has
also incorporated BPG techniques, illustrating its versatility [22].

The convergence of BPG has been studied in [11, 23] under the Lipschitz-like condition:

Lh— f is convex on int (dom#),

where int (S) denotes the interior of a subset S of R. This condition was shown in [11, Lemma
1] to be equivalent to the following majorization property, for every y € int (dom#),

(Vx €int(domh)) f(x) < f(y)+(Vf(¥),x—y) +LDu(x,y).

This condition is also sometimes called an L-relative smoothness property of f with respect to
function /4. Under this property, BPG can be interpreted as a Majorization-Minimization (MM)
method with the following update rule:

*1) = arg min g4, (x),

x€Rd

where the surrogate function ¢ is defined by

(Vx € int(domh))  gy(x) = g(x) + f(¥) + (VS (¥),x =) + LDy(x,y).
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In this paper, we introduce an extended version of the BPG framework that allows the Breg-
man metric Dy, in (1.3) to vary at each iteration, adapting to the current iterate. We refer to this
adaptive approach as the Variable Bregman Majorization-Minimization (VBMM) algorithm.
By adapting the Bregman divergence to the local geometry at each iteration, we aim to achieve
more accurate approximation to the objective F and to accelerate convergence.

The Bregman proximal gradient approach with variable Bregman metric has been relatively
unexplored. It has been studied in the context of monotone operator theory in [12] and [24],
where decaying conditions on the Bregman divergences are imposed. Our approach differs by
not requiring such conditions. Additionally, [25] analyzed the convergence of a generalized
majorization-minimization framework, of which VBMM is a special case. Their convergence
theory, however, depends on a “growth condition” formulated as

|F(x) — gy(x)| < o([lx—yl)),

where @ : [0,+0) — [0,+c0) is a differentiable function such that ®(0) = 0, w' > 0, and
lim; 00 @' (1) = limy—, 400 0(¢) /@' (¢) = 0. In practice, however, it may be challenging to iden-
tify a suitable function @ that fulfills these conditions, limiting the practical use of this approach
for some applications. Finally, the recent work [26] proposed a variable Bregman proximal gra-
dient approach for a Poisson deconvolution problem and showed that using a variable metric
can accelerate convergence. However, this work did not provide any convergence analysis.

The paper is organized as follows. In Section 2, we introduce the Variable Bregman Majoriza-
tion-Minimization algorithm. In Section 3, we provide a convergence analysis that relies on
mild assumptions on the Bregman metric, enhancing the practical utility of the method. Finally,
Section 4 is dedicated to an original application of the VBMM algorithm to the Maximum
Likelihood estimation of the parameters of a Dirichlet distribution. In particular, we prove that
minimization problem admits a solution, derive closed form iterates for the VBMM algorithm,
and provide numerical experiments on synthetic data to illustrate the good performance of the
algorithm.

Throughout the article, d¢ denotes the Moreau subidfferential of a convex function ¢ : R —
R U {+4o0}.

2. PROBLEM AND ALGORITHM
Let F: RY — RU{+oo} be defined as

F=f+sg
where f: RY — RU{+oo} and g: R — RU {+oo} are functions satisfying the following
assumption:
Assumption 2.1.

(i) f is convex and differentiable on an open set & C R4,
(ii) g is proper, convex, and lower semi-continuous with domg C &,
(iii) F is lower bounded.

Our objective is to solve the classical convex minimization problem

minimize F(x).
xeRd
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In particular, if g is the indicator function of a nonempty closed convex set ¢ C Z, the following
constrained optimization problem is obtained:

minimize f(x).
x€%

A central mathematical tool in our methodology is the Bregman divergence, originally intro-
duced in [27].

Definition 2.1 (Bregman Divergence). Consider a function /2 : R? — (—oo, 4] that is differen-
tiable on int (dom /). The Bregman divergence associated with /4 is defined, for every pair (x,y)
in dom#A X int(dom#), as

Dy(x,y) == h(x) —h(y) — (Vh(y),x —y).

Essentially, Dj,(x,y) quantifies the difference between the value of the function 4 at a point
x € domh and its linear approximation around x, calculated at y € int(domb#). If & is convex
on dom#, then Dy(x,y) > 0 and Dj(-,y) is convex. If & is strictly convex on int(dom#) and
x € int(dom#h), then Dy (x,y) = 0 if and only if x = y. Furthermore, Dy (+,y) is strictly convex.
Note that

VxDy(x,y) = Vh(x) — Vh(y). 2.1)

Definition 2.2 (Bregman Majorant Function). For a giveny € 2, let hy: R — RU {+oo} be
a lower semi-continuous, strictly convex function, which is differentiable on int (dom#hy) 2 Z.
Let gy: 9 — R be defined as

ay(x) == f(¥) +(Vf(¥),x=y) + Dy, (x,y).
We call gy a Bregman tangent majorant of f at y associated with Ay, if, for every x € &,

f(x) < gy(x) (2.2)
or, in other words,

Df<x>y) < Dhy(.X',}’).

The definition expands upon concepts previously introduced as those in [11, 23]. A distinctive
aspect of our approach is the flexibility, in the Majorization-Minimization (MM) strategy, to
allow the Bregman metric to vary according to the reference point y.

Let (hy)ye - be a family of function such that, for every y € 2, hy: R? — RU {+oo}. We
make the following assumption.

Assumption 2.2. For f and g as in Assumption 2.1, the family of functions (hy) e fulfills the
conditions: for every y € 7,
(i) hy is a lower semi-continuous function which is strictly convex and differentiable on
int (dom#hy), and Z C int (domry).
(i1) The function

x> g(x) +(Vf(y),x—y) + Dy, (x,y) (2.3)

1S coercive.
(i1i1)) The majorizing property (2.2) is satisfied.
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Remark 2.1. A sufficient condition for Assumption 2.2(i)-(ii) to be satisfied is that iy, y € Z,
are lower-semicontinuous Legendre functions with 2 C int(dom#y) and the functions

¢y3x'—>8(x)+<vf(Y)»x—Y>» yE 9

are lower bounded. This can be seen as follows: recall that iy is a Legendre function if it is
essentially strictly convex and essentially smooth. The first property implies that Ay is strictly
convex on int(domhy) C domdhy. As shown in [28, Thm. 3.7], Dy, (-,y) is coercive because
hy is essentially strictly convex. Since @y is lower-bounded, this implies that (2.3) is coercive.

Example 2.1. A useful example of metrics (hy),c» leading to separable Bregman majorants,
and thus easy to minimize, can be defined as follows. For every y € &, let

X

2
i
?7

d d
(Vx = (xi)i<ica €RY) hy(x): =Y ai(y)Vilxi) + ) bily) (2.4)
i=1 i=1

where, forevery i € {1,...,d}, the functions a;, b;: R? — [0, 4-o0) are continuous, and v;: R —
RU{+eo} is convex and differentiable on the interior of its domain with & C int ( Xj.lzl domv j) .
Note that the convexity of the differentiable function v; implies that Vv; is continuous, see [29,
Corollary 17.42]. Functions of the form (2.4) are in particular useful for representing quadratic
majorants with a diagonal curvature matrix when setting a; = 0 for all i € {1,...,d}. This form
is also well-suited for the maximum likelihood Dirichlet problem that will be discussed in the
application section.

The Variable Bregman Majorization-Minimization (VBMM) algorithm aims at minimizing
the sum of the non-smooth function g and a Bregman majorant of f calculated from the previous
iterate x(e), i.e., finding for y = x(©) the minimizer of

Dy(x) = g(x) + gy(x)
=8(x) +f() +(Vf(¥),.x—y) + hy(x) = hy(y) = (Vhy(y),x—y)
= g(x) +hy(x) + (VS (y) = Viy(y), x) = (VS (y) = Vhy(y),3) + f (¥).

Neglecting the constants yields Algorithm 1.

Algorithm 1: VBMM Algorithm
Input: Initial point x(*) € 2
for /=0,1,... do
) = argmin g g(x) + (V/(x),x) + Dy, (x,60)

Proposition 2.1. Under Assumptions 2.1 and 2.2, Algorithm 1 is well-defined and generates a
sequence (xV)) ;> in domg.

Proof. For x0 e 9, the function
x> (VAGED) x—x) 4D, (r.x0) + g(x)

is well-defined since 2 C int(dom#A, ). This function is proper since @ # domg C . In addi-
tion, the lower-semicontinuity and coercivity properties in Assumption 2.2 implies the existence
of a minimizer x(“*1) of this function, which necessarily belongs to domg. This minimizer is



404 S. MARTIN, J.-C. PESQUET, G. STEIDL, I. BEN AYED

unique since /) and thus Dh ( x19)) are strictly convex on 2. The result is then shown by
induction. ([l

Remark 2.2. This strategy of adapting the metric to the current iterate in non-Bregman MM
schemes has already been widely studied both theoretically and numerically for the case of qua-
dratic majorants [30, 31, 32]. In particular, our Variable Bregman Majorization-Minimization
algorithm can be seen as a generalization of the Variable Metric Forward-Backward (VMFB)
algorithm [33, 34, 35] which considers quadratic majorants of the form
1
(VxeRY)  qlxy) = f(y)+(Vf(¥),x—y)+ S =y Ay(x—y)),
with Ay, a positive definite matrix that depends on the point y.

Remark 2.3. For every ¢ € N, 2D s actually the D, 0 -proximity operator of function g

at Vh, ) (x(g)) - Vf (x(z)). Algorithm 1 is thus a variable metric forward-backward splitting
method based on a Bregman divergence [12, 24]. The main difference with the analysis con-
ducted in [24], in the general context of monotone operator theory, is that we do not assume that
the Bregman divergences (Dh ) sen satisfy a decaying condition like in [24, Algorithme 2.4b]
(see also [12, Definition 2. 2]) but we rely on a Majorization-Minimization property. When
g = 0, the algorithm simplifies to

(Z):Vh ( x(0)

(e eN) 2D =2 vy
X0 = < )" (@),

This shows that the mirror map is modified along the gradient steps based on the current iterate.

3. CONVERGENCE ANALYSIS

Our convergence result is stated in Proposition 3.1. It shows that, if the sequence (x(é)) (€N
generated by Algorithm 1 lies in a compact subset of &, then subsequential convergence to-
wards a minimizer of F is achieved under suitable assumptions on the Bregman functions. The
existence of such compact set can be addressed independently. For instance, a sufficient condi-
tion is that the objective function is coercive on . This can be ensured by a proper choice of
function g.

We start proving that, without further assumptions, Algorithm 1 produces a non increasing
sequence of cost values. First, we recall the Three Points Identity, which can be found, e.g., in
[8, Lemma 3.1].

Lemma 3.1 (Three Points Identity). Let h: RY — RU {40} be strictly convex and differen-
tiable on int (domh). Then, for any three points x,y in int(domh) and z € dombh, it holds

Dy(z,x) — Dp(z,y) — Dp(y,x) = (Vh(x) — Vh(y),y — z).

Lemma 3.2. Suppose that Assumptions 2.1 and 2.2 are satisfied. Let (x(e)) teN be the sequence
generated by VBMM Algorithm 1. Then, for every { € N and v € &, we have

F(x“)—F(v) <D, o (v,x9 =D, 0 (v, (D) —Df(v,x(f)).

In addition, sequence (F (x'9)))en is non-increasing.
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Proof. Let v € 2 and { € N. By definition of x(*1) and (2.1), there exists w(*1) € dg(x(¢+1)
such that
Vf(x(f)) = Vhy (x(é)) —Vh (x(fﬂ)) — w1,
Using the fact that w(‘*1) is a subgradient of g at x(‘*1), we obtain
(VF(x0),xD —py = (Vh (x0) — Vh, (DY x D)y D) (D )

b

<(Vh,q (x(e)) —Vh, (x(€+1)) JRSY) —v)+g(v) _g(x(E—H))‘

Furthermore, it follows from Lemma 3.1 with x = x(©), y = x(+1)_and z = v that
(V)= - v) <Dy (v, x0) - Dy (v ,X(EH))—thu) (2D 1)y
+av) —glx). G3.1)

On the other hand, the majorization property at iteration ¢ reads as
(t+1)y < (+1) _ 40y 4 p (t+1) (0)
FEED) < f) 1 (VAE) x )4 Dy, (D x0),
and subtracting f(v) + (V£ (x()), x(“*1) —v) on both sides, yields

FEED) = ) — (VD) 2D —v) < FxD) — () + (VF(xD), v —x0)

+Dy (2D x(O)

= —Dy(v,x) +Dy , (XD x). 32

Finally, summing up (3.1) and (3.2),
S~ f0) (D)~ g(v) < Dy (0.20) ~ Dy, (960D~ Dy (v.200)
By setting v = x(*), we deduce that (F(x(9))) ey is non-increasing. O

We shall now prove that, under the condition that the Bregman divergences are uniformly
lower-bounded by an increasing function of the norm, the difference between two consecutive
iterates tends to zero.

Assumption 3.1. For any nonempty bounded set € C &, there exists an increasing function
p: Ry — R, vanishing only at 0, such that

(V(x,y) €6%) Dy (x,y) > p(|x—yl). (3.3)

Note that similar conditions are classical in the case when / is independent of x [36, Property
(*) in Sec. 4.2]. Assumption 3.1 is satisfied for Bregman functions of the form given in (2.4),
particularly when, for all y € &, there exists a constant ¢ > 0 such that, for every i € {1,...,d}
bi(y) > c. In this scenario, (3.3) is satisfied with p = ¢(-)?/2.

Remark 3.1. Assumption 3.1 can be seen as a generalization to the Bregman framework of
the assumption made on the metrics in the VMFB algorithm [35]. Indeed, VMFB was shown
to converge to a minimizer under the assumption that there exits v € (0,+c0) such that for all
yeR vi; < Ay, where Ay is the curvature matrix associated with the quadratic majorant at y.

Lemma 3.3. Let (x(g)) teN be the sequence generated by the VBMM algorithm 1. Assume that
(x(g)) reN IS bounded. Suppose that Assumptions 2.1, 2.2, and 3.1 are satisfied. Then X+ —
x5 0as t — +oo.
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Proof. Applying Lemma 3.2 with v = x(¥) yields
l L l 4
F(x)) —F(x9) < ~Dy (x0), x+)y.

According to Assumption 3.1, there exists a function p: Ry — R, increasing and vanishing
only at 0, such that, for every / € N,

l 4 l ¢
o GO XD > p () &),

Hence, summing from / =0to /=L,

L
Y o —x"V)) < F) - FxHY) < F(x”) — F,
=0
where F is a lower bound on F. This shows that ¥, p (||x(*) — x(“*1)||) < 4-c0, which implies
that p (||x(©) — x|} — 0, that is x(0) — x(+1) — 0. O

Assumption 3.2. For any bounded sequences (x(9)) ey, (79 /e in 2 such that x() —y(©) — 0,
it holds

Vhyo (y") = Vi (x) = 0.
It is easy to check that Assumption 3.2 is satisfied by Bregman functions of the form (2.4).

Proposition 3.1. Let (x(e)) teN be the sequence generated by the VBMM Algorithm 1. Assume
that there exists a compact subset € C 9, such that {x(g)}geN C €. Further, suppose that
Assumptions 2.1-3.2 are satisfied. Then the following holds true:

(i) the set of cluster points of (x(f)) (eN IS a nonempty compact and connected subset of
Argmin F’;
(ii) (F(x'9))gen converges to the minimum of F;
(iii) if F admits a unique minimizer, then (x(é)) (N converges to this minimizer.

Proof. (1) We show that the cluster points are minimizers of F'. Then the fact that the set of
cluster points of (x(z) )ren is @ nonempty compact and connected subset of Argmin F fol-
lows from the boundness of (x()),cy and Lemma 3.3, by invoking Ostrowski’s theorem
[29, Lemma 2.53].

Let X € € C 2 be a cluster point of (x(*)),cy. There exists a subsequence (x(%/)) jeN
converging to X. Let us show that ¥ is a critical point of F, i.e., 0 € dF(X), or equiva-
lently, —V f(¥) € dg(x). According to the definition of the subdifferential, it remains to
show that

(Vy e RY)  g(y) > g(x)+ (—Vf(X),y—X).

By definition of the sequence generated by the algorithm, for all j € N*, there exists
w(t) € 9g(x(%)) such that

wlli) = Vh 0y (x57) =V (69) = VEGD), (3.4)
Using again the definition of the subdifferential, we get

wleagx) & (vyeR?) gly) 2 g) + W)y —x).
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By (3.4), we obtain
(wl) y —x0)y = (Vh (01 (x(@/—l)) ~Vh ;) (xl)),y — x4 (3.5)
— (VD) y -2 >>

Since we know from Lemma 3.3 that x(¢—1) — x(¢)) — 0, as j — oo, it follows from
Assumption 3.2 that the first term on the right-hand side of (3.5) tends to zero as j —
~+o0. Additionally, since f is convex and differentiable on &, its gradient is continuous

on Z [29, Corollary 17.42]. Consequently, since xli=D 5 % as J = +oo,
(VIY)y—2) — (Vf(R),y-%).
oo
Concluding the proof, we employ the lower semi-continuity of g to deduce:

(vyeRY) g(y) = liminf{g(x ") }+ tim {(w",y—x")}
J—rteo Jrtee
> g(X)+ (=Vf(x),y—x).
Thus, X is a critical point of F, and by convexity of F, it is also a minimizer.
(i) For all j € N*, since w(’/) + V £ (x(¢ ) e dF (x(%)), we obtain
F(x) > F(x\D) + w9 4 v £ (), x — x5y,
that is
0 < F(x“))—F(x) < (W) x) —3) + (v (x)), x4) — ).
From (3.4) and the continuity of V f on Z, it follows for j — oo that
V() 2 — %) 0,
which shows that lim;_, . F(x{%)) = F(%). Since we have proved in Lemma 3.2 that
(F (x*)) g is non increasing, and it is also lower bounded, it converges, and its limit is
F(X).
(iii)) When F has a single minimizer, (x(g)) seN 1s a bounded sequence with a unique cluster

point, and it therefore converges to the unique minimizer.
O

Remark 3.2. Assume that

Dh (y ,.X)

G = inf{y— | (x,y) € 22,y #x} > 0.
D hy (x Y )

The parameter o acts as a symmetry measure [11] for the family of Bregman divergences of

functions (hy)yc . For example, if hy: x — %(x, Q,x) where Q,, € € R4*4 i3 a symmetric positive

definite matrix, then ¢ = 1. Now introduce a parameter A € [1,1+ o — ¢&] with € € (0,0) in

VBMM algorithm:

(W eN) x4 =arg min ¢(x)+ (V/(x),5) + 42Dy, (60, (3.6)
xe
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Choosing a value of A greater than 1 lessens the weight on the proximity term and therefore
permits larger iterate moves. Adapting the proof of Lemma 3.2 and applying in v = x(0 yields

(VeeN) F@*D)—F@b) < —%th(z) (20 XD 4 (1 - %) Dy, (2D £y,

from which we deduce
(VeeN) AFE“D)—Fx9) < —eDy (xHD x(0)

and the convergence result in Proposition 3.1 remains valid for Algorithm (3.6).

4. APPLICATION TO THE ESTIMATION OF THE PARAMETER OF A DIRICHLET
DISTRIBUTION

In this section, we present a novel application of the VBMM algorithm for estimating the
parameters of a Dirichlet distribution. The Dirichlet distribution, defined on the unit simplex in
R, is widely used in various domains. It has applications in modeling text data, such as word
appearance in documents [37], hyperspectral unmixing [38], customer segmentation based on
spending patterns [39] and, more recently, in image classification using text-vision models like
CLIP [40] and image restoration [41]. Additionally, it has been employed for generating DNA
sequences [42].

We begin by recalling the definition of the Dirichlet distribution and its associated log-
likelihood function. We then establish that the negative log-likelihood is coercive, which guar-
antees the existence of a minimizer. Following this, we demonstrate how the VBMM algorithm
converges to a minimizer of the negative log-likelihood function. By leveraging its variable
metric feature, VBMM achieves faster convergence compared to traditional methods.

Finally, through numerical experiments, we illustrate that VBMM outperforms existing meth-
ods for solving the Dirichlet Maximum Likelihood Estimation problem, particularly in terms of
convergence speed.

4.1. Maximum likelihood estimation for a Dirichlet distribution. Let M € N* denote the
number of samples and let (z,)1<m<m € (A7), where A; denotes the open unit simplex of
R4, Assume the vectors (2Zm)1<m<m are samples drawn from a same Dirichlet distribution with
parameter & = (0;)1<i<q € (0, +00)4, corresponding to the probability density function

1 4
d . o o;—1
(Vz=(zi)1<i<a € [0,+2)%) p(z @)= mgzi Lzen,,

where
d d
Ba) = HF((X;‘)/F <Z OC;‘)
i=1 i=1

and I' denotes the Gamma function.
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To determine the parameter of this distribution, we intend to minimize the negative log-
likelihood function, defined as

M d
MG(a) — —1 11’1Zml lfaE@: 07—|—oo d’
(Vo= (ai)1<ica €RY)  fl@t) = (@) n;; ( )

+oo otherwise,
“4.1)
where

M&

(Vo = (o) 1<i<a € 7) Glat ZlnF o —lnF<
i=1

o).

1

~.

4.2. Existence of a unique minimizer.

Proposition 4.1. Assume that d > 2 and M > 2. If at least two samples in the set {zu}1<m<m
are not identical, then function f is lower-semicontinuous, strictly convex, and coercive. Thus,
it admits a unique minimizer.

Proof.

Lower-semicontinuity. Function f is continuous on its domain Z. Let us study what happens
at the boundary of this domain. Let (& al )) sen be a sequence of (0, +o0)¢ converging to o
where @* belongs to the boundary of (0,+e)?. If {i € {1,...,d} | & =0} # {1,...,d}, then
it is clear that f(et(9) Ej +oo. Now let & = 0. Then, since I'(a) ~ é as o — 0+, we get

T(og)...T(0y) 1 & d ]

§ o=

T AT RRACTICTR Y M e

and, consequently,

M&

o
= —too
- H]?él ]

so that limy_, o f (a(f)) = +oo = f(@*). This shows that f is lower-semicontinuous.
Coercivity. Let us show that
lim f(a) = +oo. 4.2)
o[ —oo
acy
According to a variant of Stirling’s formula [43, page 257, 6.1.38], for all o > 0, there exists
0 € (0, 1) such that

INa+1) _1 0
o) = 2" _ 1o dt1/2 ( _)
(x) p” o Ta exp|( —a+ Do
0
a2 ( _> 43
o exp| —a+ 5 (4.3)

For all vectors & = (04)<i<q € (0,40), we define & := Y% | a;. Additionally, we denote by
(6;)1<i<a € (0,1)% the set of constants corresponding to each ¢; as per equation (4.3). Similarly,
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6 € (0,1) is associated with &. We can write, for all & € (0, +o0)?,
d

Ga)=Y ((ai —1/2)Ino;— o5 + 1% + %111(27:))

i=1

— (& — 1/2)1n66+66—%— %ln(Zﬁ),
=A(a) +B(a),

where

Setting 1; := 2 € (0,1], we have

A(@) =} (mo—1/2)In(n;a) — (& — 1/2) In@,

i=1 i=

Since, foralli € {1,...,d}, n; < 1, the following lower bound is obtained:

Zn,lnn,

Additionally, since for all i € {1,...,d}, 6; > 0 and 8 < 1, we obtain

lnoc

1 d—1
B(a) > ——— In(27).
() > 20 + 5 n(27)
Therefore, we can lower-bound G as follows

1—-d 1 d—1
a)>aanlnn, SIna— oo+ In(27).

=

Let us now go back to the objective function (4.1). The following holds:

fla) Z o—1) ln(Hzm,>

d
( -y (ma—1) 1nz,> ,
i=1

M 1/M
(ViE{l,...,d}) Zi = <Hzm7i> .
m=1

where
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Then,

f(a)>M<

Mm

120 2

l:

(niox —l)lnz,—l—aZn,lnn, l_dlna—ier_lln(zn)) :

_ ut . 1-d 1 d—1
:M(ai;niln(z—i)%—i;lnzﬂr > lna—ﬁ%— 5 In(27) | .
Let us recall the definition of the Kullback-Leibler (KL), divergence:

(Vi = (i) 1<i<a € [0,400))) (V0 = (vi)1<iza € (0, +0o0)")

Dxy(u,v) = Zu,ln() Zu,—i—Zv,

Since Y%, n; = 1, the following holds, for § = (1;)1<i<q and Z = (%)) 1<i<a>

DxL(n,2) anln(nl>—1+zzz,

which implies that

d d 1— 1 —1
fla) >M(6¢<DKL(n,2)+1—ZZi>+Zln2,~+ 2d1n ——+d 111(2775)) .
i=1 i=1

12a 2
Using the nonnegativity of the KL divergence, we deduce that

1 d

_ LN &, ., 1-d ~1
f@)>ma(1-Yz)+ Ying+-— ma- o+ -men) ). @4
i=1 i=1

If we show that 1 — Zle Z; > 0, it follows that the term on the right-hand side of equation (4.4)
tends to infinity as ||&|| goes to infinity. According to the inequality of arithmetic and geometric

means, forall i € {1,...,d},
M I/M 1 M
Zz = H Zm,i S M Z Zm,iy
= =1
m m

with equality if and only if for all i € {1,...,d}, zm; = 20,;. Since the samples (Zu)1<m<m
belong to the unit simplex of RY,

Mm

d M
Z Y i<l (4.5)
—1m=1

i=1 -
The inequality (4.5) is strict if there exists i € {1,...,d} and (m,0) € {1,...,M} with m # ¢ such
that z,,; # z¢;. In other words, the inequality is strict if at least two samples are not identical,
which has been assumed. Finally, we have proved that the coercivity condition (4.2) holds.
Strict convexity. The Dirichlet distribution is part of the Exponential family. In addition, it is
associated to the sufficient statistics

(V2= (zi)1<i<m € Aa) T(2) = (—=Inzj)1<i<m-

Since there is no linear dependence between the components of T (z), the Dirichlet distribution
defines a minimal exponential family. In such a case, the negative log-likelihood is known to



412 S. MARTIN, J.-C. PESQUET, G. STEIDL, I. BEN AYED

be strictly convex [44, Thm. 1.13], [45]. As an alternative proof, it was shown in [46] that the
Hessian of the negative log-likelihood is positive definite. U

4.3. Existence of Bregman majorants. Building upon the following lemma, we construct a
Bregman tangent majorant of f.

Lemma 4.1 ([47]). Let ¢ be a twice-continuously differentiable function on [0,+). Assume
that @" is decreasing on [0,+o0). Lett € [0,+) and let

¢"(0) ift =0,
c(t)=9,920)—0@) +¢'(0) (4.6)

2 otherwise.

Then, for every x € [0,+c0), it holds
0(x) < 91) +9'(1) (e —1) + 5e(r)(x 1)
Proposition 4.2. Let B € (0,4)?. The negative log-likelihood in (4.1) admits a Bregman
tangent majorant at B associated with the Bregman function
(Ve = (o) 1<i<a € (0,400)7)  hg(a) = h(a) + hg"(ev), (4.7)

where h®t and h‘l’flr are respectively the constant and variable components defined as

d
10 = ~M Y Iney
=1
d 2

0%
fta) =M Y elh) T
where c: [0,+00) — [0, +o0) is defined by Lemma 4.1 applied to the function ¢ =1InI'(- 4 1).

Proof. Recalling that InI"(- + 1) = InT"+ In, we decompose f into
fle) = fi(e) + fo(@) + f3(e),

where
M [ d d
fila)==Y (Z(ai— DInzy,;+InT (Z (xi>> :
m=1 \i=1 i=1
d
fo(@)=MY InT(0;+1),
=1
and

d
fla)=-MY Ina;.

i=1
We now derive upper tangent bounds at B for each of these functions. Recalling that the Gamma
function is log-convex, fi is the sum of a linear function and a concave function, and the fol-
lowing tangent inequality holds

file) < fi(B)+Vfi(B) (a—B). (4.8)
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In addition, the function InT'(- + 1) is twice-continuously differentiable on (0, +c0)¢ and its
second derivative, which is a shifted version of the Trigamma function, admits the following

expansion
oo 1

(VteR) (InT(-+1))"(t) = Zz)m,

provided that —r ¢ N. This shows that (In['(- 4+ 1))” is decreasing on [0,+c). Therefore,
Lemma 4.1 applies to InI'(- + 1), yielding the upper-bound
d

£2(0) < 12(B) +V15(B) (@~ B)+ Y c(B) ey~ By,

i=1
which can also be written as

f2(@) < fo(B)+VH(B) (&= PB) +Dygr(, B). (4.9)
Finally, by definition of the Bregman divergence and since f3 coincides with A°*, we obtain
f3(@)=f3(B)+V(B) (@—PB) +Dyen (e, B). (4.10)

Thus, since Djest g = Djest + thiar’ we deduce from (4.8), (4.9), and (4.10) that

f(@) < f(B)+VF(B) (ot~ B)+Dyy(a,B).
O

Remark 4.1. The majorants established in Proposition 4.2 can be written in the form (2.4),
with for all i € {1,...,d}, for all B € (0,+o0)9, a;(B) = M and b;(B) = Mc(B;), and for all
t € (0,4+c0), v;(t) = —Int. Additionally, the curvature function ¢ defined in (4.6) is represented
in Figure 1. It satisfies ¢(0) = 72 /6 and

(Vt €0,400)) ¢(¢) > 0and Jlim c(t) =0.

+o0
The family of Bregman functions defined in equation (4.7) satisfies the assumptions of Propo-
sition 3.1 for suitable choices of function g. For all B € (0,4c0)?, the function hg 1s strictly
convex and differentiable on its domain which is 2 = (0,+)?. Moreover, the majorization
property is verified as per Proposition 4.2, thereby satisfying Assumption 2.2. Regarding As-
sumptions 3.1 and 3.2, they are clearly met as indicated in the remarks made after stating these
assumptions.

FIGURE 1. Curvature function (4.6) when ¢ =1InI'(-+1).
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4.4. Algorithm. For a given value of B = (B;)1<i<4 € (0,40)?, we can find a closed-form
expression of the minimizer @ of the Bregman majorant given by Proposition 4.2. Since the
majorant has a separable form, each component @;, i € {1,...,d}, of @ is the minimizer of the
function defined on (0, 4o0) as

((mr) — (InT) (Zﬁ,) z_:llnzm,i>(ai—ﬁi)+c(ﬁ)( B —Inay+ igiﬁi,

where, as already mentioned, the curvature ¢(f3;) is positive. We deduce that 0; is the unique
positive root of the second order polynomial equation

c(Bi)os +&i(Bai =1,

where §;(B) is given by

&(B) := (InI)(Bi+1) — (InT) (Z ﬁ]> c(Bi)B Z Inzy, ;.
Therefore, we obtain the following closed-form expression for the minimizer:

G \/ +4c (B)
% 2c(ﬁ,) '

The final Variable Bregman MM updates are described in Algorithm 2. Note that it only requires
the evaluation of the log-Gamma function and of its derivative, the Digamma function.

Algorithm 2: VBMM for Dirichlet parameter estimation
Initialize &(©) € (0, 4-00)<.
for /=0,1,...,do

foric{1,...,d} do

=2 (—mr(a,.“) + 1)+ (D) (o) + 1)) /(oc.“))2

l M
o Z NZpm,i-

d
5 = (in0)' (") + 1) — (InT (Z )—c’Z

j=1

o= (-0 + e el

~

4.5. Numerical experiments. All numerical experiments were run in Python 3.8 on an Apple
M1 CPU.

4.5.1. Unconstrained case. We first consider the case when f is defined by(4.1) and the penalty
function g is zero. The cost function thus reduces to F' = f. We apply the VBMM algorithm
(see Algorithm 2) to minimize F.

We compare the computational efficiency of VBMM with two state-of-the-art algorithms
used to solve the Dirichlet maximum-likelihood problem. The first one is the algorithm de-
scribed in [46, 48, 49], which is a Newton algorithm adapted to deal with the constraint & €
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(0,+00)? and requires computing the second derivative of the log-Gamma function at each
iteration. The second one, proposed in [49], constructs an upper bound on the negative log-
likelihood, which is tight at the current iterate. Unlike ours, this upper bound has no closed-
form minimizer. However, the sub-optimization problem can be rewritten as a fixed-point
problem, which can be solved with a Newton method separately on each component. Finally,
we highlight the advantages of using Bregman functions that adapt dynamically to the iter-
ates by comparing the Variable Bregman Majorization-Minimization (VBMM) algorithm with
the fixed-metric Bregman Majorization-Minimization (BMM) approach. In BMM, the variable

component ¢ —> h‘l’f‘r(a) is replaced with a function independent of B, namely

d 2 2 d
of Mz
a—M sup {c()}Y L =""-Y o
1€[0,4-00) lzi 2 125"

Experimental setup. We conduct a series of experiments where we set the dimension dof the
data to 1000 and the number of samples M to 500 across all experiments. We sample from
a Dirichlet distribution with parameter Qe € R for different values of Qrye, allowing us to
scan a wide range of means and variances for the data distribution. We first define the following
three vectors:

om =1y;
o my = (my;)i<i<q Where, foralli € {1,...,d}, my; =10if i = 1, mp ; = 1 otherwise;
o m3 = (m3;)i<ij<q Where, foralli € {1,...,d}, m3; = 1.

For j € {1,2,3}, we define the normalized vector m; =m;/ ):?: ymji € Ag. We also introduce
three scaling factors s; = 100, s, = 10, and s3 = 1. Given m € {m;,my,m3} and s € {s1,52,53},
we set the true parameter Qe as

atrue - Sﬁl.

m(1—in)

T Therefore,

In this case, the mean of the Dirichlet distribution is m, and the variance is
a large value of s results in a small variance of the samples.

Once Oy 1s set, we draw our data samples from the Dirichlet distribution with the chosen
true parameter. Subsequently, we aim to estimate the Dirichlet parameter solution to the Maxi-
mum Likelihood problem. For each method, the initial estimate a® is uniformly set to a vector
with value 101y. Each experimental setup was averaged over 1000 random experiments.
Results. To assess the convergence speed of all three methods on the experimental setup pre-
viously described, we evaluate the relative squared error (RSE) with respect to the optimal

parameter Qo at each iteration ¢ against time in seconds. The RSE at iteration £ is given by
Ha([)*aoptnz

loopll® - o . :
samples is finite, the maximizer of the likelihood @ differs from Qe in general.

In Figure 2, we present convergence plots displaying the distance to the optimum versus time
for different values of Q.. We observe that, in every configuration, VBMM converges faster
than the three other methods.

where a'?) is the estimated parameter at iteration ¢. Note that, as the number of
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FIGURE 2. Distance to optimum versus time for different values of @y, with
M = 500 samples and sample size d = 1000. Rows from top to bottom: Qe
defined with respectively m;, m,, and m3. Columns from left to right: Qe
defined with respectively s1, s, and s3.
4.5.2. Use of a separable constraint. Our approach also allows for the inclusion of a non-zero

function g, which can be useful for enforcing constraints on the estimated Dirichlet parameters.
Specifically, we consider a function having the following separable form:

d
(Vx = (x)i1<ica €RY) g(x) =) 1 4 (x0),
=

where for each i € {1,...,d}, (r;,r") € (0,+o0)2.

An example of such a constraint arises frequently in the Latent Dirichlet Allocation (LDA)
problem, where setting ;7 = € with € > 0 a constant arbitrarily close to zero, and r;r =1is
common. In practice, this constraint reflects the sparsity of word counts in documents.

In this case, minimizing the Bregman majorant simply reduces to minimizing a convex one-
variable function on [r;, rl-+ ], which is equivalent to projecting the unconstrained update onto
[r;,r;"]. The complete algorithm is detailed in Algorithm 3. In our experiments, we set r;
1071%and v =1, foralli € {1,...,d}.
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In Figure 3, we plot both the RSE and the negative log-likelihood evaluated at the iterates of
VBMM as a function of time. As theoretically expected, the loss is monotonically decreasing
(linearly) and converges fast. Note that neither of the two alternative methods we compared
against previously are designed to handle constrained problems, highlighting an additional ben-
efit from our approach.

Algorithm 3: VBMM for Dirichlet parameter estimation with a box constraint
Initialize &) € (0, 4-00)<.
for /=0,1,...,do

foric {1,...,d} do

=2 (mr(l) —InT(a” + 1)+ (InT) (e

~
~

d M
0 _ 1O ' () (0, (0) .
5" = (InT)(e;”” +1) — (InT) (Zlaj —c —MZInzm,

o) = ) (80 (60 2.

~
Il

171

. —=— VBMM 64001 —=— VBMM
10
—3 ]
10 —6600
1075
@ 10774 g~
o —
10794 ~70001
10711,
. ~7200]
10713
0.0000  0.0005 00010  0.0015  0.0020 0 1 2 3 4 5
Time (s) Iteration

FIGURE 3. (Left) RSE versus lapsed time. (Right) Function f minus the opti-
mal value f* versus elapsed time. The loss is averaged over 1000 experiments
where @y is uniformly sampled in [0,2]'°%°. The number of samples for each
experiment is M = 500.

5. CONCLUSION

We introduced the Variable Bregman Majorization-Minimization (VBMM) algorithm as a
versatile extension of the Bregman Proximal Gradient method. By allowing the Bregman diver-
gence to adapt dynamically at each iteration, VBMM increases flexibility in optimization and
achieves faster convergence. We established the subsequential convergence of the algorithm
under mild assumptions on the family of Bregman metrics. A novel application to the esti-
mation of Dirichlet distribution parameters demonstrated the practical efficiency of VBMM,
outperforming existing methods in terms of convergence speed.
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Future research could focus on strengthening our convergence results. For instance, leverag-
ing the Kurdyka-tL.ojasiewicz property, as in [23], might lead to stronger convergence results.
Moreover, relaxing the convexity requirement on the objective function f could broaden the
applicability of VBMM to a wider class of optimization problems.
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