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Abstract. This paper proposes a Group-DRO enhanced doubly-robust contextual bandit approach to
designing optimal policies for loan product offerings. This approach is particularly suited to high-stakes
decision-making such as lending decisions, where one must leverage historical data (with inherent biases
and uncertainties) to design future policies. By using doubly-robust estimation, we make efficient use of
the data and mitigate bias from unknown logging propensities. By incorporating distributional robustness
with group-based ambiguity sets, we ensure that the learned policy is insulated against worst-case shifts
in each subgroup, thereby protecting the overall performance from crashing if, say, economic conditions
change that strongly impact a minority group. By adding fairness constraints such as demographic parity
or equal opportunity, we can align the policy with ethical and regulatory standards, ensuring that no group
is left behind or unfairly treated by the automated decision process. We present empirical evidence on
a small business credit card portfolio, demonstrating significant improvements over standard methods.
This proposed framework contributes a step toward responsible Al in finance.

Keywords. Contextual bandit; Distributionally robust optimization; Doubly robust estimation; Fair lend-
ing decisions; Group-based ambiguity set.
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1. INTRODUCTION

Optimizing credit policy for loan offerings often involves balancing risk and profit while en-
suring fairness. A contextual bandit approach can leverage historical data of credit offers and
outcomes to learn a better offering policy. However, standard off-policy evaluation and learning
methods that rely solely on logged data can be fragile when the deployment conditions differ
from historical data. Recently, Kallus et al. [9] proposed a doubly robust distributionally robust
(DR-DR) framework for off-policy evaluation and learning, combining doubly-robust estima-
tion with distributional robustness to guard against such shifts. In parallel, fairness concerns
arise because sensitive groups (e.g. defined by race or sex of the applicants) may experience
disparate outcomes under a learned policy. Sagawa et al. [12] introduced Group-DRO, a dis-
tributionally robust optimization method that ensures strong performance on worst-case groups
by minimizing the maximum loss among pre-defined groups. In this chapter, we refine the
DR-DR contextual bandit framework for the application of a bank’s line of credit offer policy,
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integrating a Group-DRO-style modification to enforce robust and fair performance across sen-
sitive subgroups. Our approach restricts distributional uncertainty to within sensitive groups
and uses a regularized objective to capture fairness considerations. We aim to maximize overall
risk-adjusted return while maintaining high performance for each sensitive group. Including
fairness regularization such as demographic parity or equal opportunity into the learning pro-
cess may prevent discriminatory outcomes.

We provide a detailed formulation of the method, an algorithm with pseudocode, and a dis-
cussion of implementation details including logging policy estimation, fairness metrics, and
evaluation protocols. We demonstrate the effectiveness of our proposed method with empirical
experiments on a small business credit card portfolio.

In determining the grouping of the customers for Group-DRO policy learning, a practical
approach is to rely on business knowledge; alternatively, we have proposed a quantitative ap-
proach using robust metric learning through a distributionally robust modification of the widely
studied Large Margin Nearest Neighbor (LMNN) approach [13] ensuring that the learned metric
is stable under moderate data perturbation, which we briefly discuss in the Appendix section.

2. BACKGROUND: CONTEXTUAL BANDITS

A contextual bandit (CB) problem is a simplified reinforcement learning (RL) task. In full
RL, an action in state influences not only the immediate reward but also the next state. By
contrast, the contextual bandit formulation assumes an action in a given context only affects the
immediate reward and does not influence subsequent contexts.

Formally, let:

e 2 be the context (state) space, with random variable X € 2.

e o/ be a finite action set (also called arms): o/ = {1,2,...,k}.

e R: 2 x .o — R be areward function, where R(X,A) is the random reward obtained
when action A is taken in context X.

e A policy m: 2 — .o/ maps context vectors x € 2 to actions A € &7

The policy value function Q(7) is defined by Q(n) = Ep[R(X,7(X))], where P is the
underlying joint distribution of (X,R(X,A))ac.. In typical offline or batch contextual bandit
data, we observe n samples {(x;,a;,r;)}}_,, where

e x; € A is the observed context for sample i,
e g; € o/ is the action taken by some logging policy (often unknown),
e r; = R(x;,a;) is the observed reward under action g; at context x;.

Note that for each i, we only observe r; for the chosen action a;; the rewards for other ac-
tions in .7 \ {A;} are not observed (partial feedback). Specifically, in determining loan approval
policy, the bank is unable to assess the performance of the rejected applicants. Furthermore,
the logging loan approval policy may be unspecified or a mixture of expert rules, making it
challenging to correct for selection bias. Additionally, data collected under heterogeneous eco-
nomic conditions complicates the learning process, especially if we want a robust policy that
generalizes to new or shifting environments.

Although contextual bandit approaches are often discussed in an online setting, where the
agent selects actions based on each new or existing customer’s context, balancing exploita-
tion (choosing the best-known loan offer) and exploration (trying alternative offers to refine
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estimates), in financial setting, large-scale randomization can be restricted by regulatory and
fairness considerations, so offline or batched contextual bandit is the focus of our discussion.

3. DR-DR BATCHED CONTEXTUAL BANDIT OFF-POLICY EVALUATION

In a contextual bandit, at each decision point we observe a context (feature vector) X (e.g.
business attributes), choose an action A (e.g. offer credit or not), and receive an outcome reward
R (e.g. return on regulatory capital from repayment/default). The goal in our setting is to learn
a policy m(A|X) that decides when to offer credit to maximize long-term return. Since exper-
imentation is against regulation, it is necessary use historical logged data from a past policy
(logging/behavior policy) to evaluate and learn a new policy without deploying it (off-policy).
Off-policy evaluation (OPE) estimates the performance of 7 using logged data (x;,a;,r;);_; col-
lected under a possibly different logging policy 7;,. A basic OPE estimator is inverse propensity
scoring (IPS), which reweights outcomes by the ratio 7(a;|x;)/m,(a;|x;). However, IPS can be
high-variance and is biased if 7, is unknown or recorded poorly. A more advanced estimator is
doubly robust (DR) OPE, which combines IPS with an outcome model’s direct estimation (DE)
to remain consistent if either the propensity model or outcome model is correct, concretely,

We have contexts X € 27, actions A € {1,...,k}, and reward R(X,A). Historical data

{(xiyaiyri) iy

is collected by an unknown or partially known logging policy 7. The goal is to evaluate a given
new policy 7 and eventually learn an optimal policy that maximizes expected risk-adjusted
return.

Combine inverse propensity scoring (IPS) and direct estimation (DE) to form the doubly
robust (DR) estimator [4] for the policy value:

n x a;)) mwa;|x; L
%Z[ 0 )) TG0 1) plaias)|.

nb(a,|x,) =

where p estimates the reward model and 7, models the logging policy. This helps reduce bias
or variance as long as one of p or 7, is accurate.

Despite its advantages, conventional off-policy evaluation assumes that the test distribution
is the same as historical. In practice, distribution shift may occur: the covariate distribution
of small businesses seeking credit in the future, or their behavioral patterns, may differ from
the historical data. Standard OPE is sensitive to such shifts, which can lead to overestimating
performance if the policy exploits areas with little reliable data. To address this, distributionally
robust OPE techniques consider an ambiguity set of plausible test distributions around the em-
pirical distribution and evaluate a policy on the worst-case distribution in that set. By optimizing
a policy for its worst-case performance, we can ensure more reliable returns under unforeseen
changes. Recently, [9] introduced a distributionally robust DR contextual bandit framework
for off-policy evaluation and off-policy learning, aiming to reduce the impact of model mis-
specification and distributional shifts for ambiguity set characterized by KL-divergence. The
distributionally robust framework defines an ambiguity set around the empirical distribution of
the context—action—reward tuples. The goal is to guard against the worst-case distribution in
this ambiguity set while maintaining the doubly robust property. Formally, let £, denote the
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empirical distribution. For a given target policy 7, ambiguity set % (B,,§), which we refer to
as % (8) to simplify the notation.

The distributionally robust doubly robust policy value is then defined as:

Vo(m) =, inf _ En[R(x(X)] 3.1)
That is, V() evaluates policy 7 under the worst-case distribution P; within the ambiguity set
% , which we choose to be the KL -divergence ball of radius é around the empirical distribution
P,, ensuring robustness to possible shifts in the environment. The policy evaluation algorithm
is detailed in the Appendix.

Policy learning aims to find a near-optimal robust policy 7 € IT with small regret in worst-
case policy value Zs () := Vs(n*) — Vg(r), where n* € argmaxzeriVs(m)

This approach aims to yield a policy that is robust to both model misspecification and local
distributional shifts. While this method addresses robustness, guarding against arbitrary shifts
sometimes yields overly conservative results and leads to unrealistic policy may impact the
performance.

4. GROUP-DRO-DR OFF-POLICY EVALUATION

In practice, banks usually divide their customers into difference risk tiers or based on other
risk-based grouping criteria, as a result, it may be useful to consider a specific type of DRO
set-up.

Group-DRO is a special case of distributional robustness focusing on predefined sensitive
groups, it guards against worst-case reweighting of groups. The policy 7 hedges against both
uncertainty in group composition and distributional shifts:

e Uncertainty in group composition: the weights w, shift across groups.
e Distributional shifts within groups: distributional shifts within each group.

Group specific robust value, for each group g, the distributionally robust policy value is:
Vos.(m)= inf Ep |[R(m(X))],
ca(m) =, inf - Ee [R(E(X))
where:
U (&) = {P1g: P1,g < Pog, Dkr(P1g|Pog) < -

With P ¢ << Py, the worst-case distribution Py , is absolutely continuous with respect to the
nominal distribution P ¢, i.e. P , does not assign positive probability to events that F , consider

impossible (probability 0), ensures ig’g (density ratio) exists for defining KL divergence and
8
dual form, ensuring that the perturbed distribution has the same support as the empirical. By

duality, this becomes V, 5 (%) = maxg,>0 [— 0tz 10g W (7, 0tg) — 0t ;] , with

)]

We(m, o) = Ep,, [exp (— p”
g

The overall robust value is

G

Vrobust(n') - Wien?f/‘ Z ngg,Sg(n>7
wo=]
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where
G
Uy =1 W: Z wg = 1,we > 0,Dgr(w||wo) < 6, .
g=1
Dual reformulation is given by the following.
For ¢g =V, 5,(7), the infimum over w is:

inf i WgCe = max [—Blog (i W0.g EXP (%)) . B6W] .

we%wg:l B>0 =1

G v,
Viobust () = max [—ﬁ log (): Wo,g €XP ( g"};(n)> ) - ﬁSW] :

g=1

Thus

For joint maximization, we define
g (T, 0tg) = —0Olglog Wy (T, 0tg) — 0l B,
50 Vg 5, () = maxg, >0 Pg (7, 0t ). Substitute and perform joint maximization:
G
— 0, logW, (1, o) — o, 6
Vioust(F) = max | —Plog{ ) wogexp ( LR g) —B6,|.
B>0{ag>01C, =1 B

Estimate W, (7, &tg) using group-specific doubly robust estimators, solving moment conditions

o~

for , and . The steps for policy evaluation is detailed in the Appendix section in Algorithm
3.

For policy learning, we propose the Continuum Doubly Robust Group-DROP (CDR-Group-
DROP) Algorithm 4 detailed in the Appendix section.

Another important aspect of our formulation is explicitly incorporating fair lending consider-
ation, where we expand the objective function to incorporate fairness penalty, such as, a demo-
graphic parity constraint can ensure the offer rate to each group is at least some fraction of the
population or equal across groups. A more commonly adopted approach is to mandate equal
opportunity: for customers who would repay (outcome R positive), the probability of being
offered credit is equal across groups, which we will discuss further in the subsequent section.

5. GROUP-DRO DR CONTEXTUAL BANDIT FOR SMALL BUSINESS LOAN OFFERING

In this section, we apply the proposed policy evaluation and policy learning algorithms to
the credit limit offering problem, where the goal is to assign credit limits to small business
applications while maximizing a robust policy value and ensuring fairness across demographic
subgroups.

The state space X is defined by the features of small business applications, including risk
category and majority/minority status of the owners. The action space A is the discrete credit
limit options. The policy g is a softmax regression model that assigns the probabilities to each
credit limit based on application features. The reward R is the risk-adjusted return of receiving
a specific credit limit. The objective is to maximize a robust policy value while ensuring equal
opportunity within risk groups across majority and minority subgroups.
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The policy is
exp(WPz+52)),)
Ll exp(Wz+50)))
where z = o(Wx+5(1), o(x) = max(0,x), and 6 = {W) s w2 b2} are the parame-
ters for the neural network policy class with one hidden layer.

Groups are defined by risk category G and majority/minority status. The group-specific ro-
bust value is

g (alx) =

V.

g75g(7r) = max [— ot logWe (7, &tg) — 0y 5],

0, >0
where W, (7, ;) = Ep,, [exp(—R(7(S))/ )], and % (&) is a KL-divergence uncertainty set.
The robust policy value is:

G
Viobust (T) = max [—Blog (Z Wo,g €XP (W)) —BSw]

B>0.{a>0} o

with g (7, 0ty) = —0glogWe (7, 0ty ) — @ O,, and %, defined via KL-divergence.

The doubly robust estimator VPR (74) is computed by:

e Estimating 7 , and f()’g (s,a; o) for each group using random forests.
e Computing WgDR(ﬂ, 0,) with cross-fitting.
e Optimizing the dual variables 8 and {0 }.

The fairness penalty is

K kA ~
PO)=) ZA(E[newpf) | 8(X) = k,m = 0] — Elmg(alX) | g(X) = k,m = 1]|.

The objective is

~

mglx Vrggust(nG)_)LP(e) :

6. APPLICATION ON ADJUDICATION OF REVOLVING LOANS

In this section, we apply our proposed approach to a real-world North American small busi-
ness line of credit dataset and compare the empirical result with some industry standard bench-
mark approaches.

6.1. Business Background. We focus our discussion on the business application of evaluation
and determination line of credit offers to new customers. The goal of the bank is to maximize its
portfolio risk-adjusted return. The method discussed is applicable to other scenarios in making
business decisions under incomplete data, where the logging policy may create systematic bias
in historical data.

Revolving credits such as personal line-of-credits or credit cards are offered by a bank to
meet its customers’ on-going demand for funds. A customer can draw on the loan facility, and
the interest is only paid on the actual withdrawn outstanding amount. Bank’s primary interest is
to maximize risk adjusted return of the portfolio, which can be achieved by imposing an optimal
policy in the credit offer to their customers.

A widely adopted approach as described in Haimowitz [8] follows a two-step approach by
first constructing a risk-return matrix that partitions the bank’s customer base, then determine
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an appropriate credit limit policy for each cell in the risk-return matrix either through quanti-
tative analysis or subjectively using business judgment. This industry standard approach has
a few drawbacks: most notably the performance of the trained policy is highly dependent on
the representativeness of the training data, it may have high expected reward under the static
environment but quickly deteriorate when customers’ behavior changes or risk increases under
a different future environment; in addition, the there is no fair lending consideration explic-
itly incorporated in the policy learning process. Our proposed distributional robust method can
effectively mitigate the shortcomings of the industry standard approach. In consideration of
fair lending, we specifically incorporate the sensitive attribute indicating whether the business
owner belongs to a visible minority group. To enforce fairness explicitly in the policy learning
process, we introduce an equal opportunity constraint, requiring that, for applicants with com-
parable credit risk ratings, membership in a minority group does not reduce the likelihood of
receiving a favorable credit offer. This constraint directly embeds fairness into policy optimiza-
tion, providing stronger guarantees against bias compared to the industry-standard approach
of simply omitting sensitive attributes such as gender or race. Merely excluding sensitive fea-
tures can inadvertently perpetuate bias through correlated or confounding attributes, whereas
our explicit constraint approach effectively mitigates such risks.

6.2. Data Description. A small business line of credit portfolio with a sample of 16000 obser-
vations from 9500 customers from September 2014 to September 2018 is selected for our analy-
sis. There are 5 actions of the bank can take for the customer: offering a credit limit with normal
distribution averaged at {5000,20000,40000,60000,80000} with standard deviation of 2000 to
reflect the flexibility usually exercised by the bank’s staff in actual loan offering. The customer’s
total credit limit before the adjustment and its subsequent performance data (unavailable at the
time of action) including monthly utilization rates, outstanding balances, credit ratings and the
corresponding long-run PD are collected, from which we can calculate the risk-adjusted-return
of the customers as the observed empirical reward associated with policy. Specifically, the to-
tal accumulated spending and the outstanding balance are used to calculate the present value
of the cumulative revenue generated by the customer over a 24-month period. The credit risk
rating of the customers is assigned by the bank and can be mapped to the long-run probability
of default to estimate customers’ regulatory capital. We assume that the credit risk ratings of
the customers are assessed periodically and available. The risk adjusted return is defined as the
return on regulatory capital as the reward of the customer, which are defined in Equation 7.5 in
Appendix.

The context vector consists of 15 raw input features listed in Table 1. The geographical
area of service is a feature that categorizes the population density on the geographical location
that the customer operating in. Business of operation categorizes the type of business that the
customers are operating, including: restaurants, retailers, farmers, professional service, etc.

6.3. Training and Evaluation Procedure. To comprehensively evaluate the performance of
the out-of-sample learned policy, we select customers from a subset of postal codes and years
to train the policy and evaluate its performance on samples from other postal codes and years.
We repeat this process by selecting 3 sets of training periods and postal codes and then compare
the average out-of-sample performance.



340

H. SUN, R. KWON

TABLE 1. List of raw input features

Geographical Area of Service

Business of Operation

Total Asset

Total Revenue

Total Operating Income

Total Debt

Total Long Term Debt

Total Current Liability

Total Inventory

Account Payable

Cost of Sales

Number of Years in Operation

Owner’s Credit Bureau Score | Owner’s Recent Year Delinquency | Number of Employee

TABLE 2. Service Area and Business of Operation Composition Top 8

Service Area Proportion | Business of Operation | Proportion
High Density Commercial with Residential 0.289 Restaurant 0.232
High Density Commercial 0.163 Retail 0.203
High Density Residential 0.147 Professional Service 0.177
Rural 0.097 Farm 0.121
Medium Density Commercial 0.094 Construction 0.075
Industrial 0.079 Manufacturing 0.050
Medium Density Residential 0.070 Health Care 0.050
Low Density Commercial 0.051 Oil Gas Service 0.030

TABLE 3. Credit Rating corresponding PD and Companies’ Median Key Fi-
nancial Metrics (in thousand USD)

Customer Credit Rating | Corresponding PD | Total Asset | Total Revenue | Total Debt

BB+ 0.163% 4798.3 554.26 2294.2

BB 0.264% 3691.5 495.68 2352.1

BB- 0.426% 3342.4 396.40 2391.5

B+ 0.689% 3295.03 362.67 2981.4

B 0.849% 3011.08 231.29 1913.3

B- 1.3282 % 2960.15 170.14 2099.9

CCC+ 2.5597 % 2858.39 74.621 2848.5

CcCC 5.48% 1677.06 32.370 2314.0

Customers are divided into four groups according to their credit risk profiles. Each group is
further split into two subgroups based on the minority status of the owners’ only for setting the
equal opportunity constraint.

The grouping of customers based on risk profiles can be roughly described as follows:

e Group 1 (Low Risk): Customers who are on time with payments pay all of monthly
balance. These customers have moderate spending activity, have high credit ratings
with BB- and above, and lowest risk. Many Professional Service providers belong to
this group. This group of customers offer high risk adjusted return due to low credit
risk.

e Group 2 (Moderate Risk): Customers who pay on time usually pay most of the monthly
balance. These customers have high spending and receive mixed credit risk ratings.
This group includes many franchise owners, restaurants, and retailers in high-density
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commercial and residential locations. The group has the highest profitability for the
bank.

e Group 3 (Medium Risk): Customers who are risky. These customers usually pay a por-
tion of the monthly balance, with high spending, and could become delinquent during
economic downturn. The group spans a wide range of operations, is profitable for the
bank under normal condition.

e Group 4 (High Risk): Customers who are highly risky with low credit risk ratings and
only paying a portion of their monthly balances. These customers are not profitable due
to high credit risk.

Intuitively, a bank would be able to maximize its risk-adjusted return by introducing a policy
that assigns high credit limit to Group 1, Group 2 and low limit to Group 4. The grouping of the
customers are assessed at initiation; the group composition usually changes in the subsequence
years. Within each group, the customers’ behavior also varies.

Estimating logging policy 7}, of the training data can be modeled as multi-class classification.
Estimating the reward function R, (7(X)) can be modeled using least square regression. We use
popular state-of-the-art XGBoost [2] package, which is based on Gradient Boosting algorithm
[6] for both multi-class classification and regression. The hyper-parameters are selected with
5-fold cross-validation with parameter max-depth: [3, 4, 5], learning rate: [0.1, 0.3, 0.5], early-
stopping round: [5, 10], regularization parameter A: [50, 75, 100] and max-iterations: 1000.

For policy learning, we implement a simple neural network with a linear hidden layers with
hyperbolic tangent activation function, and soft-max loss function objective.

6.4. Experiment. In summary, the application involves a contextual bandit problem with four
groups (G = 4) based on credit risk ratings of the small business customers, each group can be
divided into two sub-groups based on minority status of the owner (m = 2)

e State Space: 2" contains feature vectors obtained from transformations of the raw fea-
tures from Table 1.

e Action Space: &7 = {5000, 20000,40000,60000, 80000}, average credit limit offered to
the customer.

e Behavior Policy: each group g fit a gradient-boosted classifier to predict pij o(x)-

e Rewards Estimator: For group g for a gradient-boosted regressor to predict the rewards.

e Group Weights: Nominal weights wy = (0.32,0.38,0.21,0.09) corresponding to aver-
age group compositions over history.

The size of the uncertainty set was determined through grid-search for the following grid:

e Group Uncertainty Radii: 6, € {0.01,0.05,0.1,0.15} for all groups.
e Weight Uncertainty Radius: 8, € {0.03,0.05,0.7}.

For larger problems, one can consider the following approach for determining the size of
the uncertainty sets. For 8, (Group-Specific Radius): we start with a chi-squared KL balls:

Xiia
O = d2rllg
%2 is the chi-squared quantile. Set larger O, if the group has larger variance. For o, (Weight
Radius): Since weights are over G groups, use a simpler bound:d,, = %, where N is total
samples. Scale by a factor of 0.5, 1.5, 2 etc. and select based on the performance on the

validation set.

, Where ng is samples per group, d is number of features, o = 0.05 (confidence), and
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TABLE 4. Comparison of risk adjusted returns

Mean Std. min 10th percentile 20th percentile 30th percentile

g1 1 0.059 0.673 0.737 0.781 0.852
Rigy 1.044 0.061 0.642 0.760 0.795 0.851
Zipr 1.051 0.058 0.657 0.773 0.801 0.855

For policy evaluation, we adopt the Algorithm3 (LDR?-Group-DROPE) detailed in the Ap-
pendix and policy learning using Algorithm 4 CDR2-Group-DROPL).

6.5. Benchmark approaches. We compare our proposed approach with industry standard
benchmark approaches:
The first benchmark approach is the “argmax policy”, where we directly use weighted least

square regression to predict the reward given X; and A;, with importance weight m. This
b\Ai|Ai
approach reduces the policy learning problem to a standard regression problem. The optimal

policy is the action associated with the highest predicted reward. We learn a separate regressor
for each action. We use the popular state-of-the-art XGBoost [2] to train the regressors. The
hyper-parameters are selected using 5-fold cross validation, with max-depth: [3, 4, 5], learning
rate: [0.1, 0.3, 0.5], max-iterations: 1000 and early-stopping round: 10, which means we stop
if we experience 10 of rounds without improvements.The predictor 7, follows a approach as
discussed previously.

The second benchmark approach is to use the importance weighted multi-class classification,
where we convert each observation (X, frb(fjl Xi)) and 7 (ff\ X is the cost of not predicting label
A; on input X;. Specifically in 3 Steps. Step 1, convert each observation: Historical data is
(xi,ai,ri), where x; is context, a; is logged action, r; is reward. To turn this into classification:
For each sample i, create pseudo-samples for all possible actions (not just the observed a;). For
the observed action a;, create a positive example with label = 1 (or weighted by r; if rewards
are used as pseudo-labels). For unobserved actions a # a;, create negative examples with label
= 0 (or pseudo-label based on estimated rewards). It expands the dataset from N samples to
N x A, where A is number of actions, allowing the classifier to learn probabilities 7(a|x) across
all actions. Without this, classification would only learn the logging policy, not a new one. Step
2, importance weighting (Inverse Propensity Scoring - IPS): To handle off-policy bias (data
is from logging policy 7, not the target policy), weight each pseudo-sample by the inverse
propensity: w; = FAEAr) for observed actions (high weight if action was rare), and O or clipped
for unobserved. The loss is weighted cross-entropy: Minimize Y; w; - ¢(#(a;|x;),y;), where y; is
the pseudo-label. Cap weights at 10 to prevent variance explosion. Step 3 model training : Use
gradient boosted decision tree algorithms XGboost and output Softmax probabilities 7 (a|x) for
each action. For inference: Select action arg max, 7(a|x). The XGboost hyper-parameters are
selected using 5-fold cross validation, with max-depth: [4, 5, 6], learning rate: [0.3, 0.5, 0.7],
max-iterations: 1000 and early-stopping round: 10. The predictor 7, follows an approach as
discussed previously.

6.6. Experimental Result and Interpretation without fairness penalty. The proposed pol-
icy has higher out-of-sample average risk adjusted returns compared to the benchmark ap-
proaches, as presented in Table 4, scaled by the return of the first benchmark policy.
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TABLE 5. Comparison of average credit limit for small sample groups

CL. with increasing risk CL. with increasing spending

Policy = Mean Std. Mean Std.
O(fip) 31422 9048 42511 12107
O(fp) 32297 9665 45724 13531
O(%pro) 28613 7954 49123 12587

The average policy return for Zpg is significantly higher than that for 7z, with a p-value less
than 0.001. Although the average policy return for Apg is not significantly higher than that for
7ipy , a p-value of approximately 0.065 suggests the proposed policy often leads higher average
risk adjusted returns.

Our method avoids picking the policy that performs well for the highly represented groups
but bad for the atypical group. Any changes in economic or competitive environment may
lead to changes in the customer risk profile, especially during recession, some customers from
moderately delinquent group may become highly delinquent. Our proposed policy assigns a
lower average credit limit than other benchmark methods for the customers that experience
increase in credit risk during the out-of-sample testing period. In addition, although outstanding
balance is often associated with high credit risk, there is an uncommon group of customers with
high utilization rate and low credit risk usually gives high risk adjusted return. Our proposed
policy assigns a higher average credit limit than the benchmark methods for the customers that
show increase in spending while maintaining comparable or lower credit risk during the out-of-
sample testing period.

The policies are evaluated under the following assumptions, if the credit limit assigned by the
new policy is lower than data collection policy and transaction amount and outstanding balance
is above the new policy assigned credit limit then the spending amount and outstanding balance
are capped at the new credit limit. If the transaction amount and the outstanding balance is
below the new policy assigned credit limit, then the full amount is used, however, if the facility
is fully drawn and the new credit limit is higher, we apply the average utilization rate of the
risk grade as a proxy to the incremental limit to estimate the incremental balance and use the
customer’s average repayment rate as a proxy to estimate incremental outstanding amount.

6.7. Experimental Result and Interpretation including fair-lending penalty. The average
credit limit received for the Caucasian and Minority owners is comparable for the low-risk
(Group 1) customers. However, for the higher risk groups (Group 2, 3 and 4) the minority
owners receives notably lower limit if there is no fair-lending consideration.

The refined Group-DRO approach yields policies that are more stable to composition shifts
in, say, the proportion of high-risk or high-return segments. We observe an improvement in
out-of-sample risk-adjusted returns by increasing the average credit limit offered to the low to
mild risk group. Equal opportunity penalty ensures the minority group receives better offers;
however, leads to small reduction in the overall return of the portfolio by increasing the average
credit limit of the high risk group.
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TABLE 6. Comparison of avg. credit limit to Caucasian vs. Minority group

Low Risk Group Moderate Risk Group Medium Risk Group High Risk Group

Policy @ Cau. Minor. Cau. Minor. Cau. Minor. Cau.  Minor.

O(fip1) 56524 55521 46973 41603 36421 32053 21234 15131

O(ftgy) 55259 54536 46782 43500 36323 32921 22162 14323

O(fipro) 56125 55756 49943 47851 35583 33681 21242 18100

The proposed method can be extended to other revolving credit portfolio management ap-
plications such as determining repayment term and interest rate offer, or more generally any
business applications involving making policy decisions under a dynamic environment based
on historical observational data.

7. APPENDIX

7.1. Distributionally Robust DR Policy Evaluation. To compute the distributionally robust
policy value for a specific group, we follow the approach outlined in recent paper [9] where the
author extended the distributionally robust policy evaluation method initially proposed in [10]
to a doubly-robust (DR) estimator:

For ambiguity set given by KL divergence with size §:

02/(6) = {Pl : P < Py and DKL(PI H P()) < 5}
Under regularity conditions, unconfoundedness and strong overlapping [10], for a policy 7, and

size of the ambiguity set 8, the distributionally robust value Vs (7) is given by Equation 3.1.

Vs(m):= inf Ep [R(7(X))].
(7)1, inf | Bn [R(x(X)]

Although infinite-dimensional infimum is intractable, it is equivalent to solving supremum
over a dual variable & (Lemma 1 in [10]). Specifically by the following steps:

Step 1: Reformulate the Infimum as a Constrained Optimization.

The problem is

infEp, [R(m(X))] subjectto Dyp(Pig|Pog) <&, Pig< Pog.

8
Pig

Letp = Zi('):z (density ratio, p > 0, Ep, [p] = 1). Change the expectation to be over Py ,:

Ep  [R(n(X))] = Ep [p - R(7(X))].
The KL constraint becomes D1 (P 4||Po.¢) = Ep, [P logp] < ;. So the problem is

;I;f(‘)EPO’g [PR(7(X))] subjectto Ep [plogp] <&, Ep [p]=1.

Step 2: Form the Lagrangian.

Introduce Lagrange multipliers o, > O for the KL inequality and u for the normalization
equality:

Z(p,0g, 1) =Ep, [pR(n(X))] + & (Epy, [plogp] — &) + pt (Ep,, [p] — 1)
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The dual function is g(0t, 1) = infy~0 2L (P, &y, ), and the dual problem is supy, . , 8(0g, 1)
Step 3: Solve the Inner Infimum over p.
For fixed o, i1, the infimum is pointwise over the functional. The integrand is

PR(7(X))+ ogplogp + p + constants.
To minimize, we take the functional derivative w.r.t. p and set to zero
R(m(X))+ otg(logp+1)4+u =0

R(m(X))+u+ ocg) .
Og

R(m(X))+u+ oy

— logp = — p
4

= p* =exp (—

Step 4: Enforce Normalization and Plug Back.
The normalization Ep,  [p*] = 1 gives

o) (£55) (255l

where

R(m(X

)=, g (DY)
g

Thus pt = —a, — @, logW, (7, ¢t ). Plugging p* into the Lagrangian and simplifying (the terms

cancel appropriately), the dual function becomes
g(0tg, 1) = —0tg 0y — Otglog W, (T, 0tg).

Step 5: Dual Problem.
Maximizing over o > 0 (note u is eliminated, and o, = 0 recovers the nominal case), we
obtain V, 5 (7) = maxg,~o [~ &g log W, (7, &tg) — 0t 3] , where

)]

W(r,a):=E {exp (— ”

The function ¢ (7, ) is strictly concave and attains its maximum at a unique value a* €
(0,1/8]. Kallus et. al. proposed [9] to estimate Vg(7) in a doubly robust way, this, however,
requires estimating a continuum of regression functions parameterized by the dual variable o,
to overcome this they proposed to case the estimation of o*(7r) and Vg(7) into a joint moment

estimation problem, then develop a localized doubly robust algorithm. For a strictly concave
9¢(r,a)

function ¢ (7, &) observe that a* is the unique root to === =0
1%} (71' OC*)
—logWy (7, 0") — ———"—~— 8 =0,
ogWo ) a*Wo (7, o%)

where W;(7, &) :=E[R(n(X))/exp(—R(m(X))/a)]. We also have Vs (7) = —ot* log W — ot* 5.
Therefore, estimation of o* and Vg(m) is equivalent to estimating the root of the following
moment equation with parameter 8 = [, Wy, Wy, Vs]”

E[U(R(x(S));a) +V(6)] =0,
where
7 (als)
772(570)

¥(z:0,m(z0),m2) = (U(r;a) =mi(s,a; ) + Eonis) [Mi (5,0, )] +V(6),
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and
exp(—r/a) —Wo
rexp(—r/o —W
Ut = " vy = |
awp
0 —Vg—OClOgW()—OCS

Specifically, doubly robust distributionally robust off-policy evaluation algorithm (LDR>*OPE
algorithm from [9]) is detailed in Algorithm 1. This method combines propensity scores and re-
gression functions in a doubly robust framework, ensuring robustness to both environment shifts
and estimation errors in nuisance functions. By employing a localization technique, it avoids the
computational burden of fitting a continuum of regression models, achieving v/N-consistency
and asymptotic efficiency under weak product rate conditions. The algorithm operates as fol-
lows. First, the dataset Z is divided into K folds to enable cross-fitting, reducing overfitting.

For each fold &, out-of-fold data Z[.#] is used to train three estimators: ﬁ:,gk) for the behav-

ior policy 7, an initial dual variable estimate di(nki)t,

and regression functions f ](k) for j =0,1.
These estimators inform the construction of Wj(a), which approximates the moment functions.
The algorithm then solves the estimated moment equation to obtain &, the optimal dual vari-
able. Finally, the distributionally robust value Vs is computed using & and Wy (&), providing a

worst-case performance estimate over an uncertainty set of radius 6.

Algorithm 1 Localized Doubly Robust DRO Policy Evaluation

1: Input: Data 2, policy 7, uncertainty set radius 6.
2: Randomly split & into K even folds, with indices .#; for the k-th fold.
3: fork=1to K do

4 Using 2[.#], train ﬁ:lgk) to fit the behavior policy 7.
5 Randomly split #C into two halves 7, _#5.
6 di(nki)t < InitialEstimate(2[_#1],98, 7).
7

8

9

Using Z[_#>], train f;k) to fit f;(-; alb)

init

), for j=0,1.
: end for
: Find & > 0 that solves the moment equation:

—log (Wo(ax)) — S

where

and

Aj("’k)(a) =Y 7(alx) Ajgk)(xi,a) + %lxl)) (F{CXP <—ﬁ> —f;k)(xi,ai»

ace/ ﬂ(g

10: Calculate the estimated value V5 < —&logWy(&) — &8.
11: Return: HLPR*OPE (G, Wo(&), Wi (&), Vs).
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Algorithm 2 Doubly Robust Distributionally Robust Off-Policy Evaluation

1: Input: Logged data {(x;,a;,r;)}}_,, target policy 7, behavior policy 7, uncertainty size &
2: Output: Estimate of worst-case expected reward V()

3: Split the data into K folds for cross-fitting.

4: for k=1to K do

5:  Train on all data excluding fold &:

6 Outcome regression model 7(x,a)

7 Propensity score model f(a | x)

8:  for each (x;,a;,r;) in fold k do

9 Compute importance weight:

- 77:(61,' ‘ X,‘)
W= ————-.
) (a,- ’ Xi)
10: Compute doubly robust estimate:
fiDR = f(xi, n(xi)) + W,‘(I’i — f(x,-,ai)).

11:  end for
12: end for
13: Aggregate all #PR estimates.
14: Define:

¢ (o) = —atlog (% fexp (_fZR» —as.
i=1

15: Solve for the optimal value:
o* =argmax ().
o>0

16: Compute:

17: Return: Vg ()

7.2. Localized Doubly Robust Group DROPE (LDR?-Group-DROPE). The Localized Dou-
bly Robust Group DROPE (LDR2-Group-DROPE) method estimates the robust policy value
Vyobus: (), defined as:

G
Vrobust(n) = Wiean/‘ Z ngg,Sg(n)v
we=1

where

Vos.(m)= inf Ep [R(7(S
ca(m) = int - Ep [RE(S))
is the group-specific distributionally robust value, % (6,) is the uncertainty set for group g with
radius &y, and %, is the ambiguity set for the group weights with radius 6,,. This approach
extends the LDR?OPE framework[9] by localizing around initial estimates of the dual variables
0, making computation feasible.
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Algorithm 3 Localized Doubly Robust Group DROPE (LDR?-Group-DROPE)

1: Input: Data & = U | D, policy 7, group uncertainty radii {8,}9_,, weight uncertainty
radius 0,,, nominal welghts wo.

2: Randomly split each Z; into K even folds, with indices .#; , for group g, fold k.

3: forg=1toGdo

4: fork=1to K do

&=

(k)

5: Using .@g[fkc’g], train 7?07 ; to estimate the behavior policy 7 .

6: Randomly split fkfg into two halves ¢ , and _#> ,.

7: Compute ag(ﬁ{m < InitialEstimate(Z,[_#1 ,], 8¢, 7r) (e.g., cross-fitted SNIPS).

8: Using Z,[_7> o], train J?o(,? and fl(lz to estimate:
k
f()7g(S a, aé 1)mt) EPO.g [exp( / g, 1n1t) ‘ X = X5 A= a]
k

fig(s,a:8%).) = Ep, [Rexp(—R/G).) | X =x,A=dl.

9:  end for

10: end for

11: forg=1to Gdo
12:  Define estimated moments as functions of ot:

Wog o) = 1 Z Z !Z ni(a \xi)j/%(?(xi,a)—i—w (exp(ri/ag)ﬁ)(g(xi,ai)>] ,

=liedy, |acd 7r07g (ai | xi)

ng o) = ﬁZ Z [Z n(a|x)f, lk (xj,a) + W(riexp(r,-/ag)ff?(x,,a,))}.

8 k=lic S, |acd g(ai |xi)

13:  Solve for @, > 0 such that:

U Wi . (Q
—logWp ¢ (0tg) — % — 6, =0.
e Wo 4 (0t)

14:  Compute the group-specific robust value:
Vg,gg = —ag log W()’g(ag) — &gSg.

15: end for
16: Define the dual objective:

-~ G %
1§ mon(5)) 5.

g=1

17: Find E = argmaxg- f(ﬁ) using numerical optimization.
18: Compute the robust policy value:

o~ A~

{/\mbust = f (B )

19: Return: \A/mbus,.
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Under standard product rate conditions on the estimation errors of the nuisance functions
(ﬁoyg, fogs f1,¢) and assuming sufficiently accurate initial estimates &g,init, the estimator V,,p,s

is v/ N-consistent and asymptotically normal, inheriting the semiparametric efficiency of the
LDR*OPE method [9].

7.3. Continuum Doubly Robust Group-DROPL (CDR?-Group-DROPL). The Continuum
Doubly Robust Group-DROPL (CDR?-Group-DROPL) extends the CDR?OPL framework to
the group distributionally robust optimization (group-DRO) setting for policy learning. The
objective is to optimize a policy 7 that maximizes the robust policy value:

G
Viobust (1) = Wienqgw(g; weVe.s, (),
where
V. T) = inf Ep [R(7(S
ca (M=, inf B [R(x(S))

represents the group-specific distributionally robust value, % (8,) is the uncertainty set for
group g with radius J,, and %, is the ambiguity set for the group weights with radius 9.
Leveraging the dual formulation, this can be expressed as:

G
Vo7 = [—ﬁlog(Zwogexp(W))—m],

B>0,{0g>0} =
where
Oq(,00) = —tglogW,(m, 0tg) — 05,
and
We (7, 0) = Epy  [exp(—R(7(S))/ 0t)]

is the moment-generating function under the nominal distribution Py  for group g, with wq , as
the nominal group weights.

Algorithm: CDR?-Group-DROPL

To learn the optimal policy, we seek:

= ODR
7 € argmaxV, o (7),
mell

where Vfgfw(ﬂ) is a doubly robust estimator of V,,p,s (7). The algorithm estimates group-
specific nuisance functions and optimizes the policy iteratively, handling the continuum of dual
variables o, using local weighting techniques (e.g., random forests). The detailed steps are as

follows:
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Algorithm 4 CDR?-Group-DROPL
1: Input: Data ¥ = ngl Y,, policy class II, uncertainty radii {0, }

wo = {WO,g}gzl-
2: Randomly split each , into K even folds, denoted by indices fk7g, with complement fkcg.

G

¢—1> 0w, nominal weights

forg=1toGdo
fork=1to K do

Using Qg[fkcg], train ﬁég to estimate the behavior policy 7 .

SANEES A

Using @g[fkcg], train fé? (s,a; a,) for oy € (0, @] via random forests, where:
fog(s,a;0) = Epg [exp(—R/ag) | X = x,A =d].

end for
8: end for
9: Initialize 7w € I1.
10: while not converged do
11: forg=1toGdo
12: Compute the doubly robust estimator:
A~ 1 K 7?(61,‘ ‘X[)

~ k P~ k
WRE o)=Y ¥ | (exp(—ri/ag) = o (xiaise) ) + ¥ #a | x)fil) (visasay) |
8 k=lic s, | T4 (ai| xi) acet

where 7, = {(xi,aiﬂi)}?gr

13: Optimize Oy <— argmaxg, >0 [—ocg log WgDR(ff, o) — agSg] .
14: Compute the group-specific robust value:

VZSBRg(f) = — O logW R (T, 00) — 01, 5.

15:  end for
16:  Compute the overall robust value estimator:
UDR (7=
DR o G Vs, () 5
thust(n> = max _B log Z wo,g €Xp - B w

17:  Update 7 using policy gradient or another optimization method to maximize vfgfw(n).
18: end while
19: Return: 7.

The regret of the learned policy, defined as

~

%robust (7/7:\> = Vrobust (75*) - Vrobust (75) 5

where " = argmax ey Vyopus: () is analyzed under standard estimation assumptions. If the

~

estimation errors for 7 , and fp , satisfy

Rater, ,(Ng, B/K) - Rate§ ,(Ng, B/K) = O(Ng—l/z)’
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then the regret is &' (N -1/ 2), where N = Zg:l Ng. This extends the guarantees from the single-
group CDR2OPL setting to the group-DRO context.

7.4. Simulation: Impact of Uncertainty Set Size on Robust Policy Evaluation and Learn-
ing. This section summarizes the simulation setup and results for evaluating the impact of un-
certainty set size on the performance of the Localized Doubly Robust Group DROPE (LDR?-
Group-DROPE) and Continuum Doubly Robust Group DROPL (CDR?-Group-DROPL) algo-
rithms, compared to non-robust baselines.

The simulation involves a contextual bandit problem with two groups (G = 2), designed to
mimic the data-generating process from Section 5 of [9], adapted for group-specific distribu-
tions.

State Space: 2~ = [—1,1]?, with states X ~ Unif([—1,1]?).
Action Space: <7 ={0,1,2,3,4}.
Behavior Policy: For group g € {1,2}, the behavior policy is a softmax policy:

7T0,g<a | x) o< exp(szﬁa,g)a
where B, ¢ = (Re(Cs),Im(8y)), $u = exp(2ami/5), and B2 = B4,1+(0.1,0.1) for group
2.
e Rewards: For group g, potential outcomes are:

R(a|X =x,g) ~ L/V(xTﬁang,G;),

with o1 = 0.1, o» = 0.15.

e Sample Size: Ny = 500 per group, total N = 1000.

e Group Weights: Nominal weights wy = (0.5,0.5).

e Distributional Shift: In the test environment, reward means are shifted by 0.2 for group
1 and 0.3 for group 2.

The experiment tests the effect of varying uncertainty set sizes:
e Group Uncertainty Radii: 6, € {0.01,0.05,0.1,0.2} for both groups (8; = &, = 6).
e Weight Uncertainty Radius: §,, € {0.01,0.05,0.1}, paired as

(8,8,) € {(0.01,0.01),(0.05,0.05), (0.1,0.05), (0.2,0.1)}.

e Algorithms:
— LDR?-Group-DROPE: Estimates the robust policy value Vi, (7).
— Non-Robust OPE: Standard doubly robust off-policy evaluation (CFDR).
— CDR?-Group-DROPL: Learns a robust policy 7.
— Non-Robust OPL: Standard CFDR-based off-policy learning.
e Metrics:
— Evaluation: Mean Squared Error (MSE) of \7r0bus, compared to the true V,p,s (7).
— Learning: Regret Zropust (%) = Vyobust () — Vyopust (7).
e Runs: 50 simulations per (8, d,,) combination.
The target policy for evaluation is 7(x) = argmax,x' B, 1, and the policy class for learning
consists of linear policies 7g (x) = argmax, 0 ' ¢(x,a).
The results, averaged over 50 simulations, are presented in Table 7. The robust methods
outperform non-robust baselines across all uncertainty set sizes, with performance improving
as O increases.
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The proposed method significantly outperforms the baseline under the simulated distribu-
tional shift. LDR?-Group-DROPE MSE decreases from 0.0038 to 0.0020 as § increases from
0.01 to 0.2, indicating that larger uncertainty sets better capture the distributional shifts (re-
ward mean shifts of 0.2 and 0.3). The MSE is significantly lower than that of non-robust OPE,
which remains high (0.0172-0.0201) due to unmodeled shifts. CDR?-Group-DROPL Regret
decreases from 0.0124 to 0.0085 with increasing 0, showing improved robustness of learned
policies. Non-robust OPL regret is higher (0.0269-0.0305), as it fails to account for shifts. Ef-
fect of o,: Increasing J,, (e.g., from 0.01 to 0.1) has a modest impact, as group weights are
stable (wg = (0.5,0.5)). Larger 9,, slightly enhances performance when paired with larger o.

TABLE 7. Performance Metrics for Different Uncertainty Set Sizes

o Oy MSE (Evaluation) Regret (Learning)
LDR? Non-Robust CDR? Non-Robust

0.01 0.01 0.0038 0.0201 0.0124 0.0305
0.05 0.05 0.0025 0.0187 0.0098 0.0283
0.1 0.05 0.0021 0.0179 0.0087 0.0276
0.2 0.1 0.0020 0.0172 0.0085 0.0269

7.5. Detailed Definition of Risk Adjusted Return. The empirical risk adjusted return of a
customer depends on the joint distribution of v = [vP4, /74" yPrin) where vP¢ is the estimated
PD of the customer over a future period; v/"#" is the transaction amount of the customer; pprin
is the outstanding balance owed by the customer.

Both v/ and v/"" are observed empirically. The bank receives a commission rate ™" for
the transaction amount and charges a interest rate 7" for the outstanding balance. Typically,
f;d is estimated by the bank internally from a known separate process and refreshed at least
annually. Estimating vgd 1s out of scope for this work, we treat it as empirically observed. This
is a reasonable assumption as the credit limits assigned by the bank are not considered to have
causal influence on a customer’s credit risk.

1%

7 [V s Al

it

M=

Ri=

t=1

- [1 = VR [ ™ — min (A Vi) P K () % A

A customer will fully utilize its credit limit at default i.e. the exposure at default equals to
A;; and LGD 1’84 is a known, which is a good assumption for an unsecured revolving lending
products. The expected credit loss is approximately /4% x vﬁd *Aj. And 7y is a known discount
factor for future cash flow.

Expected regulatory capital (RC), K (vgd) for a customer with 1-year forward probability of
default (PD) at time 7 can be calculated analytically, provided by Basel Committee, where @ is
normal cumulative distribution function, and p is a known constant describing the correlation



ROBUST CONTEXTUAL BANDIT METHOD FOR OPTIMAL LOAN OFFERING 353

of a customer risk with the latent systematic factor. The RC formula essentially captures the
99.9% credit Value-at-Risk under model assumptions

C
-0

where C is a correlation parameter given by the regulators and & is normal cumulative dis-
tribution function. The risk weighted asset (RWA) equals to 12.5 * K(vP?) x 1/4¢ x A;. Banks
expect a minimum percentage return on the risk weighted asset, as it needs to maintain a sta-
ble Common Tier-I capital (CET1) ratio at least 4.5%, CET1 ratio = Common Tier 1 Equity
/ Risk Weighted Asset, that is, the tail credit loss of the customer has to be covered by the
shareholders’ equity of the bank. Since the bank can raise additional equity through issuing
new shares or sell assets, we treat it as a soft constraint, with the expected long run return on
equity as the cost of raising equity, while maintaining the CET1 ratio. This can be written as a
penalty term n¢4"itY x K (vgd) A, under the simplified assumption both 174? and expected return
on shareholder’s equity are known. We choose 1°?“"Y = (.04 in our experiment.

N —

K = [@((1-C) 2@ (v?) + ( ®1(0.999)) — (v*)],

7.6. Distributionally Robust Large Margin Nearest Neighbor (DR-LMNN). Robust metric
learning aims to learn an embedding fg : 2~ — 2 that clusters similar contexts (borrowers)
together and remains stable to outliers or moderate distribution shifts. Incorporating a robust
embedding can:

e Reduce noise in the context features,
e Promote better generalization of reward information,
e Safeguard decisions under partial feedback and non-stationary conditions.

In this subsection, we introduce a distributionally robust modification of the widely studied
Large Margin Nearest Neighbor (LMNN) metric learning approach [13]. Standard LMNN fo-
cuses on learning a linear transformation of the feature space that keeps target neighbors (points
of the same class or “similar” group) close, while separating points of different classes (or dis-
similar group) by a large margin. However, standard LMNN is sensitive to outliers or shifts in
the data distribution. We therefore propose a min-max formulation that equips LMNN with dis-
tributional robustness, ensuring the learned metric is stable under moderate data perturbations.

Let {(x;,y:)}’_, be a labeled dataset, with x; € R? and y; € {1,...,C} denoting the class label
(or cluster ID). We wish to learn a linear transformation L € RP*4 such that distances between
same-class points are small and distances between different-class points are large, under the
transformed metric:

di(xi,x;) = [|[Lx; —Lx;| .

Typically, LMNN introduces a set of target neighbors .4; for each point x;: these are k nearest
neighbors of x; sharing the same label y; in the original space (or an iteratively updated space).
The standard LMNN objective is:

mind® 3 L —xp)[* + A} ¥ N [THIL(i—x) | = [Lxi—x) 7]
=i jen i jeEN Lyi#yi

where the first term encourages same-class neighbors to be close, while the second term (the
margin or impulse term) enforces a large margin between different-class points.
While LMNN has been successful in various metric learning tasks, it has a known limitation:
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e Sensitivity to Outliers and Small Distribution Shifts. A few incorrectly labeled points
or moderate changes in the data distribution can adversely affect the learned metric L.

e Non-Stationary or Adversarial Data. In many real-world scenarios, data may shift
over time or be deliberately perturbed by an attacker. Standard LMNN is not inherently
designed to handle such shifts.

DR-LMNN. To address these issues, we adopt a distributionally robust optimization perspec-
tive. Rather than minimizing the empirical objective alone, we protect against a worst-case
perturbation of the empirical distribution within some uncertainty set % (Py) of radius p.

Let B, denote the empirical distribution over the set of triplets {(Xi, Xj,X]) } relevant to LMNN
(i.e., (i, ) for target neighbors and (i, j,) for impostors). A standard approach is to construct an
uncertainty set %p (B,) around P, often using a Wasserstein or f-divergence ball. Concretely:

min max E, . [XLMNN L;z }, (7.1)
L0 geupy) o C (L:2)

where z indexes either pairwise or triplet structures (X;,X;,X;), and .27 mnn(L;z) corresponds
to the LMNN loss:

Zinnn (L (x3,%7,%1)) = L0 = %)% + A [1+ [L(x —x)) |12 = [[L(xi = xp) %],

(Here, (x;,X;) is a same-class pair and x; an impostor with y; # y;.)

The inner maximization over Q € %, (B,) forces L to be robust against local perturbations of
the distribution. If an adversary (or natural shift) reweighs data points in some small neighbor-
hood around B,, the resulting L will still maintain good margins.

A key design choice is how to define %, (13,1) Two common options are Wasserstein Ball [1]
and f-Divergence Ball [11]:

e Wasserstein Ball:
% () ={Q|We(F,0) < p},
where W, is the Wasserstein distance with cost function ¢(-, ).
e f-Divergence Ball:

%P(ﬁn) = {Q‘Df(QHpn) < p}7
for some convex f, e.g. KL or x2 divergence.

In our problem, we assume a Wasserstein-1 ball uncertainty set.

Either choice provides a worst-case distribution around B,; the difference lies in how they
measure “distance” in sample space.

Solving the DR-LMNN Objective. Equation (7.1) is a min—max problem:

min max EZNQ [gLMNN (L;Z)] .
LZ0 gcu, (F)

In large-scale settings, one can adopt mini-batch techniques with gradient descent on L
and gradient ascent on distributional parameters that parameterize Q. We present an approx-
imate stochastic min—max procedure for solving the DR-LMNN problem. We assume a simple
Wasserstein-1 uncertainty set

U (By) = {Q:Wi(Q,B) <p},
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where W) denotes the 1-Wasserstein (earth-mover) distance, and p > 0 is the radius. Recall the
DR-LMNN objective:

i E,. [z L; ]
A

where z indexes triplets (x;,x;,x;) for LMNN, and
Limnn(Liz) = L —x)[* + A1+ [L(xi —x) [ = L —x) 1],

To handle the inner maximization over Q in the Wasserstein ball, we adopt an approximate
(stochastic) method that alternates between:

e Estimating adversarial distributions/samples to maximize the LMNN loss,
e Updating L to minimize the resulting worst-case objective.

One key practical consideration, defining target neighbors in contextual bandit can be nu-
anced. If we only rely on reward bins, we may merge different actions or mask important
distinctions. Incorporating additional domain knowledge.

7.7. Approximate Stochastic Min—-Max Algorithm for DRLMNN. Algorithm 5 summarizes
a typical procedure. The method is inspired by adversarial training in deep learning [11] and
stochastic mirror descent in robust optimization [5].

7.8. Algorithm: DR-LMNN with Smooth Surrogate and Mini-Batch Adversarial Reweight-
ing. Below is an outline of the distributionally robust LMNN procedure for moderately large
data, using a smooth margin surrogate and mini-batch adversarial reweighting under a Wasserstein-
1 uncertainty set.

Notes on the Algorithm.

e Smooth Surrogate: Replacing the raw hinge margin with a smooth convex envelope
(e.g. ¢(t) = BIn(1+¢'/P) [7]) provides well-defined gradients and avoids subgradient
instability.

e Factorization: We learn L directly, removing the explicit M > O constraint. This is a
local approach but widely used in metric learning.

e Mini-Batch Adversarial Reweighting: We approximate maxpes, by local reweight-
ing in each mini-batch, which is far cheaper than a full LP or global OT across all N
triplets. We typically keep J small (e.g. 1-5).

e Computational Feasibility: The method scales roughly as standard mini-batch gradient
descent plus a small additional overhead for each adversarial loop.

The mini-batch %, approximates sampling from the empirical distribution Z,. The inner
loop tries to reweight the mini-batch to maximize the LMNN loss, subject to a constraint that
p* remains within a Wasserstein radius p of the uniform distribution (or of some reference
distribution) on %;. In practice, one can implement this via Entropic Optimal Transport or
Sinkhorn approximations to handle the reweighting if we have pairwise distances among data
points in %y. The Metric Update step is just a gradient descent on L given the “adversarially
inflated” loss ik. By sampling mini-batches, we avoid computing exact worst-case distributions
across all n triplets at once, reducing computational overhead. Approximate min—max can
significantly mitigate outlier effects and better handle moderate domain shifts and improve the
robustness over standard LMNN.
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Algorithm 5 DR-LMNN (Smooth Surrogate + Mini-Batch Adversarial)
(1) Input:
e Data: {(x;,y;)} , with labels y; € {1,...,C}.
e Triplets (or pairs) for LMNN: z, = (X;,X;,X;) enumerated or sampled; B, =
ILVZIJZI 0., is the empirical distribution.
e Surrogate margin loss:
Lour(Liz) = [L(xi —x))[1* + 29 (14 [IL(xi —x;)||* = |L(x; = x1)[|*),
where @ () is smooth (e.g. log-sum-exp).
e Metric factor: M=L'L, L € R"™*4,
e Uncertainty set: %, (P,) (Wasserstein-1 of radius p).
e Hyperparams: mini-batch size B, adversarial steps J, step sizes {7}, total outer
iterations K.
(2) Initialize:
o L (e.g. identity-like or small random).
(3) For k =1 to K (outer iterations):
(a) Sample mini-batch %, of size B from P, (randomly choose B triplets).
(b) Let p() be uniform on %, i.e. p,(lo) =1/B.
(c) Adversarial loop (J steps):
(1) For j=1,...,J:
e Compute gradient-like direction

g(p(j_l)»L(k_])) = Vp Z szsur(L(k_l)§Z)-
2EBy

e Update p/) by ascending in g(-) under constraints:
Y p.=1, p.>0, W(pl,p9) <p’
ZEggk
(where W could be the Wasserstein-1 distance restricted to the mini-
batch; we can solve via entropic OT or projected gradient).
(ii) Let p* + p).
(d) Compute adversarial mini-batch loss:
Zk = Z p;Lsur(L(kil);Z)-
2693/(
(e) Metric update:
L® « L% — v [L].

(Optionally project or regularize L®) if needed.)

(4) End For
(5 Return: LK) (and hence M = L(K)TL(K)) as the final robust LMNN metric.

An approximate stochastic min—max optimizer is a practical way to implement DR-LMNN
under Wasserstein uncertainty. By iteratively sampling mini-batches, finding approximate ad-
versarial reweightings within radius p, and updating the metric L, we achieve a balance be-
tween robustness and computational feasibility. Although inner maximization and hyperparam-
eter tuning add complexity beyond standard LMNN, the resultant metric is less vulnerable to
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outliers and moderate distribution shifts, thereby improving out-of-distribution performance in
real-world tasks like loan risk assessment.

7.9. DR-LMNN-Enhanced DR-DR. We propose integrating DR-LMNN with the DR-DR
contextual bandit method to achieve a robust and more equitable off-policy solution in con-
textual bandit settings. Once we embed each context x; into X;, we replace (X;,A;,R;) by
(f(l-,Ai,Ri) and proceed to construct the empirical measure P, in this new space. That is, de-

fine 13,§LMNN) = %Z;’:l 5(&,' AiRi) where 0 denotes the Dirac measure.
In the DR-DR framework, we now consider an ambiguity set % (ﬁéLMNm, p) around this

measure. The divergence used could be computed in the X-space:
2 (BN p) = {Q (0, A"V < p},

where D(-, ) is defined with respect to distances in the transformed feature space (e.g., a Wasser-
stein distance that uses dyy). The DR-DR objective then becomes
max [DR(Q, n)] .

oc (BN p)

In consumer finance, systematically modifying representation spaces must comply with reg-
ulations. One must ensure that transformations do not violate the protected-group’s rights of
accessing credit or lead to opaque decision rules. Ideally, domain experts should help interpret
the learned distances. [3] and [14] study fairness-aware transformations, discussing how data
representation can mitigate discrimination. Our work synthesizes these ideas by embedding
LMNN into the DR-DR paradigm, highlighting potential avenues for improved fairness and ro-
bustness. In selecting the ambiguity set, we present a refined Group-DRO approach that better
aligns with real-world finance application leads interpretable policies.
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