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Abstract. In this paper, topological derivatives are defined and employed for gas transport networks
governed by nonlinear hyperbolic systems of PDEs. The concept of topological derivatives of a shape
functional is introduced for optimum design and control of gas networks. First, the dynamic model for
the network is considered. The cost for the control problem includes the deviations of the pressure at the
inflow and outflow nodes. For dynamic control problems of gas networks when the turnpike property
occurs, the synthesis of control and optimum design of the network can be simplified. That is, the
design of the network can be performed for optimal control of the steady-state network model. The cost
of design is defined by the optimal control cost for the steady-state network model. The topological
derivative of the design cost, given by the optimal control cost with respect to the nucleation of a small
cycle, is determined. Tree-structured networks can be decomposed into single network junctions. The
topological derivative of the design cost is systematically evaluated at each junction of the decomposed
network. This allows for the identification of internal nodes with negative topological derivatives, where
replacing the node with a small cycle leads to an improved design cost. As the set of network junctions is
finite, the iterative procedure is convergent. This design procedure is applied to representative examples
and it can be generalized to arbitrary network graphs. A key feature of such modeling approach is the
availability of exact steady-state solutions, enabling a fully analytical topological analysis of the design
cost without numerical approximations.
Keywords. Gas networks; Optimum design; Optimal control; Topological derivative; Turnpike phenom-
enon.
2020 Mathematics Subject Classification. 74P15, 49Q10, 35B25.

1. INTRODUCTION AND MOTIVATION

Gas transport through pipeline networks is a key part of the energy infrastructure, especially
with hydrogen expected to become an important energy carrier in the near future. At the same
time, natural gas is still widely used in households and industry across Europe. Pipelines are
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a cost-efficient way to move gas over long distances, but the flow experiences a significant
pressure drop due to friction along the pipeline. In fact, the International Energy Outlook
2018 [1] predicts that natural gas consumption will double until 2040 compared to 2012. For
hydrogen transport, a new pipeline network is planned in Germany [2] and Europe [3]. In
this paper we are interested in the optimal shape and control of gas transportation networks.
The network is governed by the isothermal Euler equations [4, 5, 6, 7], a system of nonlinear
hyperbolic PDEs. In [8], the authors discussed coupling conditions at the network junctions. In
[9, 10], the authors gave an excellent overview about the broad topic of gas network modeling
including model simplifications and network components. Optimization problems for electricity
transport were analyzed e.g., in [11, 12], for traffic flow networks e.g., in [13, 14] and for
communication and information networks e.g., in [15, 16].

We consider a dynamic optimal boundary control problem for the gas network. However, the
optimum design problems for dynamic models are complex and we are interested in possible
simplification for practical applications. To this end, for the further optimization with respect
to the shape and topology of the gas network, it is proposed to use the optimal value of control
cost in order to determine the optimum design solution for the network. The turnpike property
of the optimal control problem is exploited to reduce the dynamic model to the static model
for the purposes of shape and topology optimization. It means that the steady state model of
the network as well as the associated optimal control problem are considered for the optimum
design of network. Steady states models for gas networks were analyzed, e.g., in [17, 18, 19,
20].

In our setting, the shape functional for the networks is defined by the optimal value of the
control cost for the associated steady state control problem. The proposed strategy is construc-
tive because the topological derivatives of the shape functional are effectively determined for
singular perturbations of the network. By the singular perturbation we mean the creation of a
small cycle at the internal node of the network. The topological derivatives of shape functionals
are introduced in [21] for singular geometrical domain perturbations in the shape optimization
problems governed by partial differential equations of elliptic type. The concept of topological
derivatives is also used for networks governed by linear PDEs in [22]. In shape and topology
optimization there are two techniques used for numerical methods. The first is the shape sensi-
tivity analysis with boundary variations for the geometrical domains. The second uses singular
geometrical domain perturbations and leads to the topological derivatives. The geometrical do-
main is usually associated with the state equation. Similar methods can be applied on networks.
Here, the singular perturbation of the network is the introduction of a small cycle at the network
junctions. Our strategy is effecient and can be described as follows.

(1) Let us consider the optimal control problem for gas networks. We determine the opti-
mality conditions in the form of an optimality system. The optimal value of the cost is
considered for optimum design of the network.

(2) The turnpike property is checked for the control problem. This way the dynamic model
is replaced by static model for the purposes of optimum design of the network.

(3) The static control problem is considered and solved and the optimal value of the control
cost is used as the shape functional for optimum design of the network.

(4) The topological derivatives of the shape functional are evaluated for internal nodes of
the network. The subset of the nodes with negative values of the topological derivatives
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is selected for further topology changes by replacing the nodes with a small cycle. In
this way the optimal network is constructed without further possibilities to change the
topology in this way.

Concerning control of networks, the new concept for control problems is the turnpike prop-
erty. The presence of such a property simplifies the analysis of control system because the
evolution problem solution for large time horizon can be replaced by a combination of exact
controllability for evolution model with the control of steady state model. We restrict ourselves
to the simple model problems for the network with the tree structure. The turnpike property was
analyzed in [23, 24] for the finite-dimensional setting and in [25] for the infinite-dimensional
setting. Boundary control problems for linear hyperbolic PDEs were analyzed, e.g., in [26, 27].
Turnpike results based on dissipativity were analyzed in [28, 29], a manifold turnpike result
was provided in [30]. The monograph [31] gives an excellent overview about the topic and in
[32] the authors provide an excellent overview about further turnpike properties in finite and
infinite dimensional optimal control. For semi-linear hyperbolic boundary control problems, to
our best knowledge, turnpike properties have not been shown yet. We provide some numerical
evidence of the turnpike property, however, the general semi-linear and nonlinear case is still
an open problem.

The outline of the paper is the following. In Section 2, the turnpike property for semi-linear
gas network control is considered from a numerical point of view. We provide numerical evi-
dence for the turnpike phenomenon for an optimal boundary control problem governed by the
isothermal Euler equations for both a single pipe and a network. In Section 3, the elementary
junction as a subset of network is considered for the purposes of shape and topology optimiza-
tion. We first derive the explicit solution on the network junction with and without a cycle. We
analyze the optimal control problem for the network. For the optimal control, we compute the
topological derivative and analyze the optimal design problem for the network junction. In Sec-
tion 4, we present an algorithm based on the previous results for finding the optimal network
topology. For every internal node in the network, we solve the optimal control problem and
compute the topological derivative with respect to the optimal control. We replace the node
with the smallest topological derivative by a small cycle and successively repeat this procedure
until all topological derivatives are positive or until every internal node was replaced by a small
cycle. To our best knowledge, this is the first work which combines optimal shape and control
techniques for gas networks.

2. A NUMERICAL TURNPIKE RESULT FOR THE GAS DYNAMICS

The gas flow in a pipeline is modeled by the well-known isothermal Euler equations [4, 5, 6,
7] which consist in a 2×2 system of partial differential equations given by

ρt +qx = 0,

qt +
(

p+ρv2)
x =−

λ

2 D
q|q|
ρ

,

where ρ = ρ(t,x) is the gas density in kg/m3, q = q(t,x) is the gas flow in kg/m2s, p = p(t,x) is
the gas pressure in Pa, v = v(t,x) is the gas velocity in m/s, λ > 0 is the pipe friction coefficient
(no unit), D > 0 is the pipe diameter in m and (t,x) ∈ [0,T ]× [0,L]. Considering ideal gas, the
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relation
p = c2

ρ,

holds, where c is the speed of sound in the gas in m/s. Excluding c2 from the space derivative
in the second equation leads to the space derivative

c2
(

ρ +ρ
v2

c2

)
x
,

where v/c is the Mach number. For the gas flow in pipeline networks, the Mach number is close
to 0, thus this term is often neglected (see, e.g., [33]), leading to a well-known semilinear model
for the gas transport in a pipeline

pt + c2qx = 0,

qt + px =−
λ c2

2 D
q|q|

p
,

(2.1)

For initial conditions

p(0,x) = pini(x) ∈ L2(0,L), q(0,x) = qini(x) ∈ L2(0,L), (2.2)

for boundary conditions

p(t,0) = p0(t) ∈ L2(0,T ), q(t,L) = qL(t) ∈ L2(0,T ),

and if compatibility between initial and boundary conditions is satisfied, equations (2.1) have
a solution p,q ∈C([0,T ];L2(0,L)) (see e.g., [5]). Note that, for higher regularity, the solution
has better regularity properties as well. Let initial conditions pini,qini ∈ L2(0,L) and convex
functions f ,g : R2→ R be given. Consider the optimal control problem

min
p0,qL∈H2(0,T )

∫ T

0
f (p0(t), p(t,L))+g(q(t,0),qL(t)) dt,

s.t. p(0,x) = pini(x), q(0,x) = qini(x),

pt + c2qx = 0,

qt + px =−
λ c2

2 D
q|q|

p
,

p(t,0) = p0(t), q(t,L) = qL(t).

(2.3)

The existence of solutions of optimal control problems like (2.3) was analyzed on graphs
recently (see [34]). The authors demonstrated that under the assumptions that the initial state is
C1- compatible with the nodal conditions and that the control cost contains an H2-regularization
term, an optimal control of (2.3) exists on networks. For a desired pressure pD ∈ R2 and a
desired flow qD ∈ R2, let the objective function be given by

f (p0(t), p(t,L)) =
∥∥∥∥[ p0(t)

p(t,L)

]
− pD

∥∥∥∥2

=
(

p0(t)− pD,1
)2

+
(

p(t,L)− pD,2
)2
,

and g(q(t,0),qL(t)) =
∥∥∥∥[q(t,0)

qL(t)

]
−qD

∥∥∥∥2

=
(
q(t,0)−qD,1

)2
+
(
qL(t)−qD,2

)2
.

As initial condition, we consider the steady state of (2.1) corresponding to the boundary con-
ditions p0 = 50bar and qL = 180 kg

m2s . The optimal solution of (2.3) is shown in Figure 1 and
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it was computed using the AMPL software tool with the ipopt solver (see e.g., [35]) using 201
grid points for time discretization and 21 grid points for space discretization. The picture was
created in MATLAB R© R2023b. A turnpike structure is clearly visible, as the solution of (2.3),
i.e., the dynamic optimal controls are close to the corresponding steady state optimal controls
in the interior of the time interval. Only at the beginning and at the end of the time interval,
dynamic and steady state optimal control differ.
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FIGURE 1. Result of (2.3) for T = 24h, L = 10km, λ = 0.1, c = 380m/s, D =

0.5m, pD = (60,55)>bar and qD = (180,200)T kg
m2s .

This turnpike structure also occurs when coupling the model (2.1) on networks. We consider
a network junction as shown in Figure 2. The gas model (2.1) and the initial conditions (2.2)
hold on every edge. For the reader’s convenience we consider equal pipe length, pipe diameter
and pipe friction for every edge. The coupling conditions at the network junction are given by
the conservation of mass

q1(t,L) = q2(t,0)+q3(t,0) ∀t ∈ [0,T ], (2.4)

and by the continuity in pressure

p1(t,L) = p2(t,0), p1(t,L) = p3(t,0) ∀t ∈ [0,T ]. (2.5)

For boundary conditions

p1(t,0) = p0(t), q2(t,L) = qL(t), q3(t,L) = q̄L(t), (2.6)

in L2(0,T ), the gas model (2.1) with initial conditions (2.2) in L2(0,L) and coupling conditions
(2.4), (2.5) has a solution pi,qi ∈C([0,T ],L2(0,L)) [5]. Again, for higher regularity properties
of the boundary conditions, the solution has better regularity properties as well.

Let initial conditions pi,ini,qi,ini be given on every edge. For convex functions f ,g : R3→ R
we consider the optimal control problem
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e1

e2

e3

FIGURE 2. Gas Network Junction

min
p0,qL,q̄L∈L2(0,T )

∫ T

0
f
(

p0(t), p2(t,L), p3(t,L)
)
+g
(
q1(t,0),qL(t), q̄(t)

)
dt,

s.t. pi(0,x) = pi,ini(x), qi(0,x) = qi,ini(x), i = 1,2,3

(pi)t + c2(qi)x = 0,

(qi)t +(pi)x =−
λ c2

2 D
qi|qi|

pi
,

i = 1,2,3,

p1(t,0) = p0(t), q2(t,L) = qL(t), q3(t,L) = q̄L(t),

p1(t,L) = p2(t,0) = p3(t,0), q1(t,L) = q2(t,0)+q3(t,0).
(2.7)

As it was the case for the optimal control problem (2.3), the network model also shows a
turnpike structure. For a desired pressure pD ∈R3 and a desired flow qD ∈R3, let the objective
function be given by

f (p0(t), p1(t,L), p2(t,L)) =

∥∥∥∥∥∥
 p0(t)

p1(t,L)
p2(t,L)

− pD

∥∥∥∥∥∥
2

,

g(q1(t,0),qL(t), q̄L(t)) =

∥∥∥∥∥∥
q1(t,0)

qL(t)
q̄L(t)

− pD

∥∥∥∥∥∥
2

.

As an initial condition, we consider the steady state of the network model corresponding to
the boundary conditions p0 = 50bar, qL = 100 kg

m2s , and q̄L = 80 kg
m2s . As in the previous exam-

ple, we use 201 grid points for time discretization and 21 grid points for space discretization on
every edge. The optimal controls of (2.7) are shown in Figure 3. As above, the optimal controls
of (2.7) are close to the corresponding steady state optimal controls in the interior of the time
interval. They differ just at the beginning and at the end of the time interval. The corresponding
pressure profiles at different time points are shown in Figure 4. The pressure profiles at the be-
ginning and at the end of the time interval differ from the optimal steady state pressure profiles,
while they are close to each other in the middle of the time interval, which supports the presence
of the turnpike phenomenon. Thus, from now on, we assume that the optimal controls satisfy a
turnpike inequality:

Assumption 2.1. The optimal control problems (2.3) and (2.7) satisfy an integral turnpike prop-
erty of the form ∫ T

0

∥∥∥uδ (t)−uσ

∥∥∥2
dt ≤C,



OPTIMUM SHAPE DESIGN AND CONTROL OF GAS NETWORKS 315

0 5 10 15 20 25 30 35

t

40

60

80
pressure

dynamic pressure static pressure

0 5 10 15 20 25 30 35

t

90

100

110

flow 1

dynamic flow static flow

0 5 10 15 20 25 30 35

t

60

70

80
flow 2

dynamic flow static flow

FIGURE 3. Result of (2.7) for T = 36h, L = 10km, λ = 0.1, c = 380m/s, D =

0.5m, pD = (60,52,55)bar and qD = (180,110,75) kg
m2s .

FIGURE 4. Pressure profiles of the solution of (2.7) at t = 0h, t = 18h and t = 36h.

where uδ (t) is the solution of (2.3) resp. (2.7), uσ is the solution of the corresponding steady
state optimal control problems and C ∈ R is a time-independent constant.

In the next sections, we analyze the problem of optimal network topology, i.e., we analyze,
if a network is more effective and beneficial when replaced by a cycle. Since operation of
gas networks is planned for several hours, and due to the presence of a turnpike property, we
consider steady states on gas networks, as they are often used to replace the transient models
(see, e.g., [17, 19, 20, 36, 37]). Thus, in the next sections, we consider the problem of finding
the optimal topology for junctions in gas networks for steady states.

3. OPTIMAL DESIGN AND SHAPE FOR A STEADY STATE NETWORK JUNCTION

In this section, we consider the problem of finding the optimal shape of a network junction
in terms of gas flow in pipeline networks. Therefore, under the Assumption 2.1, we introduce a
steady state model for the gas flow in pipeline networks, we compute the analytical solution for
the flow on a network junction and we solve an optimal shape design problem for the network
junction.

3.1. A steady state gas transport model on a network junction. Consider a connected di-
rected graph G = (V ,E ) with a set of vertices V with |V | = n and a set of edges E ⊆ V ×V
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with |E |= m. Every edge e represents a pipe with length Le. On every edge e ∈ E , the gas flow
is given by the steady state formulation of the semilinear isothermal Euler equations (2.1), i.e.,
on every edge e ∈ E we have (see, e.g., [17, 18, 19, 38])

qe
x(x) = 0,

pe
x(x) =−

λ e

2De
qe(x)|qe(x)|

ρe(x)
,

(3.1)

where p is the gas pressure, ρ is the gas density, q is the gas flow, and λ is the pipe friction and
D is the pipe diameter. The exponent e refers to edge e ∈ E , respectively. The first equation in
(3.1) implies constant flow on every edge. Thus, let q ∈ Rm be the vector of flows at the edges
with qi = qei . Applying the ideal gas equation p = RS T ρ with the specific gas constant RS and
the temperature T , the second equation in (3.1) is

pe
x(x) =−

λ eRST
2De

qe|qe|
pe(x)

,

which has the solution

(pe(x))2 = p2(0)−φ
eqe|qe|x with φ

e =
λ eRST

D
. (3.2)

For the reader’s convenience, we assume equal φ e on every pipe. That is, we have φ = φ e for all
e∈ E . Let p∈Rn be the vector of pressures at the nodes with pi = pvi . For every node v∈V , let
E−(v) denote the ingoing edges, i.e., the edges that end in v and let E+(v) be the set of outgoing
edges, i.e., the edges that start in v. Every node can either be a source node (gas enters the
network) or an exit node (gas leaves the network or gas is conserved in the network). Let VS be
the set of source nodes and let VE be the set of exit nodes with VS∪VE = V , VS∩VE = /0. Let
b ∈ Rn with bi = bvi be the load vector, i.e., the vector of gas entering or leaving the network.
We assume bi < 0 if gas enters the network at node vi and bi ≥ 0 if gas leaves the network at
node vi, i.e., bi < 0 for vi ∈ VS and bi ≥ 0 for vi ∈ VE . We define the incidence matrix A ∈Rn×m

with

Ai, j =


−1 if e j ∈ E+(vi)

1 if e j ∈ E−(vi)

0 else

We consider conservation of mass at every node, i.e.,

∑
e∈E−(v)

qe = ∑
e∈E+(v)

qe +bv ∀v ∈ V .

Applying the incidence matrix A, conservation of mass is equivalent to

Aq = b. (3.3)

Further, we consider continuity of the pressure at the nodes, i.e., for all v ∈ V ,

pe(L) = p f (0) ∀e ∈ E−(v), f ∈ E+(v).

Thus, applying (3.2) and the incidence matrix A, the pressure at the nodes can be computed by
evaluating (see, e.g., [18, 19])

A>p2 = Φq|q|L, (3.4)
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where Φ is a diagonal matrix with the entries Φi,i = φi defined in (3.2). The square and the
right-hand side product in (3.4) have to be understood component by component. Let pi be
given for all vi ∈ VS and let bi be given for all vi ∈ VE . Then the system (3.3), (3.4) has a unique
solution (see [17]).

In this section, we consider a network junction without cycle G1 = (V1,E1) and a network
junction with cycle G2 = (V2,E2), where the edges in the cycle have length ε , as given in Table
1 and shown in Figure 5. In both graphs, let v0 be the only inflow node, v2,v3 be outflow nodes,
and all other nodes be inner nodes.

set of vertices set of edges edge orientation

V1 = {v0,v1,v2} E1 = {e1,e2,e3} e1 = (v0,v1), e2 = (v1,v2), e3 = (v1,v3)

V2 = {v0,v1,v2,v3,v4,v5} E2 = {e1,e2,e3,e4,e5,e6} e1 = (v0,v1), e2 = (v4,v2), e3 = (v5,v3),
e4 = (v1,v4), e5 = (v1,v5), e6 = (v4,v5)

TABLE 1. Set of vertices and set of edges of the graphs G1 and G2

v0 v1

v2

v3

(A) No inner cycle

ε

ε

εv0 v1

v2

v3

v4

v5

(B) Inner Cycle

FIGURE 5. Network junction with and without inner cycle

In the following sections, we state the analytic solution for the pressure at the nodes and we
consider the problem of finding the optimal size of the cycle, i.e. the optimal ε with respect to
a suitable cost function.

3.2. Analytical solution for a junction without cycle. Let p0 > 0, b1 = 0 and b2,b3 > 0 be
given. The incidence matrix A for the graph G1 shown in Figure 5 (A) is given by

A =


−1 0 0
1 −1 −1
0 1 0
0 0 1

 .
Thus, the conservation of mass (3.3) yields

q =
[
b2 +b3, b2, b3

]> and b =
[
−b2−b3, 0, b2, b3

]>
.

For the pressures at the nodes, the pressure continuity (3.4) yields

−p2
0 + p2

1 =−φq1|q1|L1,

−p2
1 + p2

2 =−φq2|q2|L2,

−p2
1 + p2

3 =−φq3|q3|L3.
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Since b2,b3 ≥ 0, we have q≥ 0 and we can neglect the absolute value. For L1 = L2 = L3 = L̃,
the pressure at the outflow nodes is given by

p2 =
√

p2
0−φq2

1L̃−φq2
2L̃ =

√
p2

0−φ(q2
1 +q2

2)L̃ =
√

p2
0 +φ(2b2

2 +2b2b3 +b2
3)L̃,

p3 =
√

p2
0−φq2

1L̃−φq2
3L̃ =

√
p2

0−φ(q2
1 +q2

3)L̃ =
√

p2
0 +φ(b2

2 +2b2b3 +2b2
3)L̃.

(3.5)

3.3. Analytical solution for a junction with cycle. Let p0, b2 and b3 be given. With the
incidence matrix A being given by

A =


−1 0 0 0 0 0
1 0 0 −1 −1 0
0 1 0 0 0 0
0 0 1 0 0 0
0 −1 0 1 0 −1
0 0 −1 0 1 1

 ,

the third and fourth equation of mass conservation (3.3) yields q2 = b2 and q3 = b3. Further,
we have

q1 = b2 +b3 and b0 =−b2−b3,

which implies

q =
[
b2 +b3, b2, b3, q4, q5, q6

]> and b =
[
−b2−b3, 0, b2, b3, 0, 0

]>
.

Before we compute the remaining flows q4,q5,q6, we state the following remark.

Remark 3.1. Cyclic flow in G2 is not possible, since the pressure decreases along a pipe in flow
direction. Consider, e.g., the cyclic flow q4 > 0,q5 < 0,q6 > 0, which leads to the contradiction

p1 < p5 < p4 < p1

If flow q4 is negative, then q5 must be positive and q6 negative to guarantee a positive flow
q2. This would lead to a cyclic flow and thus to a contradiction. If flow q5 is negative, then q4
and q6 must be positive to guarantee a positive flow q3. This would also lead to a contradiction
due to a cyclic flow. Thus we have

q4 > 0 and q5 > 0,

and we can neglect the absolute value for the pressure loss (3.2) for e4 and e5.
Without loss of generality, we assume b3 ≥ b2, which implies

q6 ≥ 0 (3.6)

because otherwise we have q5 > q4. Thus the pressure loss from v1 to v4 via e5 and e6 is larger
than the pressure loss from v1 to v4 via e4. Consequently, we can also neglect the absolute value
for the pressure loss (3.2) for e6.

Given q1 = b2 +b3, q2 = b2 and q3 = b3, conservation of mass (3.3) yields

−q4−q5 =−b2−b3 (3.7a)

q4−q6 = b2 (3.7b)

q5 +q6 = b3 (3.7c)
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Continuity in pressure (3.4) yields

p2
1− p2

4 = φq2
4ε (3.8a)

p2
1− p2

5 = φq2
5ε (3.8b)

p2
4− p2

5 = φq2
6ε (3.8c)

Adding (3.8a) and (3.8c) leads to

p2
1− p2

5 = φ(q2
4 +q2

6)ε
(3.8b)
= φq2

5ε ⇐⇒ q2
4−q2

5 +q2
6 = 0 (3.9)

Inserting (3.7b) and (3.7c) into (3.9) implies

(b2 +q6)
2− (b3−q6)

2 +q2
6 = 0 ⇐⇒ q2

6 +2(b2 +b3)q6 +b2
2−b2

3 = 0.

Solving the quadratic equation, we have

q6 =
1
2

[
−2(b2 +b3)±

√
4(b2 +b3)2−4(b2

2−b2
3)

]
=

1
2

[
−2(b2 +b3)±

√
8b2b3 +2b2

3

]
=

1
2

[
−2
√

b2
2 +2b2b3 +b2

3±2
√

b2
3 +2b2b3 +b2

3

]
Since b2,b3 > 0, both solutions for q6 exist, but the negative branch of the solution yields q6 < 0,
which is a contradiction to (3.6). Thus

q6 =
√

2
√

b2b3 +b2
3−b2−b3

b3≥b2
≥ 0,

is the unique solution of q6. Note that q6 = 0 for b3 = b2 and q6 > 0 for b3 > b2. With (3.7b),
we have

q4 =
√

2
√

b2b3 +b2
3−b3

b3≥b2
≥ 0,

and with (3.7c) we have

q5 = b2 +2b3−
√

2
√

b2b3 +b2
3

b3≥b2
≥ 0.

For pipe lengths L1 = L̃, L2 = L3 = L̃− ε and L4 = L5 = L6 = ε , the pressure at the nodes is
given by

p1 =
√

p2
0−φq2

1L̃,

p4 =
√

p2
1−φq2

4ε =
√

p2
0−φq2

1L̃−φq2
4ε,

p5 =
√

p2
1−φq2

5ε =
√

p2
0−φq2

1L̃−φq2
5ε,

p2 =
√

p2
4−φq2

2(L̃− ε) =
√

p2
0−φ(q2

1 +q2
2)L̃−φ(q2

4−q2
2)ε,

p3 =
√

p2
5−φq2

3(L̃− ε) =
√

p2
0−φ(q2

1 +q2
3)L̃−φ(q2

5−q2
3)ε.
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Inserting the flows implies

p2 =

√
p2

0−φ
(
2b2

2 +2b2b3 +b2
3
)
L̃−φ

(
−b2

2 +2b2b3 +3b2
3−2
√

2b3

√
b2b3 +b2

3

)
ε,

p3 =

√
p2

0−φ
(
b2

2 +2b2b3 +2b2
3
)
L̃−φ

(
b2

2 +6b2b3 +5b2
3−2
√

2(b2 +2b3)
√

b2b3 +b2
3

)
ε.

For

k2,1 := 2b2
2 +2b2b3 +b2

3, k2,2 :=−b2
2 +2b2b3 +3b2

3−2
√

2b3

√
b2b3 +b2

3,

k3,1 := b2
2 +2b2b3 +2b2

3, k3,2 := b2
2 +6b2b3 +5b2

3−2
√

2(b2 +2b3)
√

b2b3 +b2
3,

we have
p2 =

√
p2

0−φk2,1L̃−φk2,2ε, p3 =
√

p2
0−φk3,1L̃−φk3,2ε. (3.10)

Remark 3.2. Note that the pressures stated in (3.10) coincide with the pressures stated in (3.5)
for ε = 0.

Remark 3.3. For b2 > b3, we have q6 ≤ 0 and the pressures are given by

p2 =

√
p2

0−φ
(
2b2

2 +2b2b3 +b2
3
)
L̃−φ

(
5b2

2 +6b2b3 +b2
3−2
√

2(2b2 +b3)
√

b2
2 +b2b3

)
ε,

p3 =

√
p2

0−φ
(
b2

2 +2b2b3 +2b2
3
)
L̃−φ

(
3b2

2 +2b2b3−b2
3−2
√

2b2

√
b2

2 +b2b3

)
ε

(3.11)

3.4. The optimal design problem. Consider a continuously differentiable function

f : R→ R, f : ε 7→ ω2(p2(ε)− p̄)2 + ω3(p3(ε)− p̄)2,

with weights ω2,ω3 > 0 and a reference pressure p̄ ∈ R≥0. Often, in applications, the pressure
needs to satisfy box constraints [pmin, pmax] such that p̄ can be chosen as (pmin + pmax)/2. We
consider the optimal shape problem

min
ε∈R

f (ε), s.t. ε ≥ 0. (3.12)

Assume that p0 is sufficiently large such that p2, p3 ≥ 0. Since ε is bounded from below by 0
and from above by L̃, due to the continuity of f , optimal design problem (3.12) has at least one
solution by the extreme value theorem. We now compute the topological derivative

T (v1) = lim
ε↘0+

f (ε)− f (0)
ε

= f ′(0+).

If the topological derivative T (v1) is non-negative, then the network without cycle Figure 5 (A)
provides a lower objective value than the objective value for the network Figure 5 (B) for any
ε > 0. We have

f ′(ε) = 2ω2(p2(ε)− p̄) · p′2(ε)+2ω3(p3(ε)− p̄) · p′3(ε).

For the derivative of p2 and p3, we obtain

p′2(ε) =
1
2

1
p2(ε)

(
−φk2,2

)
, p′3(ε) =

1
2

1
p3(ε)

(
−φk3,2

)
,
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which implies

f ′(ε) =−ω2(p2(ε)− p̄) ·
φk2,2

p2(ε)
−ω3(p3(ε)− p̄) ·

φk3,2

p3(ε)
.

Thus

T (v1) =−ω2(p2(0+)− p̄) · k2

p2(0+)
−ω3(p3(0+)− p̄) · k3

p3(0+)

=−ω2

k2,2

(√
p2

0−φk2,1L̃− p̄
)

√
p2

0−φk2,1L̃
−ω3

k3

(√
p2

0−φk3,1L̃− p̄
)

√
p2

0−φk3,1L̃
.

(3.13)

Note that, for b2 = b3 we have k2 = k3 = 0, i.e., for symmetric outflow, for every ε ∈ (0, L̃], we
have q6 = 0. Thus the topological derivative does not provide any insights, since the cycle is not
used for gas transport. For b3 > b2, we have k3 < 0 < k2, since some gas on its way from v0 to
v3 passes v1,v4 and v5, and thus the pressure loss between v1 and v2 is higher compared to the
junction without cycle. So, for b2 6= b3, one term in the topological derivative (3.13) is always
positive, one term is always negative and the sign of (3.13) strongly depends on the weights
ω2,ω3 and on the reference pressure p̄. In Figure 6, we present an example with the optimal
values for ε for different reference pressures p̄. In Figure 6 (A), we have T (v1)> 0, while, in
Figure 6 (B) and (C), we have T (v1)< 0.

v0 v1

v2

v3

(A) Solution ε∗ = 0m for
p̄ = 35bar

ε

ε

εv0 v1

v2

v3

v4

v5

(B) Solution ε∗ = 1959m
for p̄ = 40bar

ε∗
ε∗

ε∗
v0 v1

v2

v3

v4

v5

(C) Solution ε∗ = 7779m
for p̄ = 45bar

FIGURE 6. Optimal shape of a network junction for different reference pres-
sures with weights ω2 =ω3 = 1, pipe length L̃ = 1 ·104m, constant φ = 14714m/
s2 and outflows b2 = 120kg/m2s, b3 = 150kg/m2s.

For b3≥ b2 we have p3≤ p2 and we can also observe that the smallest pressure in the network
p3 increases with increasing ε , allowing smaller inlet pressures p0. Thus it is natural to consider
an objective function depending on p0, p2 and p3, as we do in the next section.

3.5. The optimal design and control problem. In this section, we consider the optimal design
and control problem for a network junction, where the control is the initial pressure at node v0.
Consider the continuously differentiable function

f : R2→ R, f : (p0,ε) 7→ ω0(p0− p̄0)
2 + ω2(p2(p0,ε)− p̄)2 + ω3(p3(p0,ε)− p̄)2,

with weights ω0,ω2,ω3 > 0 and reference pressures p̄0, p̄ ∈ R≥0. Consider the optimal design
and control problem

min
(p0,ε)

f (p0,ε) s.t. ε ≥ 0, p0 ≥ 0 (3.14)
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In order to extend the results later to tree-structured networks, we first consider the problem
of finding the minimal inlet pressure p0 for given ε . For a given 0≤ ε ≤ L̃, consider the optimal
control problem

min
p0∈R

f (p0,ε) s.t. p0 ≥ 0 (3.15)

Lemma 3.1. The optimal control problem (3.15) has a unique solution.

Proof. For b3 ≥ b2, there exists a lower bound p0, s.t. p3 /∈ R for p0 < p0. Further, since
limp0→∞ f (p0,ε) = ∞, we can find p0 with f (p0,ε)≥ f (p0,ε) for all p0 ≥ p0. Thus, a solution
of (3.15) exists due to the extreme value theorem.

For the uniqueness, we show the strict convexity of f (p0,ε) w.r.t. p0. Note that

∂

∂ p0
f (p0,ε) = 2ω0(p0− p̄0)+2ω2

(p2(p0,ε)− p̄)p0

p2(p0,ε)
+2ω3

(p3(p0,ε)− p̄)p0

p3(p0,ε)

= 2ω0(p0− p̄0)+2ω2

[
p0− p̄

p0

p2(p0,ε)

]
+2ω3

[
p0− p̄

p0

p3(p0,ε)

]
.

For the second derivative we have

∂ 2

∂ p2
0

f (p0,ε)= 2(ω0+ω2+ω3)− p̄
[ p2(p0,ε)− p2

0 p−1
2 (p0,ε)

p2(p0,ε)2

]
− p̄
[ p3(p0,ε)− p2

0 p−1
3 (p0,ε)

p3(p0,ε)2

]
.

For b2,b3 > 0 we have p0 > p2(p0,ε), p3(p0,ε) and thus

p0 p−1
j (p0,ε)> 1 and p j(p0,ε)− p2

0 p−1
j (p0,ε)< 0, j ∈ {2,3}.

Consequently we have ∂ 2

∂ p2
0

f (p0,ε)> 0, which means f is strictly convex and for 0 < ε ≤ L̃, the
optimal control problem (3.15) has a unique solution. �

Let p∗0(ε) be the unique optimal solution of (3.15) given by the stationary point of f (p0, ·),
or, if the stationary point leads to complex pressures p2, p3, by the smallest possible value for
p0, such that p2 and p3 are real. We assume that p̄0 and p̄ are sufficiently large such that the
stationary point of f (p0, ·) is always feasible. Then the unique optimal solution p∗0(ε) of (3.15)
is given by the solution of

0 =
∂

∂ p0
f (p∗0(ε),ε)

= 2ω0(p∗0(ε)− p̄0)+2ω2

[
p∗0(ε)− p̄

p∗0(ε)
p2(p∗0(ε),ε)

]
+2ω3

[
p∗0(ε)− p̄

p∗0(ε)
p3(p∗0(ε),ε)

] (3.16)

The optimal cost corresponding to p∗0(ε) is given by

J(ε) := f (p∗0(ε),ε).

Then, the topological derivative TJ(v1) is given by

TJ(v1) = lim
ε↘0+

J(ε)− J(0)
ε

= lim
ε↘0+

f (p∗0(ε),ε)− f (p∗0(0),0)
ε

, (3.17)

which can be approximated by solving (3.16) for small ε > 0 and for ε = 0. If the topological
derivative is non-negative, J(ε) does not decrease if we add a cycle to the network. If the
topological derivative is negative, a cycle in the network decreases the cost J(ε).
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Note that the problem of finding the optimal cycle size w.r.t. the optimal control (3.16) is
equivalent to solving a bilevel optimization problem with the optimal cycle size on the upper
level and the optimal control on the lower level. Applying (3.16) for the lower level, the optimal
size of the cycle ε can be computed by solving the optimization problem

min
ε≥0

J(ε),

s.t.
∂

∂ p0
f (p∗0(ε),ε) = 0.

(3.18)

With the data from Figure 6 (B) and for ω0 = 1, p̄0 = 60, the topological derivative (3.17) is
negative, which implies that a cycle decreases the control cost. The solution ε∗ of (3.18) and its
corresponding optimal control are given by

ε
∗ = 8824m, p∗0(ε

∗) = 55.49 bar,

and the corresponding optimal pressures are given by

p2(p∗0(ε
∗),ε∗) = 41.79bar, p3(p∗0(ε

∗),ε∗) = 41.59bar.

4. TOPOLOGICAL DERIVATIVE METHOD FOR OPTIMAL DESIGN STRATEGY FOR STEADY

STATE DISTRIBUTION NETWORKS

In this section, we provide a strategy for the optimal design of a gas distribution network
based on the results of the last section. Consider a connected, directed, tree-structured graph
G = (V ,E ) with a single source node, i.e., we have |VS| = 1 and |E−(v)| ≤ 1 for all v ∈ V .
Assume that all network junctions are of the form Figure 5 (A), i.e., we have |E+(v)| = 2 for
inner nodes (with bv = 0) and |E+(v)|= 0 for exit nodes (bv > 0). An example graph is shown
in Figure 7. Let

VJ := { v ∈ V | |E+(v)|= 2 },
be the set of network junctions.

e1

e2

e3

e4

e5

e6

e7

e8

e9

e10

e11

e12

e13

e14

e15

v0 v1

v2

v3

v5

v7

v8

v10

v4

v6

v9

v11

v12

v13

v14

v15

FIGURE 7. Tree-structured network graph with source node (blue), inner nodes
(gray) and exit nodes (red)

Let the pressure given at the source node v0 and let outflows bi be given for all vi ∈ VE with
b j = 0 for all v j ∈ VJ . Then, the conservation of mass yields

bv0 =
n

∑
i=1

bvi.
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Let Ā be the incidence matrix without the first row (corresponding to v0). Then Ā is square and
of full rank (see, e.g., [18]), thus the flow at the edges is given by mass conservation

q = Ā−1b̄,

i.e., the flow at the edges is a priori known. Instead of solving the optimal design and control
problem (3.14) for the whole graph, which requires enormous effort for large graphs, we provide
a strategy based on the problems (3.15), (3.18) and the topological derivative (3.17) to obtain
an efficient network structure while keeping the control cost low. Therefore, we introduce the
set VC of network junctions that contain a cycle (c.f., Figure 5 (B)), which is empty for now,
but this will change when following the proposed algorithm. Further, for j ∈ VJ , we define the
continuously differentiable cost functions

f : R2→ R, f : (p0,ε j) 7→ ω0(p0− p̄0)
2 + ∑

i∈VE

ωi(pi(p0,ε j)− p̄i)
2,

with weights ω0,ωi > 0 and reference pressures p̄0, p̄i ∈ R≥0, for all i ∈ VE . The cost function
f j refers to the graph G that has a cycle of variable length ε j at node v j. Note that for the
readers’ convenience we write i ∈ VE and j ∈ VJ instead of vi ∈ VE and v j ∈ VJ for the index
of node vi and v j, respectively. The strategy to obtain an efficient network topology with low
control cost is stated in the following algorithm:

The key idea of Algorithm 1 is to successively add a cycle to the network junction, which is
most beneficial with respect to the topological derivative of this junction. In the following, we
will analyze Algorithm 1 step by step.

Line 1-4: Instead of solving the optimal design and control problem (3.14), we consider a
cycle at every network junction separately. Thus, in a loop we consider |VJ| graphs with an
additional cycle at a different location in each iteration.

Line 2: For every network junction v j ∈ VJ we compute the optimal control p∗0(ε j) (c.f.,
(3.15)), which exists due to Lemma 3.1. As it was mentioned before, the optimal control p∗0(ε j)

is either given by the stationary point of ∂

∂ p0
f (p∗0(ε j),ε j), if p̄0 and p̄i (i ∈ VE) are sufficiently

large, or by the lowest possible pressure p0, such that pi(p0, ·) is real for all i ∈ VE . Thus we
have

p∗0(ε j) =

{
unique solution of ∂

∂ p0
f (p∗0(ε j),ε j) = 0 if pi(p∗0(·), ·) is real for all ∈ VE

p0 else

The derivative of f with respect to p0 is given by (c.f., (3.16))

∂

∂ p0
f (p0(ε),ε) = 2ω0(p0(ε)− p̄0)+ ∑

i∈VE

2ωi

[
p0(ε)− p̄i

p0(ε)

pi(p0(ε),ε)

]
.

The pressures pi(p0(ε j),ε j) can be evaluated following the path from v0 to vi (i ∈ VE). Note
that since the graph is tree-structured, every network junction is either of the form Figure 5 (A)
or Figure 5 (B) without the first edge, respectively. Thus, if vk is on the path from v0 to vi with
the two outgoing edges e` = (vk,v`) and em = (vk,vm), we have

p` =
√

p2
k−φb2

` L̃, pm =
√

p2
k−φb2

mL̃ if vk ∈ VJ (c.f., (3.5)),
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Algorithm 1 Optimal Design Strategy for Tree-Structured Networks
1: for each j ∈ VJ do
2: Add a cycle of length ε > 0 to node v j and solve the optimal control problem

min
p0∈R

f j(p0,ε j) s.t. ε j ≥ 0, p0 ≥ 0.

3: Define the optimal cost as

J j(ε j) = f j(p∗0(ε j),ε j),

compute the topological derivative

TJ j(v j) = lim
ε j↘0+

J j(ε j)− J j(0)
ε j

= lim
ε j↘0+

f j(p∗0(ε j),ε j)− f j(p∗0(0),0)
ε j

.

4: end for
5: if TJ j(v j)≥ 0 for all j ∈ VJ then
6: Stop
7: else
8: Set j∗ := min j∈VJ TJ j(v j)
9: end if

10: Solve the optimal design problem

ε
∗
j∗ := min

ε≥0
J j∗(ε j∗) s.t.

∂

∂ p0
f j∗(p∗0(ε j∗),ε j∗) = 0. (4.1)

Replace v j∗ by a cycle with length ε∗j∗ , remove v j∗ from VJ and add v j∗ to VC.
11: if VJ = /0 then
12: Stop
13: end if
14: Return to 1.

i.e., if the network junction vk does not contain a cycle, we have

p` =

√
p2

k−φb2
` L̃−φ

(
−b2

` +2b`bm +3b2
m−2

√
2bm

√
b`bm +b2

m

)
εk

pm =

√
p2

k−φb2
mL̃−φ

(
b2
` +6b`bm +5b2

m−2
√

2(b`+2bm)
√

b`bm +b2
m

)
εk

if vk ∈ VC

and bm ≥ b`
(c.f., (3.10)).

and

p` =

√
p2

k−φb2
` L̃−φ

(
5b2

` +6b`bm +b2
m−2

√
2(2b`+bm)

√
b2
` +b`bm

)
εk

pm =

√
p2

k−φb2
mL̃−φ

(
3b2

` +2b`bm−b2
m−2

√
2b`
√

b2
` +b`bm

)
εk

if vk ∈ VC

and bm < b`
(c.f., (3.11)).

Line 3: For every network junction v j ∈ VJ with corresponding optimal control p∗0(ε j) we
compute the topological derivative TJ j(v j), which can be approximated by solving

∂

∂ p0
f (p∗0(ε j),ε j) = 0,
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for small ε j and for ε j = 0. If the topological derivative is negative, adding a cycle decreases
the cost J j(ε j), if it is positive, a cycle does not provide any benefit.

Line 5-9: If all topological derivatives are non-negative, adding a cycle to any network junc-
tion does not provide any benefit, thus the algorithm has terminated and the resulting graph
consists of the source node VS, the network junctions without cycle VJ , the network junctions
with a cycle VC and the exit nodes VE . If at least one topological derivative is negative, we save
the index of the network junction with the smallest topological derivative as j∗, since adding a
cycle to the network junction v j∗ provides the highest benefit.

Line 10: Since adding a cycle to v j∗ provides the highest benefit for the graph, we solve the
optimal design problem (4.1) depending on the optimal inlet pressure p∗0(ε j∗). Thus, for the
optimal solution ε∗j∗ of (4.1), we add the cycle of length ε∗j∗ to the network junction v j∗ . Since
the junction now contains a cycle, we remove it from the set of network junctions without cycles
VJ and add it to the set of network junctions with cycles VC.

Line 11-13: If the set of network junctions without cycle VJ is empty, the algorithm termi-
nated since adding further cycles is not possible and higher benefit cannot be achieved. The
resulting graph consists of the source node VS, the network junctions without cycle VJ , the net-
work junctions with a cycle VC and the exit nodes VE .

Line 14: If no exit condition was satisfied, the routine is repeated for the new graph that
consists of the source node VS, the network junctions without cycle VJ , the network junctions
with a cycle VC and the exit nodes VE .

Note that Algorithm 1 terminates after a finite number of steps. The result of Algorithm 1 is
feasible for the optimal design and control problem

min
(p0,ε)

f (p0,ε) s.t. ε ≥ 0, p0 ≥ 0, (4.2)

where the cost function is given by

f : R×R|VJ |→ R, f (p0,ε) = ω0(p0− p̄0)
2 + ∑

i∈VE

ωi(pi(p0,ε)− p̄i)
2.

So instead of solving the optimal design and control problem (4.2), which requires enormous
numerical effort for large graphs, Algorithm 1 provides a strategy to obtain a feasible solution
with low control cost. A numerical example for the tree-structured graph shown in Figure 7 is
provided in the Appendix.

5. CONCLUSIONS

In this paper, we analyzed the problem of finding the optimal shape and control for gas
networks. Based on the assumption that a turnpike property holds for the dynamic optimal
control problem, we replaced the gas dynamics by a stationary model, enabling the presence
of an explicit solution for the pressure and the flow on the network. In Section 2, we laid the
groundwork for our analysis: The numerical study of a turnpike result for the gas dynamics on
networks. In Section 3, we presented the analysis for the explicit solution on a network junction.
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We computed the topological derivative for the network junction, while a negative value for the
topological derivative means that replacing the center node with a small cycle improves the
network in terms of cost. We also analyzed the optimal design and control problem as a bilevel
problem, in which control problem (depending on the cycle size) was solved on the lower level,
enabling us to solve the optimal shape problem depending on the optimal control. Based on this
analysis, in Section 4, we presented a strategy to find the optimal shape and control of a network
by considering the network junctions individually, allowing us to exploit the analysis presented
before.

An extension of our approach is possible in various directions. It can also be applied to tree-
structured gas networks with an arbitrary number of source nodes. Then, computing the explicit
solution as we did in (3.10), (3.11) is more challenging, but still possible, and Algorithm 1 can
be applied as well. Considering arbitrary gas networks is also possible, but due to the lack of
an explicit solution for the pressure, Algorithm 1 can only be performed numerically, without
exploiting the explicit solution. This means that a new strategy to solve the control problem on
the lower level and the shape problem on the upper level has to be developed, since the lower
level cannot be replaced by the root of the control cost, c.f., (3.18).

A natural next step is the analysis of the turnpike phenomenon for the semi-linear gas model.
Although there exist various turnpike results for linear problems, the number of turnpike results
for the nonlinear case is rather limited, especially in the context of hyperbolic PDEs. However,
the turnpike phenomenon for nonlinear hyperbolic systems deserves further attention, since it
is interesting and challenging. Without the turnpike assumption from Section 2, it becomes
necessary to analyze the control and shape problem for the gas dynamics, which was, to our
best knowledge, not considered yet.
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APPENDIX: A NUMERICAL EXAMPLE FOR ALGORITHM 1

We provide a numerical example for Algorithm 1 applied to the tree-structured graph shown
in Figure 7 here. The network topology is shown in Table 2. The outflows for the exit nodes in
VE are given by

b =
[
50 20 80 60 30 50 40 20

] kg
m2s

.

Pipe friction, pipe diameter, temperature, and specific gas constant are given by

λ = 0.05, D = 0.5 m, T = 10◦C and RS = 519.66
J

kg K
,

where the latter is defined by the properties of methane. Further, we set

ω0 = ωi = 1 ∀i ∈ {1,2,3,5,7,8,10},
and for the reference pressures, we set

p̄0 = 55 bar and p̄ =
[
40 50 45 48 46 45 48 49

]
bar.

For p0 = 60 bar, the objective value for the network without a cycle is given by

f (p0,0) = 30.9536.

source node set of network junctions set of exit nodes
VS = {v0} VJ = {v1,v2,v3,v5,v7,v8,v10} VE = {v4,v6,v9,v11,v12,v13,v14,v15}
TABLE 2. Source nodes, network junctions and exit nodes for the graph shown
in Figure 7.

Algorithm 1: First Iteration. We successively add a cycle to every network junction and
solve the corresponding optimal control problem (Line 2), and we compute the topological
derivative for every cycle (Line 3), which are shown in Table 3. We set v∗ := v2, since TJ2(v2)

j 1 2 3 5 7 8 10
104 ·TJ j(v j) = −0.0649 −0.3750 −0.1269 −0.0000 −0.0000 −0.0000 −0.0000

TABLE 3. Topological Derivative for a cycle at network junction v j in the first
iteration.
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is the smallest derivative. The solution of the optimal design problem (4.1) is given by

ε
∗
2 = 1523.0205 m, p∗0(ε

∗
2 ) = 58.9968 bar and J2(ε2) = 19.048.

Thus we add a cycle with length ε∗2 at node v2, and we set

VJ = {v1,v3,v5,v7,v8,v10} and VC = {v2},
which is shown in Figure 9.

Algorithm 1: Second Iteration. We successively add a cycle to every remaining network
junction and solve the corresponding optimal control problem (Line 2), and we compute the
topological derivative for every cycle (Line 3), which are shown in Table 4. We set v∗ := v3,

j 1 3 5 7 8 10
104 ·TJ j(v j) = −0.0594 −0.1286 −0.0000 −0.0000 −0.0000 −0.0000
TABLE 4. Topological Derivative for a cycle at network junction v j in the sec-
ond iteration.

since TJ3(v3) is the smallest derivative. The solution of optimal design problem (4.1) is given
by

ε
∗
3 = 2866.2292 m, and p∗0(ε

∗
3 ) = 58.9095 bar and J3(ε

∗
3 ) = 18.7068.

Thus we add a cycle with length ε∗3 at node v2, and we set

VJ = {v1,v5,v7,v8,v10} and VC = {v2,v3},
which is shown in Figure 10.

Algorithm 1: Third Iteration. We successively add a cycle to every remaining network
junction and solve the corresponding optimal control problem (Line 2), and we compute the
topological derivative for every cycle (Line 3), which are shown in Table 5. We set v∗ := v1,

j 1 5 7 8 10
104 ·TJ j(v j) = −0.0658 −0.0000 −0.0000 −0.0000 −0.0000

TABLE 5. Topological Derivative for a cycle at network junction v j in the sec-
ond iteration.

since TJ1(v1) is the smallest derivative. The solution of the optimal design problem (4.1) is
given by

ε
∗
1 = 592.8666 m,and p∗0(ε

∗
1 ) = 58.8963 bar and J1(ε

∗
1 ) = 18.6118.

Thus we add a cycle with length ε∗1 at node v2 and we set

VJ = {v5,v7,v8,v10} and VC = {v1,v2,v3},
which is shown in Figure 11.

Algorithm 1: Fourth Iteration. We successively add a cycle to every remaining network
junction and solve the corresponding optimal control problem (Line 2), and we compute the
topological derivative for every cycle (Line 3), which are shown in Table 6. Since all topological
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j 5 7 8 10
104 ·TJ j(v j) = −0.0000 −0.0000 −0.0000 −0.0000

TABLE 6. Topological Derivative for a cycle at network junction v j in the sec-
ond iteration.

derivatives are close to machine accuracy, the exit condition (Line 5,6) is met and Algorithm 1
finished. In every step, we can observe a decrease of the cost J(ε). Thus, Algorithm 1 provides
a network with three cycles ε∗1 ,ε

∗
2 ,ε
∗
3 and the corresponding optimal control p∗0(ε

∗
1 ) with low

control cost.

e1

e2

e3

e4

e5

e6

e7

e8

e9

e10

e11

e12

e13

e14

e15

v0 v1

v2

v3

v5

v7

v8

v10

v4

v6

v9

v11

v12

v13

v14

v15

FIGURE 8. Initial Graph before applying Algorithm 1.
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FIGURE 9. Graph after one iteration of Algorithm 1.
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FIGURE 10. Graph after two iterations of Algorithm 1.
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