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Abstract. We investigate the optimal shapes for the hydrodynamic resistance of a rigid body set in
motion in a Stokes flow. At this low Reynolds number regime, the hydrodynamic drag properties of an
object are encoded in a finite number of parameters contained in the grand resistance tensor. Considering
these parameters as objective functions, we use calculus of variations techniques to derive a general shape
derivative formula, allowing to specify how to deform the body shape to improve the objective value of
any given resistance tensor entry. We then describe a practical algorithm for numerically computing the
optimized shapes and apply it to several examples. Numerical results reveal interesting new geometries
for various criteria and perspectives into optimal hydrodynamic profiles.
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1. INTRODUCTION

The interaction between solid objects and a surrounding fluid is at the heart of many fluid
mechanics problems stemming from various fields such as physics, engineering and biology.
Among other factors, the behaviour of such fluid-structure interaction systems is predominantly
determined by the boundary conditions at the surface of the solid, but also by the geometry of
the solid itself, commonly called its shape. In this context, the research for some notion of shape
optimality in the fluid-structure interaction is widespread, with the objective of understanding
which shapes allow for optimal response from the fluid, typically involving energy-minimising
criteria [37].

At low Reynolds number, a regime occurring in particular at the microscopic scale where
viscosity dominates on inertial effects, fluid dynamics are governed by the Stokes equations.
These equations are linear and time-reversible — a remarkable specificity compared to the more
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general Navier-Stokes equations, which makes fluid-structure interaction and locomotion at
microscopic scale a peculiar world [44].

In particular, when considering the resistance problem of a rigid body moving into a fluid
in the Stokes regime, a linear relationship holds between the motion of a body (translation and
rotation) and the effects (forces and torques) it experiences. This relationship is materialised by
the well-known grand resistance tensor.

Remarkably, once a reference frame is fixed, the grand resistance tensor is determined solely
by the object’s geometry and not by its instantaneous motion, provided the conditions at in-
finity (or the outer boundary) are treated consistently. In other words, for an incompressible
Newtonian fluid in the Stokes regime (at low Reynolds number) with fixed viscosity, the hy-
drodynamic resistance properties of a rigid body are intrinsic to its shape. The question of
which shapes possess maximal or minimal values for these resistance parameters then naturally
arises, both from a theoretical fluid mechanics perspective, and as potential ways to explain the
sometimes intriguing geometries of microorganisms [34, 47, 53, 58].

Optimal shapes for resistance problems have been addressed in previous studies. In par-
ticular, the minimal drag problem, which seeks the shape of fixed volume opposing the least
hydrodynamic resistance to translation in a set direction, is well known and was solved in the
1970s, both analytically [42] and numerically [3]. The characteristic rugby-ball shape resulting
from this optimisation problem has then been used as a reference for many later works, among
which we can cite the adaptations to two-dimensional and axisymmetric flows in [46, 49], linear
elastic medium in [59], or minimal drag for fixed surface in [36]. These studies rely on symme-
try properties for the minimal drag problem, and such methods fail to be immediately extended
to solve the optimisation of the generic resistance problem, associated with other entries of the
resistance tensor.

Shape optimisation in microhydrodynamics has also been widely carried out in the context
of microswimmer locomotion. Notable works include [45], where the best pitch and cross-
section for efficient magnetic swimmers is numerically and experimentally discussed, and [5,
18, 27], where parametric optimisation is conducted to find the best geometry for flagellated
microswimmers. Efficient shapes for periodic swimming strokes and ciliary locomotion are
addressed in [13, 52].

However, in these studies, restrictive assumptions are made on the possible shapes, with
the optimisation being carried on a few geometrical parameters and not on a general space of
surfaces in 3D. Another approach, allowing to explore a wider class of shapes than with para-
metric optimisation, is based on the use of shape derivatives: a generalisation of the notion of
derivative, which yields a perturbation function of a domain in a descent direction [15, 23, 54].
However, this method requires caution regarding the regularity assumptions on the boundaries
of the domains involved [20]. Other popular methods for shape optimisation in structural me-
chanics include density methods, in which the characteristic function of a domain is replaced
by a density function — we mention in particular the celebrated SIMP method [7, 9, 17], and
the level set method, [1, 40, 50, 57] which can handle changes of topology. Obtaining efficient
numerical algorithms to apply these analytical methods to find optimal shapes is also challeng-
ing: one must be able to handle both a decrease of the objective function, while avoiding that
the numerical representation becomes invalid (for example because of problems related to the
mesh or to changes in the topology of the shapes considered).
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In the context of low-Reynolds number fluid mechanics, variational techniques and shape
derivatives are used in [6, 21, 35] to optimize deforming axisymmetric microswimmers. In [33,
56], the authors carry the optimisation of the torque-speed mobility coefficient in the context of
magnetically propelled swimmers, for a shape constrained to be a slender curved body, yielding
helicoidal folding. The shape variation is introduced for a general shape functional in [56],
before focusing on shapes characterised by a one-dimensional curve, and a single entry of the
resistance tensor. The present study follows analogous ideas to establish a systematic theoretical
and numerical study of the coefficients of the grand resistance tensor, including some of the
extradiagonal coefficients which, to the best of the authors’ knowledge, have not been tackled
in previous studies.

Hence, as the principal aim of this paper, we will provide a general framework of shape opti-
misation for this type of problem, and show that the optimisation of any entry of the resistance
tensor amounts to a single, simple formula for the shape derivative, which depends on the so-
lution of two Stokes problems whose boundary conditions depend on the considered entry. We
then describe an algorithm to numerically implement the shape optimisation and display some
illustrative examples.

2. PROBLEM STATEMENT

2.1. Resistance problem for a rigid body in Stokes flow. We consider a rigid object set in
motion into an incompressible fluid with viscosity u at zero Reynolds number, with coordinates
x expressed in the fixed lab frame (O, e;,e;,e3), as shown on the left panel of Fig. 1. The
object’s surface is denoted by .’ and we assume that the fluid is contained in a bounded domain
A, thus occupying a volume ¥ having 0¥ = . U JdZ as boundary. We assume that the
outer boundary d .4 is sufficiently far from the object so that its influence on the hydrodynamic
resistance can be expected to be negligible.

At the container boundary 0%, we consider a uniform, linear background flow U*, bro-
ken down into translational velocity vector Z*, rotational velocity vector Q* and rate-of-strain
(second-rank) tensor E~ components as follows:

U”=Z"+Q" xx+E”x. (2.1)

Similarly, the object’s rigid motion velocity field, assumed to be without slip, is simply de-
scribed by

U=Z+Qxx, (2.2)

with U and Q denoting its translational and rotational velocities. Having set as such the veloc-
ities at the boundary of 7 defines a boundary value problem for the fluid velocity field # and
pressure field p, which satisfy the Stokes equations:

UAu—Vp=0 in7,

V-u=90 in?,
u=U on .¥, 2:3)
u=U~" on d4A.

From the solution of this Stokes problem with set boundary velocity, one can then calculate the
hydrodynamic drag (force F" and torque T") exerted by the moving particle to the fluid, via the
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FIGURE 1. Problem setup: a rigid body in a Stokes flow. A diagram of the
general Stokes problem (2.3) can be seen on the left of the figure. The panels on
the right-hand side show examples of resistance problems associated to selected
entries of the grand resistance tensor. For instance, for K (top left), one sets
the motion of the object to a unitary translation in the direction e, and then K7
may be obtained as the component along e; of the total drag force F exerted
on the object. The other coefficients shown on the other panels are analogously
obtained by using the appropriate boundary conditions and drag force or torque
shown on the figure.

following surface integrals formulae over .7
Fh=_ / Glu, plnd.7, (2.4)
7

Th = — /yx x (o[u,pln)d.. (2.5)

In (2.4)-(2.5), n is the normal to d.¥ pointing outward to the body (see Fig. 1), and o is the
stress tensor, defined as &/[u, p| = —pI +2ueu], in which I denotes the identity tensor and e[u]
is the rate-of-strain tensor, given by

elu) = % (Vu+(Vu)").

Finding this way the hydrodynamic drag for a given velocity field is called the resistance prob-
lem — as opposed to the mobility problem in which one seeks to find the velocity generated by a
given force and torque profile on the boundary.

2.2. Grand resistance tensor. In addition to Equations (2.4)-(2.5), a linear relationship be-
tween (F" T") and (U,U) can be derived from the linearity of the Stokes equation (see [32,
Chapter 5]):

F" Z-Z" kKcr Z-Z"
T'"|=R[Q-Q"|=|C Q A||Q-Q"|. (2.6)
S —E*~ I A M —E~

The stresslet S, defined as

S = %/ (x-G[u,p]nTnLG[u,p]n-xT)dY,
5%
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appears on the right-hand side of Equation (2.6) and is displayed here for the sake of complete-
ness, though we will not be dealing with it in the following.

The tensor R, called the grand resistance tensor, is symmetric and positive definite. As seen in
Equation (2.6), it may be written as the concatenation of nine tensors, each accounting for one
part of the force-velocity coupling. The second-rank tensors K and C represents the coupling
between hydrodynamic drag force and, respectively, translational and rotational velocity. Sim-
ilarly, C and Q are second-rank tensors coupling hydrodynamic torque with translational and
rotational velocity. Note that, by symmetry of R, K and Q are symmetric and one has CT = C.
Further, I', T, A, and A are third-rank tensors accounting for coupling involving either the shear
part of the background flow or the stresslet, and M is a fourth-rank tensor representing the cou-
pling between the shear and the stresslet, with similar properties deduced from the symmetry of
R.

An important property of the grand resistance tensor is that it is independent of the boundary
conditions associated to a given resistance problem. In other words, for a given viscosity ¢ and
once fixed a system of coordinates, the grand resistance tensor R depends only on the shape of
the object, i.e. its surface .. A change of coordinates or an affine transformation applied to
- modifies the entries of R through standard linear transformations. For that reason, here we
fix a reference frame once and for all and carry the shape optimisation within this frame; which
means in particular that we distinguish shapes that do not overlap in the reference frame, even
if they are in fact identical after an affine transformation.

With these coordinates considerations aside, we can argue that the grand resistance tensor
constitutes an intrinsic characteristic of an object; and all the relevant information about the
hydrodynamic resistance of a certain shape is carried in the finite number of entries in R. While
these entries can be obtained by direct calculation in the case of simple geometries, in most cases
their value must be determined by solving a particular resistance problem and using Equations
(2.4)-(2.5). For example, to determine K;;, one can set U as unit translation along e;, U = e;.
Then Equation (2.6), combined with (2.4), gives

K,-j:Fh-e,-:—/ (O'[u,p]n)~el~dY.
7

The same strategy can be applied for other entries of R, setting appropriate boundary conditions
U and U in the Stokes equation and calculating the appropriate projection of F" or T" along
one of the basis vectors. Figure 1 displays a few illustrative examples. In fact, let us define the
generic quantity Jy as the surface integral

W(F) = — /y(a[u, pln)-Vd.o. 2.7

Then, judicious choices of U, U™ and V', summarised in Table 1, allow to obtain any coefficient
of the grand resistance tensor from formula (2.7).

Of note, for the determination of the coefficients lying on the diagonal of R, another relation
involving power instead of hydrodynamic force is sometimes found [32]. Indeed, the energy
dissipation rate 7 is defined as ) = [, 2ue(u] : e{u]dV. In the case of the translation U of a
rigid body, one also has 1 = F - U. Then, to determine for instance Kj, one sets U = e; as
described above and obtains

KH:/ 2ueljeljd”//.
v
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Kij € eé; 0
C,'j €; XX e; 0
é,'j €; é; XX 0
Qij e; Xx e XXx 0
Fijk 0 e; Xiej
Aijk 0 e XX Xi€j

TABLE 1. Entries of the grand resistance tensor associated to J with respect to
the choice of U,V and U™.

This last expression yields in particular the important property that the diagonal entries of R are
positive. Nonetheless, in the following we will prefer the use of formula (2.7) that conveniently
works for both diagonal and extradiagonal entries.

2.3. Towards a shape optimisation framework. Seeing Jy as a functional depending on the
surface .7 of the object, we will now seek to optimise the shape .’ with Jy as an objective
function; in other terms, we want to optimise one of the parameters accounting for the hydro-
dynamic resistance of the object. As is usually done in shape optimisation, it is relevant in
our framework to add some constraint on the optimisation problem. This is both motivated by
our wish to obtain relevant and non-trivial shapes (e.g. a shape occupying the whole computa-
tional domain), but also to model manufacturing constraints. In this domain, there are multiple
choices. In the following, we will focus on the standard choice: vol(.#’) = V; for some positive
parameter Vj, where vol(.%) stands for the volume of the domain enclosed by ..

The generic resulting shape optimisation problem we will tackle in what follows hence reads:

min Jy () (2.8)

Se ﬁad‘,VO

where 0,4 v, denotes the set of all connected domains . included in a bounded domain % such
that vol(.) = V. Of note, when performing optimisation in practice, we will also occasion-
ally consider maxJy (.#) instead of minJy (.#) in (2.8), which is immaterial to the following
analysis as it amounts to replacing Jy () by —Jy ().

In this work, we do not address the complete theoretical framework of existence or regularity
for minimizers of (2.8). More generally, very few results are available on such questions for
models arising from fluid mechanics, and even more broadly for vector-valued problems.

For general results and techniques on existence and regularity in shape optimisation prob-
lems, we refer for instance to [20, 22, 25, 51]. We also refer to [24], which establishes a general
existence result among quasi-open sets for an extremal spectral problem in fluid mechanics.
We remark that the choice of admissible set and regularity assumptions has a decisive impact
on existence and on the behaviour of numerical algorithms: an overly permissive admissible
class may preclude the existence of a minimizer or lead to singular limit shapes (for example
cusps or self-intersections). For clarity, the numerical examples below are computed under
the implicit assumption of sufficiently regular boundaries; detailed analytical questions about
existence under weaker assumptions are left for future work.
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FIGURE 2. Shape optimisation principle: the surface . of the body is deformed
with respect to a certain vector field @ € ®,4, such that the deformed shape
o = (Id+ 0)(.”) improves the objective, i.e. satisfies J(.7g) < J(.7).

3. ANALYSIS OF THE SHAPE OPTIMISATION PROBLEM

We recall that the Sobolev space W5 (R3 R?) is defined as the set of all vector fields f :
R3 — R3 such that for every multi-index ¢« with |a| < k, the mixed partial derivative D% f
exists in a distributional sense and belongs to L*(IR?,R3). It defines a Banach space, equipped
with the norm

oo = Da = .
1 e ) = 10 e

For an open set ¥ of R3, we let H*(7') denote the Sobolev space of functions v € L?(%)
such that for every multi-index o with || < k, its a-th derivative of the sense of distributions
belongs to L*(¥).

3.1. Shape derivatives and deformation fields. In this section, we recall the notions of do-
main variation and shape gradient that we will rely on to introduce our main result.

Notion of shape derivative. In this section we introduce the basic tools of shape calculus used
throughout the paper. We adopt the Hadamard boundary-variation framework and introduce
the shape derivative, i.e. the first variation of the objective functional induced by a well chosen
infinitesimal deformation of the domain. This object encodes the sensitivity of J to geometric
perturbations and, under the usual regularity hypotheses, admits the classical Hadamard bound-
ary integral representation (see below). Precise admissibility and regularity assumptions on
deformation fields, as well as remainders on the notion of shape differentiability, will be given
in the sequel; for a comprehensive exposition we refer the reader to [2, 26].

In the Hadamard framework, the sensitivity of a shape functional is evaluated by small pertur-
bations of the boundary. For a reference domain . C R?® we thus consider perturbed domains
of the form

Zo = (1d+6)(7),

where 0 : R? — R is a deformation field that is “small” in a suitable norm. Precise admissibility
and regularity hypotheses on 0, as well as the rigorous definition of shape differentiability, are
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given below; here it suffices to note that for such small deformations the map Id 4 0 is a €>-
diffeomorphism and 9.7 remains a €2 hypersurface. The operation .7 — .7 is called a
domain variation.

For practical applications, the main objective is then to construct a suitable vector field 0,
chosen in such a way that .y satisfies the constraints of the problem but also that the ob-
jective function decreases, ideally strictly, but most methods only guarantee the inequality
J(Fy) < J(&). In the terminology of optimisation, such a deformation vector field is called a
descent direction, according to the last inequality. In numerical optimisation, descent methods
are expected to bring the shape towards a local optimum for the objective criterion.

Remark 3.1 (Regularity of admissible deformations). For the purposes of this paper we shall
restrict attention to domains %, C R> of class €. Accordingly, we only consider deforma-
tion (velocity) fields @ € W= (R3;R?). The choice @ € W** is made for convenience and
robustness: by Sobolev embedding we have W3* (%) < C*>!(#), so each component of 8
is twice continuously differentiable with Lipschitz continuous second derivatives. Standard
Cauchy-Lipschitz results for ODEs and flow-regularity porperties then imply that, for |€| suf-
ficiently small, Id + £0 is a €>-diffeomorphism of R3. In particular, it can be shown that, if
07) € €2, then the deformed boundary 9 7; := (Id+£86)(d %) is a €’ hypersurface for small &,
so geometric quantities such as, for instance, the unit normal and the principal curvatures are
well defined and vary continuously with €.

Definition 3.1. Let .’ € 0, y, be a shape and 6 € ©,q. We say that the functional J is (Fréchet)
shape differentiable at .7 if there exists a bounded linear form W3> > @ + (dJ(.¥),0) such
that the following expansion holds:

J(Sg)=J(SL)+(dJ(Y),0)+0(0), where Hg|(|9) —0as @ — 0. (3.1)
W3

In that case, (dJ(.¥), 0) is called shape derivative of .7 in the direction 0.

In particular, the shape derivative of J at . in the direction @ can be computed through the
directional derivative

(@I(),8) = lim L1+ €0)(F)) = /()
’ N0 < :

Deformation vector field. We now make the set of admissible vector fields, ®,4, explicit. Let
5 denote an open bounded subset of R? with a 4”2 boundary and let 8 belong to W3 (R3 R?)
and such that |63~ g3 g3) < 1. Then (Id+ 0)(7p) is an open bounded domain whose bound-
ary is of class 4. Furthermore, Id + 0 is a diffeomorphism and one has (Id 4 0)(d%) =
d((1d+6)(%)).

As a consequence, since one aims at dealing with domains having a ¢ boundary, so that

solutions of the involved PDEs will be understood in a strong sense, we will deal with vector
fields 0 in

Ou = {e e W (R*,R%), 0 = 0in R*\Z and 18|32 g3) < 1}.
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It is notable that, according to Definition 3.1, shape differentiability of J at #{ in direction 6
is equivalent to the standard notion of differentiability at O of the domain-variation mapping

®ad — R
6 — J(ye).

Remark 3.2 (Practical use of shape derivatives). From a computational and numerical point of
view, the expression of the shape derivative in Equation (3.1) suggests that the deformation ®,q
should be chosen such that (dJ(.¥), @) is negative, effectively decreasing the objective criterion
at first order. A classical strategy to achieve this goal (see [2, Chapter 6]) consists in deriving
an explicit and workable expression of the shape derivative as a surface integral of the form

(dI(),8) = /y G(x)0 -nd.7 (), (3.2)

where G is a function called shape gradient of the involved functional. Such a rewriting is in
general possible for generic cost functions (according to the structure theorem, see, e.g., [26,
Section 5.9]), but usually requires some work, and involves the determination of the adjoint of a
linear operator. Once an expression of type (3.2) has been obtained, it is then easy to prescribe
the descent direction such that the shape derivative is negative, by choosing for instance 0 (x) =
—G(x)n, or less straightforward expressions yielding suitable numerical properties; see section
4.1 for further discussion.

3.2. Shape derivative formula for problem (2.8). Before characterizing the shape derivative
of the problem under consideration, we first clarify in what sense the solution of System (2.3)
is defined and what regularity it possesses.

We refer to [19, Chapter 4], and in particular the theorems IV.1.1 and IV.5.1.

Proposition 3.1. Let us assume that .5 is of class €>. Under the compatibility conditions
/ U-ndY+/U°°-ndF:0, (3.3)
54 r

where T’ = 0.9, System (2.3) has a unique solution (u, p) belonging moreover to [H*(V)]?

H' ().

X

Finally, it can be observed that (3.3) is automatically satisfied for the boundary data (U,U*
defined by (2.2) and (2.1). Indeed, by using the divergence theorem, one has

/U“-ndr:/ V.U"dY = 0.
T B

Indeed, the divergence of the cross product vanishes obviously. Regarding the term V - (E®x),
we conclude by using that the trace of E® is equal to zero, since E® is the shear flow component
of U%.

The term [, U - nd.” can be handled similarly.

In order to state our main result, let us introduce the pair (v,q) called adjoint states for the
optimisation problems we will deal with, as the unique solution of the Stokes problem

UAV—Vg=0 in?,
Vev=0 in7,
v=V on.”,
v=_0 on d4A.

(3.4)
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Then, one can express the shape derivative and shape gradient with respect to the solution of
resistance problem (2.3) and adjoint problem (3.4):

Theorem 3.1. Let ¥ € 0,4y, and 0 € Oy. The functional Jy is shape differentiable. Further-
more, for all B € @,q, one has

(dJy(),8) = 2u / V] —eU] : elv]—e[u] : e[V])(8-m)d.”,  (3.5)
and the shape gradient G is therefore given by
G =2u(elu]: e[v]|—e[U]: e[v|—elu] : e[V]).

Remark 3.3. If we assume moreover that U and V satisfy e[U] = e[V] = 0in ¥, which is
trivially true for all the relevant choices of U and V displayed in Table 1 — and more generally
for any linear flow and rigid body motion — then the shape gradient simply becomes G =2 e[u] :
e[v], which is the expression we will use later on when implementing the shape optimisation
algorithm.

Proof of Theorem 3.1. To compute the shape gradient of the functional Jy, which is expressed
as a surface integral, a standard technique (see [26, Chapter 5]) first consists in rewriting it under
volumetric form.

We will make use of the following integration-by-parts identity, well-known in the framework
of fluid mechanics and straightforward to prove by direct calculation:

Lemma 3.1. Let u and v denote two vector fields in H*(?'). Then,
2/ d”//——/V(AV+V(V-V))-ud”//+2/a7/e[v]n-ud5”. (3.6)
Let us multiply the main equation of (2.3) by v. Applying identity (3.6), one sees that
2;1/ e[v]d¥ — /vad”f/ 2/ o[u, pln-vd.7 = 0.

By plugging the boundary conditions into this equality, one has —Jy (.*) =2 [, e[u] : e[v]d¥ .
We are now ready to differentiate this relation with respect to the variations of the domain .7
To this end, we will use the formula for the derivative of integrals on a variable domain, shown
in [26, Theorem 5.2.2].

—(dly (S 2/.1/ u] : e[v](O - n)dY+2,LL/ e[v]d”//+2/.1/ elu] : e[v']d7,
v
(3.7)
where (#/,p’) and (v/,¢’) may be interpreted as characterising the hypothetical behaviour of
the fluid within 4 if the surface . was moving at a speed corresponding to the deformation
0 € ©,4. The quantities (u’, p’) and (V',q’) are thus solutions of the Stokes-like systems

UAuw' —Vp' =0 in v,
V-u' =0 in,
u'=—-V(u—-U)|n(6-n) on.”,
=0 on 0.4,
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and
UAY — Vg =0 in 7,
Vv =0 in ¥,
VvV =—[V(v—V)|n(@-n) on.7,
V=0 on 0.4.

Let us rewrite the two last terms of the sum in (3.7) under a convenient form for algorithmic
issues. From Eq. (3.6), one gets

2;1/ vjdy = u/ AV V(Y ) - ’d7/+2u/ Mn-u'd.s.
Using the relations contained in Egs. (3.4) for v and (3.2) for «’ yields
2u/ elu]:elv]dy = —/ Vq-u'dV—Z[,L/ (6-n)elvln-V(u—U)nd.7,
v 4 7

_ —/yqu’-ndy—Z,u/y(O-n)e[v]n-V(u—U)nd&”.

Since u — U vanishes on .% and is divergence-free, and defining the derivative with respect to
0 _ dxi .
the normal by IpXi = an j» one has

d(u; — U; d(u; — U;
n-Viu—-U)n = (Tj)njni:(T>n,-
= a(ué;iU’):V (u—U)=0 on
Since n-n =1, then
ov,gln-V(u—U)n=2uevjn-V(u—U)n on.7. (3.8)
which leads to
2u/ vjdy = —/y(e-n)o[v,q]n-V(u—U)ndY. (3.9)

Using straightforward calculations as carried in [11, Lemma 1], we can moreover show that
elvin-V(iu—U)n=e|v|: elu—U],
yielding a more symmetrical expression for (3.8):
6v,qln-V(u—U)n=2uelvin-elu—Uln on.”.

It follows that (3.9) can be rewritten as

2u/ d"//——Z[J/ (@-n)efv]:elu—U|d.”. (3.10)
By mimicking the computation above, we obtain similarly

ZIJ/ V|d7Y = —2/4/ (0-n)efu]: elv—V]|d.”. (3.11)
Gathering (3.7), (3.10) and (3.11) yields

—(dly(S),0) = 2/4/ (0-n)(eu]:e[v]—e[v]:elu—U]—elu]:elv—V])d?,

and rearranging the terms finally leads to the expected expression of the shape derivative (3.1)
and concludes the proof of Proposition 3.1. U



388 C. MOREAU, K. ISHIMOTO, Y. PRIVAT

The shape gradient yields a natural first-order descent criterion: if J is shape-differentiable
at . and a deformation field @ satisfies (dJ(.#),0) < 0, then by the expansion (3.1), there
exists & > 0 such that J(.%,g) < J(.¥) for every 0 < € < &. Thus a negative shape derivative
guarantees infinitesimal decrease; the statement is inherently local, and its validity depends on
the smallness of the perturbation in the chosen norm (for instance || - ||y3. or a suitable Sobolev
norm).

In practice, however, naively using the pointwise shape gradient or taking overly large steps
quickly undermines this linearised guarantee. Directions with large high-frequency or tangential
components deliver only marginal first-order gains while amplifying higher-order remainders,
which produces spurious boundary oscillations, loss of ¢’ regularity and mesh deterioration.
Likewise, finite deformations may activate nonlinear effects and violate geometric constraints
(volume, admissible topology or regularity), so that a finite-step update can increase the objec-
tive or leave the admissible class even when the infinitesimal criterion is satisfied.

To obtain stable, convergent algorithms one therefore must control both the direction and
the magnitude of updates. It is common to replace the raw boundary gradient by a smoothed
(Sobolev or H') gradient to suppress high frequencies and enforce regularity of @ and to con-
sider a step-size rule (e.g., line search) so that the linear term dominates the remainder.

Overall, we have shown in this section that the shape derivative for the optimisation of any
entry of the grand resistance tensor comes down to a single formula (3.5), which depends on
the solutions to two appropriately chosen resistance problems. In the next section, we develop
a numerical algorithm to apply this result to the computation of various optimised shapes.

4. NUMERICAL IMPLEMENTATION

4.1. Descent direction. In this section, we focus on how to prescribe the descent direction 0
from (3.5). As evoked in the previous section, the most natural idea consists in choosing 8 =
—Gn, ensuring that a small domain variation in this direction decreases the objective function.
However, this simple choice can yield vector fields that are not smooth enough, typically leading
to numerical instability (see [14]). To address this issue, a classical method consists in using a
variational formulation involving the derivative of 8. More precisely, we want to find a field 8
that satisfies the following identity for all y € H'(R3) such that y = 0 in R3\ %:

LVB:de%:—<dJ(V),w>. @.1)

In particular, evaluating this identity at 8 yields (dJ(.7),0) = — [, |V@|*d¥ <0, guaranteeing
decrease of Jy. Thus, the variational formulation of Equation (4.1) implicitly defines a ‘good’
descent direction. To determine the strong formulation of the PDE solved by 0, let us now
apply Green’s formula on Equation (4.1):

_/ w-Aed7/+/ w-(ven)dy:—/ v-Gnd.?. 4.2)
v 5 5

This identity being valid for all y, we straightforwardly deduce that @ is solution of the Laplace
equation
—A0=0 in?,
6=0 on 04, 4.3)
(VO)-n=—-Gn on.”.
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Note that the dependence of this problem in the criterion Jy and shape derivative is contained
within the boundary condition on ., in which the shape gradient G appears.

It should be noted that, although the variational formulation provides a rigorously defined
descent direction, its practical implementation is more computationally demanding: at each
iteration one must solve the PDE system (4.3) to obtain the deformation field 8. Consequently,
the cost per iteration is significantly higher than that of simpler heuristic or explicit descent
strategies, but the resulting direction is guaranteed to decrease the objective at first order and to
preserve the regularity of the domain.

4.2. Manufacturing constraints. One typically needs to include so-called manufacturing con-
straints on the shape to prevent it from reaching trivial (shrunk to a single point or expanded to
fill the entire fluid domain) or unsuitable (e.g. too thin or too irregular) solutions. As mentioned
at the beginning of section 3.1, in this paper, we chose to focus on the standard constraint of a
constant volume vol(.#’) enclosed by the surface .. Hence, denoting by Vj the volume of the
initial solid, we are considering the constrained optimisation problem

v ()| 4.4
o v(¥) (4.4)

The volume constraint may be enforced with a range of classical optimisation techniques,
among which we will use a so-called “augmented Lagrangian”, adapted from [12, Section 3.7]
and briefly described in this section. The augmented Lagrangian algorithm converts the con-
strained optimisation problem (4.4) into a sequence of unconstrained problems (hereafter in-
dexed by n). Hence, we will be led to solve:

inf Z(.F, 0", b"),
B

where
L(SLA,b)=J(S)—L(vol(S) — V) + g(vol(Y) — VO)Z.

In this definition, the parameter b is a (positive) penalisation factor preventing the equality
constraint ‘vol(.¥’) = V;’ to be violated. The parameter ¢ is a Lagrange multiplier associated
with this constraint.

The principle of the augmented Lagrangian algorithm rests upon the search for a (local)
minimiser S” of S +— Z(S,¢",b") for fixed values of ¢* and b". Given a > 1, these parameters
are updated according to the rule:

ab" if b < buger,

b"  otherwise; (4.3)

=" — b (vol (") = Vg), and BT = {
in other terms, the penalisation parameter b is increased during the first iterations until the value
Drarget 1s reached. This regular increase of b ensures that the domain satisfies the constraint more
and more precisely during the optimisation process.

4.3. Numerical resolution of the PDEs. For the sake of clarity and replicability of the algo-
rithm described below, we provide some additional information about the numerical resolution
of the Stokes and Laplace equations (2.3)-(4.3) required at each step of the deformation.

The surface .7 is first equipped with a triangular surface mesh .7 containing the coordinates
of the nodes, the middle of the edges, the center of the elements, and connectivity matrices.
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The numerical resolution is then carried out by boundary element method [41] using the
BEMLIB Fortran library [43], which allows to determine the force distribution at each point x
of the (discretised) surface .’ by making use of the integral representation

u(x) = [ Glx—x0)f(x0)dx
where G is the Oseen tensor given by

1
G,-j(x) 6ij + Wxixj,

1
[l e
with §;; being the Kronecker delta notation.
Once the force distribution f is known, the rate-of-strain tensors e needed to compute the
shape gradient established in formula (3.2) can be conveniently computed through the integral

expression

eij(x) = /y <m5,~j(x—xo)k— m(x—xo)i(x—xo)j(x—xo)k) fr(x0)d7.

4.4. Shape optimisation algorithm. We now summarise the main steps of the algorithm.

(1) Initialisation.
e Equip the initial shape .#° with a mesh .7, as described above.
e Select initial values for the coefficients /0, b° > 0 of the augmented Lagrangian
algorithm.

(2) Main loop: for n =0, ...
(a) Compute the solution (#", p") to the Stokes system (2.3) on the mesh 7" of .7";
(b) Compute the solution (v*,¢") to the adjoint system (3.4) on the mesh 7" of ..
(c) Compute the L?(.#") shape gradient G" of J, as well as the shape gradient ¢" of
S = L(L, 0 D") given by
0" =G" ="+ D" (vol(S") — V).
(d) Infer a descent direction 8" for .7 — £ (.77, ¢",b") by solving the PDE
—AB0 =0 in 7",
6=0 on 0.4,
(VO)n=—¢"n on ..
on the mesh ",
(e) Find a descent step 7" such that
Z((Id+1t"0") ("), " b") < L(S" 0", b").

(f) Move the vertices of .7 according to " and 0":

X =x+17"0"(x)). (4.6)
e If the resulting mesh is invalid, go back to step 2e, and use a smaller value

for 7",
e Else, the positions (4.6) define the vertices of the new mesh .7 ntl
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FIGURE 3. Visualisation of the shape optimisation algorithm running through
the minimisation of K. (a) Aspect of the shape at four stages of the alrgorithm.
The surface colours on the top row represent the shape gradient value (from red
for a high value for outwards deformation to blue for high inwards deforma-
tion). Note that the initial mesh is already well-prepared from previous runs and
is further refined around iteration 100. (b) Evolution of the values of various
parameters along the optimization process.

(g) If the quality of .7"*! is too low, use a local remeshing.
(h) Update the augmented Lagrangian parameters according to (4.5).

(3) Ending criterion. Stop if
HenHLZ(S") < Estop OF 1 > Npax.- 4.7)

Return ..

5. NUMERICAL RESULTS

In this section, we present various applications of the algorithm with different entries of the
resistance tensor as objective functions.

To assess algorithmic robustness, we performed targeted sensitivity studies. These include:
(1) a mesh-convergence test showing the objective value and key geometric metrics as the mesh
is refined; (i1) multiple runs from different initial shapes (sphere, prolate ellipsoid, and a per-
turbed sphere) to reveal the presence of local minima; and (ii1) a diagnostic of the augmented
Lagrangian multipliers and step-size choice to explain stabilization strategies. The algorithm’s
stopping criteria are made explicit: iteration terminates when either (a) the deformation field
satisfies |0 2(00) < & (b) a prescribed maximum number of iterations is reached, (c) a maxi-
mum number of boundary elements is reached after remeshing (meaning the surface has become
increasingly complex with locally high curvature values), or (d) a geometric intersection (self-
overlap) is detected by the collision test. Where a run ends because of criteria (b), (c) or (d), the
resulting shape should be interpreted as a numerical limit of the deformation procedure rather
than a rigorously computed minimizer.
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(a) max Cy,

oD (b) max K,

(c) max sy,

(f) max Ajy,

FIGURE 4. Optimised shapes obtained for various objective functions and from
different initial shapes. Each series shows, from left to right, the initial shape,
an intermediate iteration and the final shape at algorithm termination. Scale may

vary from one shape to another.
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5.1. Diagonal parameters. First, we consider the classical “minimal drag” problem at con-
stant volume, equivalent to the minimisation of Kj;. The solution to this problem was deter-
mined to be an axisymmetric “rugby-ball”-like shape in [42], and has been found again with
different methods as well as used as an exemplar in the literature later on.

Applying the shape optimization algorithm described in the previous section, we are able
to recover this well-known solution, as shown on Figure 3. Starting from a sphere, the shape
gradient G and deformation field O are represented on the top left plot (a), with the red and blue
colours being respectively associated to positive and negative gradient, meaning inward and
outward associated deformation. As expected, the deformation vector field tends to stretch the
sphere in the x direction in order to decrease its drag. After 10 iterations, the object has taken
the shape of an ellipsoid. Of note, axisymmetry, known as a feature of the optimal shape for
this problem, is remarkably well preserved along the numerical resolution. At 250 iterations,
the ending criterion (4.7) is reached and the algorithm stops, with the resulting shape closely
resembling the known optimal solution [42]. The computed value of the final drag coefficient is
equal to 0.9540, in excellent agreement with the value known to be the one associated to optimal
drag (approx. 0.9542). The small difference is attributable to the relatively coarse meshing and
the oscillations of the volume, which decrease overall precision.

The plots on Figure 3b show the evolution of the criterion Jy (.#) = Kj;, the L?-norm of
the deformation vector field |||, the volume vol(.#) enclosed by . along the simulation, and
the augmented Lagrangian parameters, with a clear numerical convergence being observed. Of
note, the value of K is directly correlated to the volume vol(.”) of the body, making this
particular problem extremely sensitive to volume variations. For that reason, the augmented
Lagrangian algorithm with adaptive step described in the previous section was observed to
induce instability and amplifying volume oscillations, even with fine tuning of the parameters ¢
and b. In case of K1, the algorithm was adapted to make it more robust by empirically setting
a fixed deformation step T and Lagrange multiplier ¢ to obtain stability and convergence. The
parameter values used in figure 3 are T = 1073,0=98.8, by =1, barget = 50 and o = 1.03.

More generally, an adapted choice of augmented Lagrangian parameters is critical to observe
convergence of the algorithm, and is highly dependent on the nature of the problem, therefore
requiring ad hoc tuning for each different objective function.

Now, let us turn to other entries of R. Figure 4 gathers the results for six different objective
functions and various initial shapes. We do not aim for an exhaustive list of initial shapes or
optima, but rather point out a number of interesting observations when applying the optimisation
method described above. We first focus on diagonal entries, namely K;; and Q.

Maximising the translational drag through Ki; has the effect of flattening the initial shape
along the plane perpendicular to the translation direction (Figure 4bl). Shapes minimising
Q11 can be seen on panel 4d. Rotational drag for the initial objects is reduced by turning it
into a body of revolution — note the “quick” disappearance of the 3-fold symmetry in (d1) —
and stretching the shape along the rotation axis, until the highest possible slenderness allowed
before reaching one of the stopping criteria.

These results suggest that max K| and min Q1 are achieved respectively by infinitely flat and
infinitely slender shapes, meaning that the volume constraint alone is not yielding physically
satisfying optima. Additional constraints, for instance on the shape diameter, are warranted for
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further investigation. Note that similar issues arise for extradiagonal parameters like K> and
Q12 (not shown on the figure).

On the other hand, maximising Qp; sharpens the 3-fold symmetry of the initial object in
Figure 4el, creating flat wings offering high rotational resistance. When starting from a sphere
(Figure 4e2), wings emerge as well, with number and size depending on the initial meshing.
This suggests the existence of several local minima and a high sensitivity to initial conditions.

5.2. Extradiagonal parameters. Unlike the diagonal entries K;; and Q;; of the resistance ten-
sor, the extradiagonal entries of the grand resistance tensor are not necessarily positive. In fact,
a mirror symmetry in along an appropriately chosen plane will reverse the sign of extradiagonal
entries. This observation induces that objects possessing certain planar symmetries have null
entries in their resistance tensor; in particular, all the extradiagonal entries of a sphere’s resis-
tance tensor are equal to zero. These properties importantly imply that the minimisation and
maximisation problems are equivalent when choosing an extradiagonal entry as an objective:
one can switch between both by means of an appropriate planar symmetry.

We turn to the optimisation of C1, presented on figure 4a. This parameter accounts for the
coupling between torque and translation; hence optimising it means that we are looking for
the shape that converts best a rotational effect into directional velocity. Helicoidal shapes are
well-known to be capable to achieve this conversion. More generally, Cy; is nonzero only if
the shape possesses some level of chirality. Chirality as measured by Cj; is widespread among
microswimmers, in particular as a possible mean of producing robust directional locomotion
within background flows [55].

Optimisation of Cy; was tackled for a particular class of shapes in [33], in the context of
magnetic helicoidal swimmers. Considering slender shapes parametrised by a one-dimensional
curve, they find that optimal shapes are given by regular helicoidal folding, with additional
considerations on its pitch and radius depending on parameters and on the presence of a head.

Starting from a sphere, we see Figure 4al the emergence of two helicoidal wings, that tend
to sharpen along the simulation. Other initial shapes with 3-fold, 4-fold and 6-fold symmetry
(Figure 4a2,4a3,4a4) similarly become chiral along the optimisation, while keeping their initial
symmetry properties. This suggests again the existence of many local optima for this problem,
although the stopping criterion in each case occurred because of reaching maximal mesh refine-
ment. Finer handling of the narrow parts of the helix wings may allow to carry on the shape
optimisation process and we can conjecture further folding of the shapes into long screw-like
shapes.

Finally, we present results, perhaps less intuitive, related to shear-force and shear-torque cou-
pling, namely I'371 and Asj1, on Figure 4c¢ and 4f. For shear-force coupling, a two-wing shape
emerges from an initial sphere, with 2-fold rotational symmetry along an axis perpendicular to
the shear plane. The wings point to the same direction relative to the shear plane, offering high
resistance to the flow in the perpendicular direction. Similar interpretation can be carried for
shear-torque coupling, regardless of initial shapes considered (f1,{2).

6. DISCUSSION AND PERSPECTIVES

In this paper, we have addressed the problem of optimal shapes for the resistance problem in a
Stokes flow. Considering the entries of the grand resistance tensor as objective shape functionals
to optimise, and using the framework of Hadamard boundary variation, we derived a general
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formula for the shape gradient, allowing to define the best deformation to apply to any given
shape. While this shape optimisation framework is mathematically standard, its usage in the
context of microhydrodynamics is limited, mostly circumscribed to the work of [33], and the
theoretical results and numerical scheme that we presented here provide a much higher level of
generality, both concerning the admissible shapes and the range of objective functions.

After validating the numerical capabilities of the shape optimisation algorithm by comparing
the optimal shape for K7 to the celebrated result of [42], we investigated the shapes minimising
and maximising entries of the resistance tensor. The numerical results reveal new insights on
optimal hydrodynamic resistance. In particular, we obtained an optimal profile for the torque
drag (Q11), observed the emergence of chiral, helicoidal structure maximising the force/rotation
coupling (C;1), and other intriguing shapes generated when minimising extradiagonal entries.
In the context of low-Reynolds number hydrodynamics, these preliminary results may help
understand and refine some of the the criteria that are believed to govern the morphology of
microscopic bodies [53, 58].

With most of the optimisation problems considered here being highly unconstrained and
nonconvex, we can assume that many local extrema exist, and that a range of different re-
sults is likely to be observed for different initial shapes. As discussed above, finer handling
of the surface mesh to deal with locally high curvature, sharp edges and cusps, and additional
manufacturing constraints to prevent self-overlapping and take other criteria into account, are
warranted to pursue this broader exploration. Furthermore, seeing as some of the shapes in
figure 4 appear to take a torus-like profile from an initial spherical shape, it might be interesting
to allow topological modifications of the shape along the optimisation process, which requires
different approaches such as the level set method [2].

Furthermore, the computational structure of the optimisation problem is readily adaptable to
more complex objective criteria defined as functions of entries of the grand resistance tensor,
which allows to tackle relevant quantities for various applications. A prototypical example
would be to seek extremal values for the Bretherton parameter B [8], a geometrical parameter for
the renowned Jeffery equations [30] which describe the behaviour of an axisymmetric object in
a shear flow. As noted by [29], B can be expressed as a rational function of seven distinct entries
of the grand resistance tensor. For spheroids, B lies between —1 and 1, but nothing theoretically
forbids it from being greater than 1 or smaller than —1; yet exhibiting realistic shapes achieving
it is notoriously difficult [8, 48]. Further, another geometrical parameter C is introduced for
chiral helicoidal particles in [28] This shape constant, now termed as the Ishimoto parameter
[39], characterises the level of chirality and is useful to study bacterial motility in flow [31, 38]
More generally, optimisation of entries the mobility tensor, which is defined as the inverse of
the resistance tensor, may be relevant in swimming-related applications.

Beyond these refinements, several natural extensions emerge from our study. First, a quanti-
tative characterisation of the objective landscape, e.g. the number and depth of local minima and
the curvature around optima, would help assess the stability of computed designs and motivate
multi-start strategies. Second, deriving explicit necessary optimality conditions on the bound-
ary (from the shape derivative) would supply analytical checks for the numerically obtained
candidates. These directions suggest concrete paths for future analytical and computational
work.
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Finally, various refinements of the Stokes problem 2.3 can be fathomed to address other open
problems in microhydrodynamics and microswimming, in the lines of recent literature on the
topic [6, 21, 35]. Dirichlet boundary conditions on the object surface, considered in this paper
as well as in a vast part of the literature, may fail to properly describe the fluid friction arising
at small scale, notably when dealing with complex biological surfaces. Nonstandard boundary
conditions such as the Navier conditions [4] are then warranted. Interestingly, the optimal drag
problem for a rigid body, although well resolved since long for Dirichlet conditions [42], is still
open for Navier conditions.

Seeking to further connect shape optimisation to efficient swimming at microscale, one could
also include some level of deformability of the object, which requires to couple the Stokes equa-
tion with an elasticity problem. A simple model in this spirit was recently introduced in the con-
text of shape optimisation in [10]. Another problem with biological relevance it the optimisation
of hydrodynamic resistance when interacting with a more or less complex environment, such as
a neigbouring wall or a channel, which is known to change locomotion strategies for microor-
ganisms [16]; overall, a dynamical, environment-sensitive shape optimisation study stemming
from this paper’s framework could provide key insights on microswimming and microrobot
design.
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