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Abstract. Management decisions today can be supported by a large amount of data. To enable the effec-
tive use of the data, proper mathematical models are required, which can help one explore patterns that
are useful for decision makers. If linear programming (LP) and related sensitivity analysis take advantage
of increased computational power and the extended possibilities of informatics, then LP models might
usefully serve as tools for data analytic. This paper demonstrates how parametric analysis for the en-
tire feasible region of a right-hand side parameter or an objective function coefficient can be performed.
Parameterised LPs are defined for the calculations, and techniques for speeding up the calculations are
recommended. The proposed method is implemented in an AIMMS environment and illustrated with a
production planning problem. The required computation time for the calculation is also analysed with
the help of several size benchmark LP models. The extended LP sensitivity information presented in
this paper clarifies the consequences of parameter changes and may lead to better management decisions
whenever scarce resources must be allocated to alternatives and LP models are applied.
Keywords. Linear programming; Management decision; Parametric analyses; Production planning
problem; Sensitivity analysis.
2020 Mathematics Subject Classification. 90C31, 90C05.

1. INTRODUCTION

Business analytics (BA) helps managers to discover trends, patterns, and relationships by
means of processing a large amount of collected data. However, mathematical models are re-
quired to explore and interpret information, relationships and patterns hidden in datasets. Proper
mathematical models may lead to better management decisions and deliver a competitive edge,
according to Davenport [1]. A problem that managers often face is how to allocate scarce
resources to different operational possibilities, and many of the related problems can be formu-
lated as linear programming (LP) models [2]. Practical applications of LP models date back to
1952 [3] and have been widely used since then [4, 5, 6, 7]. Recent applications of LP models to
support management decision making include, for example, inventory routing problems under
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Received 25 April 2025; Accepted 3 September 2025; Published online 24 November 2025.

c©2025 Journal of Applied and Numerical Optimization

359



360 T. KOLTAI, I. DIMÉNY

uncertainty [8], reservoir management [9] or optimizing the integration of hydroelectric and
renewable energy sources [10].

Over the past decades, the computation time to solve an LP model has dramatically decreased
due to the development of optimisation software [11] and algorithms to solve LP problems [12].
Today even large-scale practical problems can be solved easily.

Determining the optimal allocation of limited resources is just one step within the decision-
making process. In practical cases, some values of the model parameters like transportation
costs, material costs, or order volumes, capacities, etc. are based on approximations, expec-
tations, forecasts and are thus subject to uncertainty [13]. Should there be deviation from the
originally assumed value of some parameters, the optimality of the solution might be lost, or
the solution could become unfeasible. Sensitivity analyses provide information about the effect
of such changes.

LP sensitivity analysis is a post-optimisation process, and no insight is required about the
nature of the uncertainty to perform it. Multiple approaches to LP sensitivity analysis exist,
like ordinary sensitivity analysis [14], the tolerance approach [15], the global approach [16],
and the global tolerance approach [17]. Recent advances of LP sensitivity analysis include a
new computationally efficient geometric approach developed by Kaci and Radjef [18] and the
global sensitivity analysis using a statistical tolerance approach developed by Curry et al. [19].
The application of LP sensitivity analysis is present in diverse industries. For example, Abbas
and Ghayyib [20] demonstrate the use of sensitivity analysis in the oil transport sector, where
changing parameters in LP models directly influence optimal solutions. Mollaeivaneghi et al.
[21] apply parametric optimization in energy systems and demonstrate how the uncertainty of
fuel costs impacts decision-making.

Many of the available tools to solve LP problems implement a simplex method and provide
sensitivity information pertaining to the optimal solution. LP sensitivity analysis yields validity
ranges for the objective value coefficients (OFC) and right-hand-side parameters (RHS). Even
if a non-simplex-based algorithm is used, with some extra modelling effort the OFC and RHS
sensitivity information can easily be obtained [22].

There are cases when the resulting sensitivity ranges are too tight to give the decision-maker
confidence, and information about a wider range is required. Three similar LP problems pre-
sented in Dimény and Koltai [23] illustrate what can happen when sensitivity ranges are too
tight. The problems presented have identical optimum, shadow price, and validity ranges, but
the effects of increasing one of the RHS parameters beyond its validity interval are different:
the problem becomes unfeasible; the slope of the objective value function remains almost un-
changed; and the slope of the objective value function changes significantly.

In other cases, when the problem is degenerate and the optimal solution of the primal prob-
lem or the dual problem is not unique, the resulting sensitivity information can be misleading.
The incorrect interpretation of sensitivity information may result in unfavourable management
decisions (see, e.g., [24, 25]).

The objective of this paper is to complete traditional LP results with parametric analysis ex-
tended for the whole feasible range of any RHS and OFC parameter. The calculation framework
and all the necessary LP models are defined, and techniques to speed up the calculation are rec-
ommended. The implementation of the calculation in AIMMS environment shows that these
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results can easily be obtained in practice. Test run on several models are also provided and the
computational time of several size problems are provided and analysed.

The paper is structured as follows. Section 2 shows why sensitivity results for management
decision-making is difficult to obtain in case of degenerate LP solutions, and how this problem
is discussed in the literature. In Section 3, the analysis of the objective value function is rec-
ommended to cope with the problem described in Section 2, and a methodology is presented
for mapping this function across the whole feasible range of the parameter examined. Section
4 presents a practical implementation for determining the objective value function and some
examples illustrate the potential uses of this information. In Section 6, the computational per-
formance of the proposed method is analysed. Finally, the conclusions of the presented research
are summarized in Section 7.

2. BASIC CONCEPTS OF LP SENSITIVITY ANALYSES UNDER DEGENERACY

All the notations used in this paper are listed in Table 1. Let us consider the max
(
cT x
)
,

Ax ≤ b, x ≥ 0 form of a LP [26] where the elements of the c OFC vector are c1,c2, . . . ,cI and
the elements of the b RHS parameters vector are b1,b2, . . . ,bJ .

Table 2 summarizes the basic LP problems used in the paper. The first row of Table 2 contains
three LP problems. LP1 is the standard form of a primal linear programming problem, LP2 is a
perturbed primal problem, where δ can take positive and negative values, and LP3 is the stan-
dard form of the dual linear programming problem. The optimal solution of the dual problem
defines the marginal change of the objective function when a RHS parameter changes. The
shadow price of a constraint is the change of the objective function when the RHS parameter of
the constraint is increased with 1 unit.

LP sensitivity analysis provides an insight into how the optimal solution is altered when
some parameters of the model are modified and defines validity ranges of the primal and dual
optimum when OFC or RHS parameters of the model are changed. Within the validity range of
an OFC parameter the primal optimal solution will be the same. Within the validity range of a
RHS parameter the dual optimal solution will be the same.

Problems and possible solutions pertaining to the managerial interpretation of LP sensitivity
analysis have an extensive literature. Evans and Baker [24] provided examples to demonstrate
the possible effects of incorrect sensitivity information interpretation. Aucamp and Steinberg
[27] showed that shadow prices are not necessarily equal to the dual variables except when
the primal problem is non-degenerate. They provide an alternative definition for the shadow
price. Akgül [28] introduced the positive and the negative shadow prices to differentiate the
effect of the increase and the decrease of a parameter value. Gal [29] conducted an extensive
survey on the managerial interpretation of shadow prices. Many other papers demonstrate that
when sensitivity analysis results are misinterpreted, the related management decisions result in
adverse financial results and/or improper operations (see, e.g., [25, 30]). The contradiction be-
tween the incorrect managerial decisions and the mathematically correct sensitivity information
was resolved by differentiating between the mathematical and the managerial interpretation of
sensitivity information by Koltai and Terlaky [31].

Sensitivity information can be classified in three types for which Hadigheh and Terlaky [32]
gave descriptive names:
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Type I (Basis Invariancy) determines those values of some RHS or OFC parameters for
which a given optimal basis remains optimal. This is the traditional way of understanding
sensitivity analysis.

Type II (Support Set Invariancy) sensitivity determines invariant support set ranges of some
parameters so that variables with a zero value in the given optimal solution remain zero and
variables with a positive value remains positive in the optimal solution of the perturbed problem.

Type III sensitivity (Optimal Partition Invariancy) returns ranges of some parameters for
which the set of always-active constraints with respect to the primal optimal face and the dual
optimal face is invariant.

Notation Description
A Coefficient matrix of the LP problem
b Right-hand side parameters vector with elements b j (i = 1, . . . ,J)
c Objective function coefficient vector with elements ci (i = 1, . . . , I)
x Decision variable vector of the primal problem with elements xi (i = 1, . . . , I)
x∗ Optimal solution of the primal problem with elements x∗i (i = 1, . . . , I)
y Decision variable vector of the dual problem with elements y j ( j = 1, . . . ,J)
y∗ Optimal solution of the dual problem with elements y∗j ( j = 1, . . . ,J)
OF∗ Optimal value of the objective function
ei Unit vector with I elements, with e j = 1 and ek = 0 for all k 6= j
e j Unit vector with J elements, with ei = 1 and ek = 0 for all k 6= i
δ Perturbation parameter of an RHS parameter when Type III ranges are calculated
β Decision variable when calculating the maximum feasible increase/decrease of an RHS

parameter
β
+
j Maximum feasible increase pertaining to the RHS parameter of constraint j

β
−
j Maximum feasible decrease pertaining to the RHS parameter of constraint j

ξ j Change of RHS parameter bi
λ Binary direction parameter: 1 means increase, while -1 means decrease
LP(υ ← ν) LP problem resulting from setting the value of parameter λ to ν

OF∗(υ ← ν) Optimal value of the LP(λ ← ν) problem
Ik
s Start point of the linearity interval k

Ik
e End point of the linearity interval k

Ik
rate Rate of change of the objective function in the linearity interval k

bk
j Value of b j when calculating step k linearity interval

ck
i Value of ci when calculating step k linearity interval

SP+
j

(
bk

j

)
Right shadow prices of the modified LP(b j← bk

j) problem

SP−j (b
k
j) Left shadow prices of the modified LP(b j← bk

j) problem

ξ
+
j

(
bk

j

)
Feasible increase of bk

j when calculating Type III ranges in step k

ξ
−
j (b

k
j) Feasible decrease of bk

j when calculating Type III ranges in step k

γ
+
i

(
c
′
)

Maximal increase allowed for the c
′

objective function coefficient of variable i to re-
main within the Type III invariancy interval for the modified LP

(
ci← c

′
)

problem.

γ
−
i

(
c
′
)

Maximal decrease allowed for the c
′

objective function coefficient of variable i to re-
main within the Type III invariancy interval for the modified LP

(
ci← c

′
)

problem.
pi Rolled steel product i (i = 1,2,3)
m j Production line j ( j = 1,2,3)
xpim j Decision variable: produced quantity of product pi on production line m j

TABLE 1. Notations
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Primal LP
Problem (LP1)

Perturbed Primal LP
Problem (LP2)

Dual LP
Problem (LP3)

Ax≤ b Ax≤ b+δe j AT y≥ c

x≥ 0 x≥ 0 y≥ 0

max(cT x) max(cT x) min(bT y)
LP to calculate max.

feasible change of
RHS parameter (LP4)

LP to calculate Type III
intervals pertaining to
RHS Parameter (LP5)

LP to calculate max.
feasible Change of

OFC Parameter (LP6)
Ax≤ b+λβei Ax≤ b+δe j +λξ je j AT y≥ c+λγiei

β ≥ 0 cT x = OF∗+λξ jy∗i bT y = OF∗+λγix∗i
x≥ 0 ξ j ≥ 0 γi ≥ 0

max(β ) max(ξ j) max(γi)

TABLE 2. Summary of LP models used

When solving non-degenerate cases, the three types of sensitivities ranges are identical. How-
ever, in degenerate cases, LP solvers could provide different sensitivity information, depending
on the optimal basis found. Table 3 contains an example of an LP problem to illustrate the
different sensitivity ranges.

The problem in Table 3 is degenerate, and multiple optimal solutions exist. The optimal basic
solution found by CPLEX was P1(1,1,0), variables x1 and x2 are basic variables and constraints
(1), (5), (6), and (7) are active.

x1 + x2 + x3 ≤ 2 (1)

x1 ≤ 2 (2)

x2 ≤ 2 (3)

x3 ≤ 2 (4)

x1 ≥ 1 (5)

x2 ≥ 1 (6)

x3 ≥ 0 (7)

max(x1 + x2 + x3)

TABLE 3. Illustration LP problem (LP7)

Figure 1 shows the different types of sensitivity ranges pertaining to the RHS parameter of
constraint 1 (b1). The shadow price, that is the slope of the objective value function is 1.

The Type I range calculated by CPLEX is the [2,3] interval. The Type II range is the [2,4]
interval and can be obtained intuitively. The maximum and minimum values of the RHS pa-
rameter must be determined by finding an optimal solution with x1 > 0, x2 > 0 and x3 = 0.
Decreasing the b1 parameter value makes the problem unfeasible, while for b1 > 4 the value of
x3 needs to be strictly positive.
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The type III range is the [2,6] interval and can also be calculated intuitively since the value
of b1 also determines the value of the objective value function for b1 ≤ 6.

FIGURE 1. Objective value function pertaining to the b1 RHS parameter of the
LP7 problem

For this example, Cplex 20 and Gurobi 9.1 returns the [2,3] interval, while XA 16 returns
the [2,4] interval as the RHS sensitivity range. It can also be seen from this example that com-
mercial solvers provide different type I sensitivity information when the model is degenerate
depending on the optimal solution found.

The information provided by solvers is of great value in many cases but type II and type III
sensitivity information are far more significant for managerial decisions.

Type II sensitivity information is particularly important in case of assignment problems [33]
and transportation problems [34]. The invariant support set preserves the shipping pattern but
allows the change of loads on the transportation routes [35].

Type III sensitivity is required when the cost of switching between active variables is less
significant as is often the case in production planning problems.

Adler and Monteiro [36] demonstrated that the rate of change of the objective value function
remains unchanged within the Type III range and is either the interval between two consecutive
breakpoints of the related objective value function or consists of a breakpoint itself. Conse-
quently, type III range of some parameters depends only on the problem data and, from a prac-
tical point of view can be calculated using additional LPs [37]. The intervals pertaining to type
III ranges are sometimes referred to as the linearity intervals, and the objective value function
could be constructed by connecting the consecutive linearity intervals. A possible algorithm for
this is presented by Adler and Monteiro [36] for the RHS parameters using the traditional way
for calculating linearity intervals.

The additional LPs required to calculate Type III sensitivity intervals are presented in the
second row of Table 2. LP5 is used to calculate type III intervals pertaining to a RHS parameter,
and LP6 is used to calculate type III interval pertaining to an OFC parameter. Depending on
the value of λ the result of LP5, LP6 will calculate the maximal increase (λ=1) or the maximal
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decrease (λ=-1). The optimal solution of the primal problem defines the optimal allocation of
the limited resources.

Analysing the effect of changes of OFC and RHS parameters for the whole feasible/bounded
region is now possible due to the easy accessibility of high-capacity computers and the devel-
opment of computational methods. In this way, managers may obtain a comprehensive picture
about the effects of the change of some critical parameters on the optimal objective value. How-
ever, algorithms are needed to perform the required calculations systematically and efficiently,
and a proper user interface is also needed to facilitate management decision making based on
these new results.

3. ALGORITHM TO CALCULATE THE OBJECTIVE VALUE FUNCTION PERTAINING TO A

RHS PARAMETER

Changing the RHS parameter in one of the directions will decrease the feasible region until
the model becomes unfeasible. Therefore, as a first step, the maximal feasible increase and
decrease pertaining to an RHS parameter must be calculated. One of these two values will be
finite while the other will be infinite, creating this way a final infinite linearity interval.

For each constraint j, the maximal increases can be determined by solving LP4 problem
presented in Table 2 with the value of λ=1.The maximal decrease can be calculated using the
same model with λ =-1. The difference between these additional LPs and the original LP
consists in using constraint j as an objective value function instead of being a constraint.

The linearity intervals defined by the type III sensitivity ranges can be calculated using the
LP6 model presented in Table 2. These intervals can be used to create the objective value
function pertaining to a RHS parameter by connecting the consecutive linearity intervals (Ik,k =
1..K).

Under conditions of degeneracy, the effect of the increase and decrease of the RHS elements
can be different. The LP5 model of Table 2 with a properly set perturbation (δ ) can be used to
calculate the linearity intervals pertaining to the increase (δ>0) and decrease (δ<0) of any RHS
parameter. An improperly set perturbation size could lead to numerical errors or an erroneous
validity range [37].

Figure 2 shows the objective value function pertaining to an RHS parameter. If the pertur-
bation (δ ) is larger than the validity range pertaining to the shadow price at the original value
of the RHS parameter (see b2 in the figure), the calculated Type III interval is erroneous. In
this case, the original RHS parameter value (b) is outside the validity range of the shadow price
pertaining to the perturbed primal LP problem.

In any practical situation, decision makers can set the perturbation size by defining the min-
imum level of change that is practically acceptable, thereby avoiding the problem of overly
small or overly large perturbation. However, to create a general solution that calculates Type
III sensitivity information the process of setting the perturbation must be automatic. For that,
first the value of δ must be set such way to prevent numerical errors. Next, to check whether
the problem of setting an excessively large perturbation value exists, the type I validity range of
the perturbed LP5 must be calculated. If the original value of the RHS parameter is inside the
type I interval of the perturbed LP problem, then no further steps are required. If the original
value of the RHS parameter is outside the type I interval a new smaller perturbation size must
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be calculated. These steps must be repeated until the original RHS parameter value is inside the
type I validity interval of the shadow price of the perturbed LP [37].

FIGURE 2. Objective value function pertaining to the b right-hand-side element

The δ2 =(δ1−ξ1)/2 formula can be used to calculate a new perturbation size, where δ2 is the
size of the new perturbation, δ1 is the size of the previous perturbation and ξ1 is the difference
between the original perturbation and the edge of the left validity interval of the perturbed dual
LP.

Figure 3 presents the situation when the original value of the RHS parameter ( b1) is outside
the type I interval of the perturbed problem.

FIGURE 3. Calculation of proper perturbation size
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When performing a parametric analysis of an LP problem, the calculation time also needs to
be considered. The calculation time can be significantly decreased by performing the calcula-
tion only for relevant parameters, since many of the constraints and parameters of a real-life LP
problem are just technical. Calculation time can be further decreased by taking advantage of
initialising solver runs. LP5 model is used to calculate Type III sensitivity ranges of RHS pa-
rameters. Using solution x∗ of the LP2 problem, the (x∗,0) feasible solution of the LP5 model
can be constructed [37]. When the LP5 solver run was initialised with the (x∗,0) initial solu-
tion, an average 20 % decrease in the computational time was seen during the computational
experiments presented in section 7 compared with running without the warm start.

To calculate the consecutive linearity intervals, the value of the objective function at the start
(Ik

s ) and end (Ik
e ) points and the constant rate of change of the objective value function within

the interval (Ik
rate) needs to be calculated for each interval Ik. When the original LP is feasible,

the Ikintervals can be calculated starting from the original RHS parameter separately for both
increasing and decreasing directions, until the maximum feasible change is reached.

Collecting increasing
RHS intervals

Collecting decreasing
RHS intervals

k := 0 k := 0

calculate β
+
j calculate β

−
j

repeat repeat

bk
j :=

{
b j, k = 0
Ik−1
e , k ≥ 1

bk
j :=

{
b j, k = 0
Ik−1
s , k ≥ 1

solve LP(b j← bk
j) solve LP(b j← bk

j)

calculate ξ
+
j (b

k
j) calculate ξ

−
j (b

k
j)

Ik
s := bk

j Ik
e := bk

j

Ik
e := Ik

s +ξ
+
j (b

k
j) Ik

s := Ik
e −ξ

−
j (b

k
j)

Ik
rate := SP+

j (b
k
j) Ik

rate := SP−j (b
k
j)

until (Ik
e = β

+
j or ξ

+
j (b

k
j) = ∞) until (Ik

e = β
−
j or ξ

−
j (b

k
j) = ∞)

TABLE 4. Algorithm for calculating consecutive RHS intervals

The pseudo-code for calculating the subsequent intervals is presented in Table 4. The first
column presents the algorithm for collecting increasing RHS intervals, while the second column
presents the algorithm for collecting decreasing intervals.

In the initial step the maximal feasible modification of the RHS parameter is calculated using
LP5 for increasing intervals and LP6 for decreasing intervals.

The following steps are repeated until the calculated maximal feasible modification is reached,
or the maximum increase/decrease is infinite:

• solve the modified LP(b j← bk
j) problem,

• calculate Type III ranges ξ
+
j

(
bk

j

)
and ξ

−
j

(
bk

j

)
using LP3,
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• collect interval data:
(
bk

j, I
k
s +ξ

+
j
(
bk

j
))

and SP+ for increasing intervals,
(
Ik
e−ξ

−
j
(
bk

j
)
,bk

j
)

and SP− for decreasing intervals,
• set bk+1

j = Ik−1
e for increasing intervals and bk+1

j = Ik−1
s for decreasing intervals.

4. ALGORITHM FOR CALCULATING THE OBJECTIVE VALUE FUNCTION PERTAINING TO

AN OFC PARAMETER

The values of the OFC parameters do not influence the feasibility of the problem. Con-
sequently, the modification of an OFC parameter does not influence the feasibility of the LP
problem, either. However, after a certain increase or decrease in the OFC value the previously
bounded LP problem may become unbounded. LP6 described in Table 2 can be used to cal-
culate Type III sensitivity intervals where γi are the decision variables used to calculate the
maximal decrease/increase allowed for the ci OFC parameter.

Type III sensitivity analysis provides information about the invariance of the rate of change
of the objective value function. The pseudo-code for calculating subsequent OFC intervals, is
presented in Table 5.

Algorithm to collect increasing
OFC intervals

Algorithm to collect decreasing
OFC intervals

k := 0 k := 0

repeat repeat

ck
i :=

{
ci, k = 0
Ik−1
e , k ≥ 1

ck
i :=

{
ci, k = 0
Ik−1
s , k ≥ 1

solve LP(ci← ck
i ) solve LP(ci← ck

i )

calculate γ
+
i (ck

i ) calculate γ
−
i (ck

i )

Ik
s := ck

i Ik
s := Ik

e − γ
−
i (ck

i )

Ik
e := Ik

s + γ
+
i (ck

i ) Ik
e := ck

i

Ik
rate := xi Ik

rate := xi

until (γk
i = ∞) until (γk

i = ∞)

TABLE 5. Algorithm for calculating consecutive OFC intervals

The first column presents the algorithm for collecting increasing OFC intervals, while the
second column presents the algorithm for collecting decreasing intervals.

When an OFC parameter (ci) changes, the slope of the objective value function is equal to the
value of the variable i in the optimal solution (xi) of the modified LP(ci← ck

i ) problem where
ck

i is the OFC parameter pertaining to variable i when calculating interval k.
When the maximum increase/decrease is finite, the following steps have to be followed:

• solve the modified LP(ci← ck
i ) problem,

• calculate type III range for the required direction (γ+i
(
ck

i
)

and γ
−
i
(
ck

i
)

respectively),
• collect interval data and optimal value:
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ck

i , I
k
s + γ

+
i
(
ck

i
))

for increasing intervals and
(
Ik
e − γ

−
i
(
ck

i
)
,ck

i
)

for decreasing
intervals and Ik

rate = xi,

• set ck+1
i = Ik

e for increasing intervals and ck+1
i = Ik

s for decreasing intervals.

In a manner analogous to the calculation of RHS sensitivity intervals, the computation time
pertaining to the calculation of the OFC parameters can be decreased by taking advantage of
the warm start functionality of the solver. The vector y′ = (y∗,0) is a feasible solution for the
additional LP problems pertaining to the calculation of the Type III sensitivity ranges of OFC
parameters (4), where y∗ is the optimal solution of the dual LP problem LP3. By instructing
the solver to initialise the solver run using this information, the calculation of the additional LP
problems can be accelerated.

5. PRACTICAL IMPLEMENTATION OBJECTIVE VALUE FUNCTION MAPPING USING

AIMMS

For the application of the suggested parametric analysis and to visualise the parametric objec-
tive value function of the LP models defined in the previous sections, the algorithm to connect
the solver sessions needs to be implemented and a user interface needs to be created to enable
the user to input information and visualise the results. The required computational platform will
be implemented with AIMMS. AIMMS is a rapid model building and deployment platform that
fulfils all three requirements with a solid mathematical modelling environment, a wide range
of available solvers and easy-to-use user interface editor. AIMMS is often used for solving
commercial optimisation problems in various industries [38].

For the practical implementation, AIMMS version 4.42 was used to create the required math-
ematical models, implement the algorithms, and create the necessary user interface. CPLEX
version 12.7.1 was applied to solve the generated LP models and obtain type I sensitivity in-
formation. The warm start functionality of CPLEX can be instructed to search for an adequate
initial solution defined in Section 3 and 4. Using this option, the calculation time of type III
sensitivity ranges can be significantly decreased.

AIMMS own structural language helps in creation the required procedures to calculate the
type III ranges for all the parameters.

A part of the constraints and variables used in an LP model are auxiliary and the objective
value function pertaining to the RHS parameter of these constraint must be ignored in the calcu-
lation. Similarly, the OFC pertaining to an auxiliary variable doesn’t contains relevant manage-
rial information. The related sensitivity calculations can also be spared. The separation between
the parameters which needs detailed investigation cannot be done automatically. With the use
of the built-in user interface editor, a user-friendly platform that can help the decision-makers
in selecting parameters of the model that have practical relevance.

The following parameterized models are implemented in AIMMS:

• general parameterised linear program to solve the LP(ci← ck
i ) and the LP(b j← bk

j)

problems,
• modified parameterised linear program to calculate the maximal feasible increase/decrease

of the RHS parameters,
• parameterised linear program to calculate the type III ranges of the RHS parameters,

and OFC parameters.
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The algorithms presented in Table 4 and 5 are implemented to collect all type III intervals. The
algorithm determines the data pertaining to the intervals, which then are visualised in various
AIMMS pages using both tables and charts with the help of the build-in user interface editor.
One page is created for defining the input data and the solution of the LP problem. Two pages
are created to present the RHS and OFC interval data in table and chart format.

6. ILLUSTRATION OF THE CALCULATION AND VISUALISATION OF THE RESULTS

For illustrative purposes, a simple LP model taken from Schrage [39] is presented. In this
problem the weekly production plan of rolled steel manufacturing must be determined. In the
example, rolled steel is produced in three different thicknesses (p1, p2, p3) using three produc-
tion lines (m1,m2,m3) with the following restrictions:

• product p1 can be produced only on production line m1,
• product p2 can be produced on any production line,
• product p3 can be produced only on production lines m2 and m3,
• production lines have a working capacity set to 35 hours/week,
• the three production lines also differ in speed and production costs,
• the contracted demand must be satisfied for each product,
• the conveyor system which transports the rolls has a capacity 600 tons for the given

period.
Let xpim j denote the produced quantity of product pi on production line m j.
The objective is to maximize revenue. The objective function coefficients are calculated

based on the contribution margin of the product and the speed and cost of the production line.

Variable xp1m1 xp2m1 xp2m2 xp2m3 xp3m2 xp3m3 RHS notation
Constraint
Production (m1) 0.111 0.111 ≤ 35 b1

Production (m2) 0.1667 ≤ 35 b2

Production (m3) 0.222 0.222 ≤ 35 b3

Conveyor 1 1 1 1 1 1 ≤ 600 b4

Demand (p1) 1 ≥ 218 b5

Demand (p2) 1 ≥ 114 b6

Demand (p3) 1 1 ≥ 111 b7

OFC 15.889 17.889 16.5 15.222 17.5 16.222
Notation c1 c2 c3 c4 c5 c6

TABLE 6. LP formulation of the rolled steel production problem

Table 6 summarizes the parameters and the variables of the LP problem. The LP formu-
lated to solve the steel production problem has multiple optimal solutions, hence the problem
is degenerate and type I sensitivity ranges calculated by LP solvers depend on what solution is
found. At the optimal solution the maximum revenue is 10074.47 USD and can be achieved
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with multiple production quantities. Table 8 contains two optimal solutions, but there are many
optimums. Since p2 can be produced alternatively on m2 and m3 with the same cost conse-
quences any part of the production quantity of xp2m2 can be transferred from m2 to m3, but in
this case the other production quantities of m2 and m3 must be modified.

Two extreme solutions pertaining to xp2m2 = 0 and to xp2m2 = 17 are summarised in Table 7.

Variable xp1m1 xp2m1 xp2m2 xp2m3 xp3m2 xp3m3

Solution 1 218 97 17 0 193 75
Solution 2 218 97 0 17 210 58

TABLE 7. Possible optimal solutions of the steel production problem

Since the problem has several optimal solutions, the problem is dual degenerate. However,
the difficulties pertaining to degeneracy are not relevant, since the shadow price is determined
for the whole feasible range.

FIGURE 4. Objective value function pertaining to the production capacity of
production line m1

Figure 4 contains the objective value function pertaining to the production capacity of pro-
duction line m1. Point P1 marks the initial value of the related RHS parameter. The connected
lines show the linearity intervals of the objective value function. The figure indicates that if
capacity drops below 24 tons, the problem becomes unfeasible and increasing the available
capacity from 54 tons upward has no effect on the value of the objective function.

Figure 5 contains the objective value function pertaining to the RHS parameter of the capacity
of the conveyor system. Besides the shadow price, the chart also shows that if capacity drops
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below 443 tons, the LP problem becomes unfeasible. This is the minimum level of capacity
required to satisfy the orders. The point where further increase in the capacity has no more
effect on the objective value is also plotted.

FIGURE 5. Objective value function pertaining to the capacity of the conveyor system

FIGURE 6. Objective value function pertaining to the xp2m3 OFC parameter
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Figure 6 contains the objective value function pertaining to the xp2m3OFC parameter. The
chart shows how the effect of a possible increase in the contribution margin of product p2
would influence the objective value.

The three objective value functions presented in Figures 4, 5 and 6 are different topologi-
cally as well. The change of the slope of the objective value when leaving the closest linearity
interval to the optimal solution may differ and, different changes of the slope require different
managerial decisions. The slope of the objective value pertaining to the capacity of the conveyor
system is almost the same when it has a non-zero shadow price. Managers may expect identical
changes of profit when the capacity of the conveyor system changes for some reason. How-
ever, the slope of the objective value function pertaining to the xp2m3 OFC parameter changes
significantly from one linearity interval to another. Large changes influence the profit more sig-
nificantly, which is something that must be exploited if the change is positive or avoided if the
change is negative.

In practice, this type of OVF chart may help managers to evaluate the expected changes of
capacities, prices, demand, etc. and may lead to better management decisions.

7. COMPUTATIONAL ANALYSIS

The computational performance of the presented method for mapping the objective value
function in the whole feasible range of a parameter was examined using the Netlib suite of
linear optimisation problems [40]. This set of LP problems is widely used to compare compu-
tational results [41]. The Netlib library [42] contains various size LP problems, ranging from
32 variables and 27 constraints up to 15695 variables and 16675 constraints.

Dataset
name Variables Constraints LP solve

time (s)
Avg. time

per RHS (s)
Avg. time

per OFC (s)
KB2 41 52 0.27 2.78 2.84
TUFF 587 364 0.21 7.37 4.09
DEGEN3 1818 1503 0.36 0.84 3.38
BNL1 1175 643 0.21 22.33 37.32
WOOD1P 2594 244 0.36 1.55 6.55
BLEND 83 74 0.08 0.96 1.41
QAP8 1632 912 0.31 0.51 85.77
AFIRO 32 27 0.07 0.49 0.30
AGG2 302 516 0.27 0.79 1.16
BEACONF 262 173 0.22 0.37 0.33
BRANDY 249 220 0.27 8.42 7.83
PILOT 3652 1441 0.69 2.49 4.76
MAROS R7 9408 3136 1.05 11.65 5.89

TABLE 8. Summary of the computational results

Table 8 contains the name of the dataset, the number of variables and constraints, the com-
putation time to obtain the optimal solution of the original LP problem and finally the average
computation time of the OVF pertaining to a RHS and an OFC parameter in seconds.

Computational time was evaluated using a laptop computer with a 1.8 GHz Intel i7 processor
and 16GB of RAM.
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The results show that any of the problems can be solved very quickly even on a standard
laptop computer. The computational time required to obtain the optimal solution is less than
one second in all but one case. When parametric analysis is performed for the whole feasible
range of a single parameter, the computation time is larger than the time to get the optimal
solution, but in most cases less than 10 seconds is required. Even in the case of the largest
problem (MAROS R7), the computation time is only 11.65 seconds.

The table also shows that computation time for generating the objective value function might
be very different for similar size problems. This difference is a consequence of the model
structure. The short time taken to obtain the objective value function in each of the cases shows
that the objective value function for the whole feasible range of a parameter can be obtained
easily in any real-life decision-making environment.

8. CONCLUSION

Sensitivity analysis provides information about the behaviour of an objective function when
some critical parameters of the model change in the close neighbourhood of the original value.
Parametric analysis extends sensitivity analysis for a wider interval. The change of the opti-
mal value of the objective function is analysed further away from the original parameter value
providing this way an overall view of the change of an important parameter.

In this paper, the implementation of parametric analysis of LP models in the whole feasible
range of a parameter is presented. The required algorithms for efficient performance of the cal-
culations are defined and the results are illustrated with help of a production planning sample
problem. The input interface, the organisation of all the calculation and the visualisation of the
results are implemented with the AIMMS mathematical programming environment. The infor-
mation provided by the presented method generates all the possible optimal objective function
values in the complete feasible range of any OFC and RHS parameters.

There are two main benefits of this information:
1. The problem of degeneracy, the calculation difficulties of left and right shadow prices

and the misinterpretation of sensitivity analysis results in case of degeneracy are avoided
by mapping the objective value function for all values.

2. Furthermore, by studying the patterns of the objective value function in a wider range,
managers may recognise possibilities that are hidden when only parameter changes
within a small interval are available. In this way, the presented results extend the scope
of traditional sensitivity analysis provided by most of the commercially available LP
solvers. Thanks to the provision of additional information about the parameter changes,
the effect of the parameter change is known, and this is true not solely in the close
neighbourhood of the original value, but also across the whole feasible region.

The presented method can be used to support OM decisions whenever a limited quantity
of resources must be allocated to alternatives and a linear programming model can be used to
describe the decision context. In practice, the solution of production planning, transportation
logistics and capital allocation problems may benefit from the application of the suggested
method. The created AIMMS platform presents the results in table format as well as graphically
to facilitate the recognition of typical patterns of changes. Overall, this extended sensitivity
information may provide a more comprehensive picture about the consequences of parameter
changes for managers and may lead to better managerial decisions.
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