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Abstract. In this paper, topological derivatives are defined and employed for gas transport networks
governed by nonlinear hyperbolic systems of PDEs. The concept of topological derivatives of a shape
functional is introduced for optimum design and control of gas networks. First, the dynamic model for
the network is considered. The cost for the control problem includes the deviations of the pressure at the
inflow and outflow nodes. For dynamic control problems of gas networks when the turnpike property
occurs, the synthesis of control and optimum design of the network can be simplified. That is, the
design of the network can be performed for optimal control of the steady-state network model. The cost
of design is defined by the optimal control cost for the steady-state network model. The topological
derivative of the design cost, given by the optimal control cost with respect to the nucleation of a small
cycle, is determined. Tree-structured networks can be decomposed into single network junctions. The
topological derivative of the design cost is systematically evaluated at each junction of the decomposed
network. This allows for the identification of internal nodes with negative topological derivatives, where
replacing the node with a small cycle leads to an improved design cost. As the set of network junctions is
finite, the iterative procedure is convergent. This design procedure is applied to representative examples
and it can be generalized to arbitrary network graphs. A key feature of such modeling approach is the
availability of exact steady-state solutions, enabling a fully analytical topological analysis of the design
cost without numerical approximations.

Keywords. Gas networks; Optimum design; Optimal control; Topological derivative; Turnpike phenom-
enon.
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1. INTRODUCTION AND MOTIVATION

Gas transport through pipeline networks is a key part of the energy infrastructure, especially
with hydrogen expected to become an important energy carrier in the near future. At the same
time, natural gas is still widely used in households and industry across Europe. Pipelines are
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a cost-efficient way to move gas over long distances, but the flow experiences a significant
pressure drop due to friction along the pipeline. In fact, the International Energy Outlook
2018 [1] predicts that natural gas consumption will double until 2040 compared to 2012. For
hydrogen transport, a new pipeline network is planned in Germany [2] and Europe [3]. In
this paper we are interested in the optimal shape and control of gas transportation networks.
The network is governed by the isothermal Euler equations [4, 5, 6, 7], a system of nonlinear
hyperbolic PDEs. In [8], the authors discussed coupling conditions at the network junctions. In
[9, 10], the authors gave an excellent overview about the broad topic of gas network modeling
including model simplifications and network components. Optimization problems for electricity
transport were analyzed e.g., in [11, 12], for traffic flow networks e.g., in [13, 14] and for
communication and information networks e.g., in [15, 16].

We consider a dynamic optimal boundary control problem for the gas network. However, the
optimum design problems for dynamic models are complex and we are interested in possible
simplification for practical applications. To this end, for the further optimization with respect
to the shape and topology of the gas network, it is proposed to use the optimal value of control
cost in order to determine the optimum design solution for the network. The turnpike property
of the optimal control problem is exploited to reduce the dynamic model to the static model
for the purposes of shape and topology optimization. It means that the steady state model of
the network as well as the associated optimal control problem are considered for the optimum
design of network. Steady states models for gas networks were analyzed, e.g., in [17, 18, 19,
20].

In our setting, the shape functional for the networks is defined by the optimal value of the
control cost for the associated steady state control problem. The proposed strategy is construc-
tive because the topological derivatives of the shape functional are effectively determined for
singular perturbations of the network. By the singular perturbation we mean the creation of a
small cycle at the internal node of the network. The topological derivatives of shape functionals
are introduced in [21] for singular geometrical domain perturbations in the shape optimization
problems governed by partial differential equations of elliptic type. The concept of topological
derivatives is also used for networks governed by linear PDEs in [22]. In shape and topology
optimization there are two techniques used for numerical methods. The first is the shape sensi-
tivity analysis with boundary variations for the geometrical domains. The second uses singular
geometrical domain perturbations and leads to the topological derivatives. The geometrical do-
main is usually associated with the state equation. Similar methods can be applied on networks.
Here, the singular perturbation of the network is the introduction of a small cycle at the network
junctions. Our strategy is effecient and can be described as follows.

(1) Let us consider the optimal control problem for gas networks. We determine the opti-
mality conditions in the form of an optimality system. The optimal value of the cost is
considered for optimum design of the network.

(2) The turnpike property is checked for the control problem. This way the dynamic model
is replaced by static model for the purposes of optimum design of the network.

(3) The static control problem is considered and solved and the optimal value of the control
cost is used as the shape functional for optimum design of the network.

(4) The topological derivatives of the shape functional are evaluated for internal nodes of
the network. The subset of the nodes with negative values of the topological derivatives
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is selected for further topology changes by replacing the nodes with a small cycle. In
this way the optimal network is constructed without further possibilities to change the
topology in this way.

Concerning control of networks, the new concept for control problems is the turnpike prop-
erty. The presence of such a property simplifies the analysis of control system because the
evolution problem solution for large time horizon can be replaced by a combination of exact
controllability for evolution model with the control of steady state model. We restrict ourselves
to the simple model problems for the network with the tree structure. The turnpike property was
analyzed in [23, 24] for the finite-dimensional setting and in [25] for the infinite-dimensional
setting. Boundary control problems for linear hyperbolic PDEs were analyzed, e.g., in [26, 27].
Turnpike results based on dissipativity were analyzed in [28, 29], a manifold turnpike result
was provided in [30]. The monograph [31] gives an excellent overview about the topic and in
[32] the authors provide an excellent overview about further turnpike properties in finite and
infinite dimensional optimal control. For semi-linear hyperbolic boundary control problems, to
our best knowledge, turnpike properties have not been shown yet. We provide some numerical
evidence of the turnpike property, however, the general semi-linear and nonlinear case is still
an open problem.

The outline of the paper is the following. In Section 2, the turnpike property for semi-linear
gas network control is considered from a numerical point of view. We provide numerical evi-
dence for the turnpike phenomenon for an optimal boundary control problem governed by the
isothermal Euler equations for both a single pipe and a network. In Section 3, the elementary
junction as a subset of network is considered for the purposes of shape and topology optimiza-
tion. We first derive the explicit solution on the network junction with and without a cycle. We
analyze the optimal control problem for the network. For the optimal control, we compute the
topological derivative and analyze the optimal design problem for the network junction. In Sec-
tion 4, we present an algorithm based on the previous results for finding the optimal network
topology. For every internal node in the network, we solve the optimal control problem and
compute the topological derivative with respect to the optimal control. We replace the node
with the smallest topological derivative by a small cycle and successively repeat this procedure
until all topological derivatives are positive or until every internal node was replaced by a small
cycle. To our best knowledge, this is the first work which combines optimal shape and control
techniques for gas networks.

2. A NUMERICAL TURNPIKE RESULT FOR THE GAS DYNAMICS

The gas flow in a pipeline is modeled by the well-known isothermal Euler equations [4, 5, 6,
7] which consist in a 2 x 2 system of partial differential equations given by

pt+Qx:07

A qlq|
2 = ———.,—
Qt+(p+pv)x— 2D p )
where p = p(t,x) is the gas density in kg/m?, g = g(t,x) is the gas flow in kg/m?s, p = p(t,x) is
the gas pressure in Pa, v = v(t,x) is the gas velocity in m/s, A > 0 is the pipe friction coefficient
(no unit), D > 0 is the pipe diameter in m and (¢,x) € [0,7] x [0,L]. Considering ideal gas, the
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relation

p=cp,
holds, where c is the speed of sound in the gas in m/s. Excluding ¢ from the space derivative
in the second equation leads to the space derivative

2 V2
c (p+pc_2)x7

where v/c is the Mach number. For the gas flow in pipeline networks, the Mach number is close
to 0, thus this term is often neglected (see, e.g., [33]), leading to a well-known semilinear model
for the gas transport in a pipeline

pr+cq: =0,
2.1
t X 2D pv

For initial conditions
p(0.x) = pini(x) € L*(0,L),  q(0,x) = gini (x) € L*(0, L), (2.2)
for boundary conditions
p(t,0) = po(r) € L*(0,T), q(t,L) = qu(r) € L*(0,T),
and if compatibility between initial and boundary conditions is satisfied, equations (2.1) have
a solution p,q € C([0,T];L*(0,L)) (see e.g., [5]). Note that, for higher regularity, the solution

has better regularity properties as well. Let initial conditions pjyi, gini € [? (0,L) and convex
functions f,g : R — R be given. Consider the optimal control problem

T
min [ f(po(0).p(t.L) +8(q(1.0). (1)) .
Po.qL€H*(0,T) JO

s.t. p(O,x) = pini(x)7 Q(()?x) = Qini(x)7

pi+cqe =0, (2.3)
A % qlq|
qr+px = ) 7,

p(t,0) = po(t), q(t,L) = qr(z).

The existence of solutions of optimal control problems like (2.3) was analyzed on graphs
recently (see [34]). The authors demonstrated that under the assumptions that the initial state is
C'- compatible with the nodal conditions and that the control cost contains an H2-regularization
term, an optimal control of (2.3) exists on networks. For a desired pressure pp € R? and a
desired flow gp € R?, let the objective function be given by

st pt.2 = [ 0] o

wnd elgtn.0).au0) = | |40 g

As initial condition, we consider the steady state of (2.1) corresponding to the boundary con-
ditions pg = 50bar and q; = 180%. The optimal solution of (2.3) is shown in Figure I and

= (po(t) = ppa)* + (p(t,1) = p2)",

2
= (4(1,0) —gp.1)*+ (q(t) —ap2)”.
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it was computed using the AMPL software tool with the ipopt solver (see e.g., [35]) using 201
grid points for time discretization and 21 grid points for space discretization. The picture was
created in MATLAB® R2023b. A turnpike structure is clearly visible, as the solution of (2.3),
i.e., the dynamic optimal controls are close to the corresponding steady state optimal controls
in the interior of the time interval. Only at the beginning and at the end of the time interval,
dynamic and steady state optimal control differ.

pressure
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— static pressure
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1 1
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flow

220

200 - =

P i
——dynamic flow

160 [~ —— static flow b
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FIGURE 1. Result of (2.3) for T = 24h, L = 10km, A = 0.1, ¢ = 380m/s, D =
0.5m, pp = (60,55) "bar and gp = (180,200)T%.

This turnpike structure also occurs when coupling the model (2.1) on networks. We consider
a network junction as shown in Figure 2. The gas model (2.1) and the initial conditions (2.2)
hold on every edge. For the reader’s convenience we consider equal pipe length, pipe diameter
and pipe friction for every edge. The coupling conditions at the network junction are given by
the conservation of mass

q1(t,L) = q2(¢,0) + g3(2,0) vVt € [0,T], (2.4)
and by the continuity in pressure
pi(t,L) = pa(1,0),  pi(t,L) = p3(¢,0) Ve €[0,T]. (2.5)
For boundary conditions
p1(#,0) = po(t), qa2(1,L) = qu(t), q3(t,L) = 4r(7), (2.6)

in L?(0,T), the gas model (2.1) with initial conditions (2.2) in L*(0,L) and coupling conditions
(2.4), (2.5) has a solution p;,q; € C([0,T],L*(0,L)) [5]. Again, for higher regularity properties
of the boundary conditions, the solution has better regularity properties as well.

Let initial conditions p; isi,g; ini be given on every edge. For convex functions f,g : R3 >R
we consider the optimal control problem
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FIGURE 2. Gas Network Junction

min_ /Tf(po(t),pz(t,L),pa(t,L)) +8(q1(1,0),q1(1),4(1)) dt,
P0,qL.qLEL*(0,T)  JO

st pi(0,x) = piini(x), ¢i(0,x) = gjini(x), i=1,2,3

(pi)e +c*(gi)x =0,
2 P

@)+ (s =55 212, e
p1(t,0) = po(1), q2(t,L) = qr(t), q3(t,L) = qu(1),
pi(t,L) = pa(t,0) = p3(2,0), q1(t,L) = q2(2,0) + ¢3(1,0). o

As it was the case for the optimal control problem (2.3), the network model also shows a
turnpike structure. For a desired pressure pp € R? and a desired flow gp € R3, let the objective
function be given by

f(po(l),pl(l,L),pz(l,L>): P1

g(q1(1,0),q.(t),qr(t)) = || | qr(t) | —pp

As an initial condition, we consider the steady state of the network model corresponding to
the boundary conditions pg = 50bar, q;, = 100;‘1—5‘1, and g = 80% . As in the previous exam-
ple, we use 201 grid points for time discretization and 21 grid points for space discretization on
every edge. The optimal controls of (2.7) are shown in Figure 3. As above, the optimal controls
of (2.7) are close to the corresponding steady state optimal controls in the interior of the time
interval. They differ just at the beginning and at the end of the time interval. The corresponding
pressure profiles at different time points are shown in Figure 4. The pressure profiles at the be-
ginning and at the end of the time interval differ from the optimal steady state pressure profiles,
while they are close to each other in the middle of the time interval, which supports the presence
of the turnpike phenomenon. Thus, from now on, we assume that the optimal controls satisfy a
turnpike inequality:

Assumption 2.1. The optimal control problems (2.3) and (2.7) satisfy an integral turnpike prop-
erty of the form
T
)

s 2
ul(t)—u®l| dr <C,
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FIGURE 3. Result of (2.7) for T = 36h, L = 10km, A = 0.1, ¢ = 380m/s, D =
0.5m, pp = (60,52,55)bar and gp = (180, 110’75)5_58;.
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FIGURE 4. Pressure profiles of the solution of (2.7) att = 0h, t = 18h and t = 36h.

where u%(¢) is the solution of (2.3) resp. (2.7), u® is the solution of the corresponding steady
state optimal control problems and C € R is a time-independent constant.

In the next sections, we analyze the problem of optimal network topology, i.e., we analyze,
if a network is more effective and beneficial when replaced by a cycle. Since operation of
gas networks is planned for several hours, and due to the presence of a turnpike property, we
consider steady states on gas networks, as they are often used to replace the transient models
(see, e.g., [17, 19, 20, 36, 37]). Thus, in the next sections, we consider the problem of finding
the optimal topology for junctions in gas networks for steady states.

3. OPTIMAL DESIGN AND SHAPE FOR A STEADY STATE NETWORK JUNCTION

In this section, we consider the problem of finding the optimal shape of a network junction
in terms of gas flow in pipeline networks. Therefore, under the Assumption 2.1, we introduce a
steady state model for the gas flow in pipeline networks, we compute the analytical solution for
the flow on a network junction and we solve an optimal shape design problem for the network
junction.

3.1. A steady state gas transport model on a network junction. Consider a connected di-
rected graph G = (7, &) with a set of vertices ¥ with |#'| = n and a set of edges & C ¥ x ¥
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with |&| = m. Every edge e represents a pipe with length L. On every edge e € &, the gas flow
is given by the steady state formulation of the semilinear isothermal Euler equations (2.1), i.e.,
on every edge e € & we have (see, e.g., [17, 18, 19, 38])

(1) =0,
pix) = -

where p is the gas pressure, p is the gas density, ¢ is the gas flow, and A is the pipe friction and
D is the pipe diameter. The exponent e refers to edge e € &, respectively. The first equation in
(3.1) implies constant flow on every edge. Thus, let g € R be the vector of flows at the edges
with g; = ¢%. Applying the ideal gas equation p = Rg T p with the specific gas constant Rg and
the temperature 7', the second equation in (3.1) is

A€ q(x)|g° ()] 3.1)
2D pe(x)

e A'eRST qe’qe‘
px(x) - PEEPYIRNE
2D¢ pe(x)
which has the solution
) ART
(P°(x))* = p*(0) — 9°¢°lg°lx  with  ¢°= DS : (3.2)

For the reader’s convenience, we assume equal ¢¢ on every pipe. That is, we have ¢ = ¢ for all
e € &. Let p € R" be the vector of pressures at the nodes with p; = p"i. For every node v € 7, let
&_(v) denote the ingoing edges, i.e., the edges that end in v and let & (v) be the set of outgoing
edges, i.e., the edges that start in v. Every node can either be a source node (gas enters the
network) or an exit node (gas leaves the network or gas is conserved in the network). Let 75 be
the set of source nodes and let ¥z be the set of exit nodes with YsU ¥z =¥, YsN ¥ = 0. Let
b € R" with b; = b" be the load vector, i.e., the vector of gas entering or leaving the network.
We assume b; < 0 if gas enters the network at node v; and b; > 0 if gas leaves the network at
node v;, i.e., b; < 0 for v; € ¥5 and b; > 0 for v; € ¥z. We define the incidence matrix A € R"*™
with

—1 ifeje & (vi)

A,"jz 1 ifej'Eéa_(V,')
0 else

We consider conservation of mass at every node, i.e.,

Z g = Z qc+b" Ywev.
ecé_(v) ecéy(v)

Applying the incidence matrix A, conservation of mass is equivalent to
Ag=Db. (3.3)
Further, we consider continuity of the pressure at the nodes, i.e., for all v € ¥,
PL)=p'(0)  VecE (v), fEE).

Thus, applying (3.2) and the incidence matrix A, the pressure at the nodes can be computed by
evaluating (see, e.g., [18, 19])

AT p? =dq|q|L, (3.4)
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where ® is a diagonal matrix with the entries ®;; = ¢; defined in (3.2). The square and the
right-hand side product in (3.4) have to be understood component by component. Let p; be
given for all v; € /5 and let b; be given for all v; € Y. Then the system (3.3), (3.4) has a unique
solution (see [17]).

In this section, we consider a network junction without cycle G| = (71,41) and a network
junction with cycle G = (%3, &> ), where the edges in the cycle have length &, as given in Table
1 and shown in Figure 5. In both graphs, let vy be the only inflow node, v»,v3 be outflow nodes,
and all other nodes be inner nodes.

set of vertices set of edges edge orientation

1 = {vo,vi,v2} & ={e1,ez,e3} e1 = (vo,v1), e2 = (vi,v2), e3 = (v1,v3)

V2 ={vo,v1,v2,v3,v4,Vs5} | &2 = {e1,e2,e3,ea,e5,e6} | e1 = (vo,v1), €2 = (v4,12), €3 = (v5,V3),
eq = (v1,v4), es = (v1,V5), e = (v4,V5)
TABLE 1. Set of vertices and set of edges of the graphs G and G,

V2

Vo Vi V3

(A) No inner cycle (B) Inner Cycle

FIGURE 5. Network junction with and without inner cycle

In the following sections, we state the analytic solution for the pressure at the nodes and we
consider the problem of finding the optimal size of the cycle, i.e. the optimal € with respect to
a suitable cost function.

3.2. Analytical solution for a junction without cycle. Let pg > 0, b1 =0 and b,,b3 > 0 be
given. The incidence matrix A for the graph G; shown in Figure 5 (A) is given by

-1 0 O
I -1 -1
A= 0O 1 0
0 0 1

Thus, the conservation of mass (3.3) yields
T
q = [by+b3, by, b3]

For the pressures at the nodes, the pressure continuity (3.4) yields

and b= [—bz—b3, 0, by, b3}T
—pg+pt = —9qilq1|L1,

—pt+ 3 = —90q2|q2|Lo,
—p1+p3 = —0q3lqs|Ls.
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Since by,b3 > 0, we have ¢ > 0 and we can neglect the absolute value. For L1 = Ly = L3 =L,
the pressure at the outflow nodes is given by

P2 =[P~ 0GL— 0L =/}~ 9(a} +B)L=\/p3+0(253 +2babs + B)L,
Py =[P~ 08— 9BL =/}~ (a3 +B)L =1/ P+ (83 + 2babs + 203)L.

3.3. Analytical solution for a junction with cycle. Let pg, b, and b3 be given. With the
incidence matrix A being given by

(3.5)

—1 0 0 0 0 0
1 0 0 —1 —1 0
4_|0 1 0 0 0 0
o 0 1 0 0 o0
0 -1 0 1 0 -1
0 0 -1 0 1 1]

the third and fourth equation of mass conservation (3.3) yields g» = b, and g3 = b3. Further,

we have
q1="br+ b3 and by = —by — b3,
which implies
T T
q= [b2+b37 by, bs, q4, 45, (]6} and b= [_bz_b37 0, b2, b3, 0, O} .

Before we compute the remaining flows g4, g5, gs, we state the following remark.

Remark 3.1. Cyclic flow in G is not possible, since the pressure decreases along a pipe in flow

direction. Consider, e.g., the cyclic flow g4 > 0,95 < 0,g¢ > 0, which leads to the contradiction
P1 < Pp5 <ps<pi

If flow g4 is negative, then g5 must be positive and gg negative to guarantee a positive flow
q>. This would lead to a cyclic flow and thus to a contradiction. If flow g5 is negative, then g4
and ge must be positive to guarantee a positive flow ¢g3. This would also lead to a contradiction
due to a cyclic flow. Thus we have

qs >0 and qs > 0,

and we can neglect the absolute value for the pressure loss (3.2) for e4 and es.
Without loss of generality, we assume b3 > by, which implies

g6 =0 (3.6)

because otherwise we have g5 > g4. Thus the pressure loss from v; to v4 via es and egq is larger
than the pressure loss from v; to v4 via e4. Consequently, we can also neglect the absolute value
for the pressure loss (3.2) for eg.

Given g1 = by + b3, g2 = by and g3 = b3, conservation of mass (3.3) yields

—q4—qs = —by— b3 (3.7a)
g4 —qe = b2 (3.7b)
q5+q6 = b3 (3.7¢)
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Continuity in pressure (3.4) yields

pi—pi=90q5¢€ (3.82)
Pt —pi = 0q3e (3.8b)
P — D3 = dqge (3.8¢)
Adding (3.82a) and (3.8c) leads to
(3.8b)
Pi-pi=0(gi+qd)e = ¢qic = GG—qi+tqgi=0 (3.9)

Inserting (3.7b) and (3.7¢) into (3.9) implies
(b2+46)° — (b3—qs)* +q5 =0 <=  qz+2(ba+b3)ge+b5—b3 =0.

Solving the quadratic equation, we have

<
5
|

—2(by+b3) + \/4(b2 +b3)2 —4(b3 — b%)}

—2(by+b3) £ 1/8bsb3 +2b§}

—24/b3 + 2bybs + b3 42 /b3 + 2bsbs +b§}

N = N = N =

Since by, b3 > 0, both solutions for gg exist, but the negative branch of the solution yields g¢ < 0,
which is a contradiction to (3.6). Thus

b3>by

g6 = V2\/babs+b3 —by—b3 > 0,

is the unique solution of g¢. Note that gg = 0 for b3 = b, and gg > 0 for b3 > by. With (3.7b),
we have

b3>b
s =V2\/babs+bI—by > 0,
and with (3.7¢) we have
b3>b
gs = by +2b3 — 2\ [baby + b2 > 0.

For pipe lengths Ly =L, L, =Ly = L — € and Ly = L5 = Lg = €, the pressure at the nodes is

given by
p1=1/p5—94iL,
ps= \/p% —9gie = \/p% —9qiL— 9qie,
ps =[P} —9d2e =\ — 0a7L— 9ae.
P2 =[P}~ 0B(L—e)=\/}— 0} +B)L—9(c3— B)e.

Py =[P~ 0B —€) =/}~ (4} + B)L—9(e2— )e.
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Inserting the flows implies

P2 = \/pg — ¢ (234 2b2b3+b3)L—¢ ( — b3+ 2byb3 4 3b3 — 2v/2b3 1/ byb; +b§)e,
3= \/pg — 9 (b3 +2babs + 253) L~ ¢ (B3 + 6babs + 553 — 2v/2(b2 +2b3) [ babs + b3 ) €.

For

ko i=2b34+2byb3+ b3, kaoi= —b3+2babs + 363 —2v/2b3y/baby 4 b3,

k31 i=b3+2bybs +2b3,  kao = b3+ 6byby+ 5b3 — 2V/2(by +2b3)\/ babs + b3,

we have

P2 = \/P% — Pk L — 9ka s, p; = \/pg — @ks 1L — 9kss€. (3.10)

Remark 3.2. Note that the pressures stated in (3.10) coincide with the pressures stated in (3.5)
for e = 0.

Remark 3.3. For b, > b3, we have g < 0 and the pressures are given by

pr= \/p(z) — (263 +2byb3 +b3)L—¢ (Sbg +6bobs + b3 — 2v/2(2by + b3 )\ /b3 +b2b3>s,

Py = \/pg — ¢ (b3 +2byb3 +2b3)L—¢ (3193 +2byby — b3 —2V2by\ [ b3 +bzb3) £

(3.11)

3.4. The optimal design problem. Consider a continuously differentiable function

fiR=R,  frew an(pa(e)—p)* + w3(ps(e) - p)%,

with weights @», @3 > 0 and a reference pressure p € R>(. Often, in applications, the pressure

needs to satisfy box constraints [pmin, Pmax] such that 5 can be chosen as (pmin + Pmax) /2. We
consider the optimal shape problem

i € L e>0.
min  f(e), s > (3.12)

Assume that pg is sufficiently large such that p,, p3 > 0. Since € is bounded from below by 0
and from above by L, due to the continuity of f, optimal design problem (3.12) has at least one
solution by the extreme value theorem. We now compute the topological derivative

9(\11) = SI{‘%LM =f/(0+).

If the topological derivative .7 (v;) is non-negative, then the network without cycle Figure 5 (A)
provides a lower objective value than the objective value for the network Figure 5 (B) for any
€ > 0. We have

f'(€) =2mx(p2(€) — p) - pa(€) +2w3(p3(€) — p) - p3(€).

For the derivative of p; and p3, we obtain

ph(e) = %pz;(g)(— ¢k2,2>, ps(e) = 2p3te) (— ¢k3,2>,

| —
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which implies

£1(6) = ~an(pa(e) = )+ oo~ an(pae) = ) 2%
Thus
.k .k
T (1) = =02(p2(07) = p) o5 — @(pa(0) = P) - -

k2,2<\/l7%—¢k2,1i—ﬁ> k3<\/l?%—¢k3,1i—ﬁ> (.13)
\/ PG5 — k21 L \/ P§— 0ks L

Note that, for b, = b3 we have ko, = k3 = 0, i.e., for symmetric outflow, for every € € (O,i], we
have g¢ = 0. Thus the topological derivative does not provide any insights, since the cycle is not
used for gas transport. For b3 > by, we have k3 < 0 < kj, since some gas on its way from vg to
v3 passes vi,v4 and vs, and thus the pressure loss between v and v, is higher compared to the
junction without cycle. So, for b, # b3, one term in the topological derivative (3.13) is always
positive, one term is always negative and the sign of (3.13) strongly depends on the weights
a», w3 and on the reference pressure p. In Figure 6, we present an example with the optimal
values for € for different reference pressures p. In Figure 6 (A), we have .7 (v;) > 0, while, in
Figure 6 (B) and (C), we have 7 (v;) < 0.

= -

V2 € V2

Vo Vi V3 Vo Vi € V3 Vo Vi

(A) Solution £* = Om for (B) Solution €* = 1959m (c) Solution €* = 7779m
p = 35bar for p = 40bar for p = 45bar

FIGURE 6. Optimal shape of a network junction for different reference pres-
sures with weights @, = @3 = 1, pipe length L = 1-10*m, constant ¢ = 14714m/
s? and outflows by = 120kg/m?s, b3 = 150kg/m?s.

For b3 > b, we have p3 < p, and we can also observe that the smallest pressure in the network
p3 increases with increasing €, allowing smaller inlet pressures pg. Thus it is natural to consider
an objective function depending on pg, p> and p3, as we do in the next section.

3.5. The optimal design and control problem. In this section, we consider the optimal design
and control problem for a network junction, where the control is the initial pressure at node vy.
Consider the continuously differentiable function

[RP =R, f:(po,€)— (po—po)* + @(p2(po,€)—p)* + @s(p3(po,€) —p)*,
with weights @y, @, @3 > 0 and reference pressures po, p € R>o. Consider the optimal design
and control problem

min  f(po, € st. €>20,pyp=>0
fmin (po,€) (3.14)
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In order to extend the results later to tree-structured networks, we first consider the problem
of finding the minimal inlet pressure pg for given €. For a given 0 < € < L, consider the optimal
control problem

i £ .t >0
min f(po,€) st po=> (3.15)

Lemma 3.1. The optimal control problem (3.15) has a unique solution.

Proof. For by > b,, there exists a lower bound pg, s.t. p3 ¢ R for pg < po. Further, since
lim .. f(Po, €) = oo, we can find py with f(po, €) > f(po,€) for all py > Po. Thus, a solution
of (3.15) exists due to the extreme value theorem.

For the uniqueness, we show the strict convexity of f(po,€) w.r.t. pg. Note that

J _ (p2(po,€) — P)po (p3(po,€) — P)po
7 f(po,e) =2 — o)+ 2 2
apof(Po ) =2m0(po — Po) 2(p0.E) 3 2370 )
_ _ Po _ Po
o (po — Po) Po ppz(po,s) 3 | po Pp3<p0,8)

For the second derivative we have

92 p2(po,€) — pepy ' (po,€) p3(po,€) — p3p; ' (po, €)
T f(po,€) =2(wo+ @y + @3) — p —p .
ap%f(po ) =2t en+ o) [ p2(po.€)? ] p[ p3(po,€)? ]

For by,b3 > 0 we have pg > p2(po,€), p3(po, €) and thus

por;'(po€)>1  and  pi(po.€)—pip; ' (po.e) <0, je{2,3}.

Consequently we have aa—; f(po,€) > 0, which means f is strictly convex and for 0 < € < L, the
0

optimal control problem (3.15) has a unique solution. 0J

Let p;(€) be the unique optimal solution of (3.15) given by the stationary point of f(po,),

or, if the stationary point leads to complex pressures pa, p3, by the smallest possible value for

Po, such that p, and p3 are real. We assume that py and p are sufficiently large such that the

stationary point of f(po, ) is always feasible. Then the unique optimal solution pj(€) of (3.15)
is given by the solution of

9 s
0= a_pof(pO(S)vg)

— 2an(pi(€) — Fo) + 22| piy(e) — p—POE) )}uw{pz‘)(s)—p

pZ(pEk)(g)?s
The optimal cost corresponding to p(;(€) is given by
J(e) := f(po(€), €)-
Then, the topological derivative 7 (v} ) is given by
f(po(€),€) — f(p5(0),0)

L J(e)—=J(0) .
a=tn e = A : , 17

which can be approximated by solving (3.16) for small € > 0 and for € = 0. If the topological
derivative is non-negative, J(€) does not decrease if we add a cycle to the network. If the
topological derivative is negative, a cycle in the network decreases the cost J(€).
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Note that the problem of finding the optimal cycle size w.r.t. the optimal control (3.16) is
equivalent to solving a bilevel optimization problem with the optimal cycle size on the upper
level and the optimal control on the lower level. Applying (3.16) for the lower level, the optimal
size of the cycle € can be computed by solving the optimization problem

min J(g),
>0
p) (3.18)
s.t. (po(€),€) =0.

Ipo
With the data from Figure 6 (B) and for wg = 1, pg = 60, the topological derivative (3.17) is
negative, which implies that a cycle decreases the control cost. The solution €* of (3.18) and its
corresponding optimal control are given by

€" = 8824m, po(€") =55.49 bar,
and the corresponding optimal pressures are given by

p2(po(€7),€") =41.79bar, p3(po(€),€") = 41.59bar.

4. TOPOLOGICAL DERIVATIVE METHOD FOR OPTIMAL DESIGN STRATEGY FOR STEADY
STATE DISTRIBUTION NETWORKS

In this section, we provide a strategy for the optimal design of a gas distribution network
based on the results of the last section. Consider a connected, directed, tree-structured graph
G = (¥, &) with a single source node, i.e., we have | 75| =1 and |&_(v)| < 1 forall v € 7.
Assume that all network junctions are of the form Figure 5 (A), i.e., we have |&4(v)| = 2 for
inner nodes (with " = 0) and | &’ (v)| = 0 for exit nodes (b” > 0). An example graph is shown
in Figure 7. Let

V= {veV |16 =2},

be the set of network junctions.

V12

Vi3

Vi4

V15

FIGURE 7. Tree-structured network graph with source node (blue), inner nodes
(gray) and exit nodes (red)

Let the pressure given at the source node vy and let outflows b; be given for all v; € g with
bj=0forall v; € ;. Then, the conservation of mass yields

n

b =Y b".

i=1
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Let A be the incidence matrix without the first row (corresponding to vy). Then A is square and
of full rank (see, e.g., [18]), thus the flow at the edges is given by mass conservation

g=A""D,
i.e., the flow at the edges is a priori known. Instead of solving the optimal design and control
problem (3.14) for the whole graph, which requires enormous effort for large graphs, we provide
a strategy based on the problems (3.15), (3.18) and the topological derivative (3.17) to obtain
an efficient network structure while keeping the control cost low. Therefore, we introduce the
set #¢ of network junctions that contain a cycle (c.f., Figure 5 (B)), which is empty for now,
but this will change when following the proposed algorithm. Further, for j € ¥}, we define the
continuously differentiable cost functions
fiRZ=SR, f:(po,gj)— an(po—po)*+ Y, wi(pi(po,€j) — i),
I€Yg

with weights @y, @; > 0 and reference pressures po, p; € R, for all i € #. The cost function
fj refers to the graph G that has a cycle of variable length €; at node v;. Note that for the
readers’ convenience we write i € 7z and j € #; instead of v; € ¢ and v; € ¥; for the index
of node v; and v}, respectively. The strategy to obtain an efficient network topology with low
control cost is stated in the following algorithm:

The key idea of Algorithm I is to successively add a cycle to the network junction, which is
most beneficial with respect to the topological derivative of this junction. In the following, we
will analyze Algorithm I step by step.

Line 1-4: Instead of solving the optimal design and control problem (3.14), we consider a
cycle at every network junction separately. Thus, in a loop we consider |#;| graphs with an
additional cycle at a different location in each iteration.

Line 2: For every network junction v; € #; we compute the optimal control pj(€;) (c.f.,

(3.15)), which exists due to Lemma 3.1. As it was mentioned before, the optimal control pj(&;)
is either given by the stationary point of aipo f(py(€j),€j), if po and p; (i € V) are sufficiently
large, or by the lowest possible pressure P, such that p;(po,-) is real for all i € ¥g. Thus we

have

i} unique solution of %f(pg(sj),sj) =0 if pi(p§(-),-) is real for all € Vg
po(€j) = bo

Py else
The derivative of f with respect to pg is given by (c.f., (3.16))
) po(€)
5—f(po(€),€) =2m0(po(€) — Po) + 2(0,{1?08 —Pim |
Ipy! (P0(E) €)= 200(pole) =Po) -}, 201 pol€) =Pi 7, )

The pressures p;(po(€;),€;) can be evaluated following the path from v to v; (i € 7). Note
that since the graph is tree-structured, every network junction is either of the form Figure 5 (A)
or Figure 5 (B) without the first edge, respectively. Thus, if v is on the path from vg to v; with
the two outgoing edges ey = (vy,vy) and e, = (Vi, Vi), We have

pe=1\/pPi—0biL,  pm=1\/pf—9biL  ifvi€ ¥ (cf,(3.5),
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Algorithm 1 Optimal Design Strategy for Tree-Structured Networks
1: for each j€ 7; do
2: Add a cycle of length € > 0 to node v; and solve the optimal control problem
min fj(p(),gj) s.t. €20, po=>0.
PoER
3: Define the optimal cost as
Jj(€;) = fi(po(€j). &),
compute the topological derivative
Ji(gj)—J;(0 (p5(€j),€) — fi(p§(0),0
c%j( /)= lim j(&i) —J;(0) — lim fi(po(€)).€i) — fi(p5(0) )
£,\07" €j £\ 0" €j
4: end for
5: if j;,(v;) > O for all j € #; then
6: Stop
7: else
8: Set j* :=minjcy, T5;(v;)
9: end if
10: Solve the optimal design problem
" : J .
€ = min Jj (&)%) s.t. a—pofj*(po(ej*),ej*) =0. 4.1)
Replace v;- by a cycle with length €7, remove v+ from ¥#; and add v« to Y.
11: if 77 = (0 then
12: Stop
13: end if
14: Return to 1.
i.e., if the network junction v; does not contain a cycle, we have
o= \/p]% = 9OFL— ¢ (= B3+ 2bibn + 36, — 2320, [biby + 17, ) e if v € Jc
and b,, > by

P = \/ pE—obLL—¢ (bg + 6byby, + 552 — 2V/2(by + 2by) ) bibm + b%) g  (cf,(3.10).

and

pe= \/p,% —objL—¢ (Sbﬁ + 6Dy + b2, — 2V/2(2by + byy) 1/ b +bgbm> g Twec

and b, < by

P — \/ p2— 2L —¢ (3195 + by — b2 — 22D\ [ b2 + bgbm> & (c.f., 3.11)).

Line 3: For every network junction v; € ¥ with corresponding optimal control p(€;)
compute the topological derivative 7}, (v;), which can be approximated by solving

J .
0 (po(€)),€j) =0,

weE
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for small €; and for €; = 0. If the topological derivative is negative, adding a cycle decreases
the cost J;(¢g;), if it is positive, a cycle does not provide any benefit.

Line 5-9: If all topological derivatives are non-negative, adding a cycle to any network junc-
tion does not provide any benefit, thus the algorithm has terminated and the resulting graph
consists of the source node 75, the network junctions without cycle 77, the network junctions
with a cycle #¢ and the exit nodes 7%. If at least one topological derivative is negative, we save
the index of the network junction with the smallest topological derivative as j*, since adding a
cycle to the network junction v+ provides the highest benefit.

Line 10: Since adding a cycle to v« provides the highest benefit for the graph, we solve the
optimal design problem (4.1) depending on the optimal inlet pressure pj(€j+). Thus, for the
optimal solution 8}1 of (4.1), we add the cycle of length 87* to the network junction v«. Since
the junction now contains a cycle, we remove it from the set of network junctions without cycles
¥; and add it to the set of network junctions with cycles 7¢.

Line 11-13: If the set of network junctions without cycle ¥} is empty, the algorithm termi-
nated since adding further cycles is not possible and higher benefit cannot be achieved. The
resulting graph consists of the source node ¥, the network junctions without cycle 77, the net-
work junctions with a cycle 7¢ and the exit nodes 7.

Line 14: If no exit condition was satisfied, the routine is repeated for the new graph that
consists of the source node 75, the network junctions without cycle 77, the network junctions
with a cycle 7¢ and the exit nodes 7%.

Note that Algorithm I terminates after a finite number of steps. The result of Algorithm 1 is

feasible for the optimal design and control problem

min  f(po,€) st. €20, po>0, 4.2)

(Po.€)
where the cost function is given by

fRxRISR, f(po,e) = an(po—po)* + Y, @ilpi(po.e) — pi)*.
i€Yg

So instead of solving the optimal design and control problem (4.2), which requires enormous
numerical effort for large graphs, Algorithm I provides a strategy to obtain a feasible solution
with low control cost. A numerical example for the tree-structured graph shown in Figure 7 is
provided in the Appendix.

5. CONCLUSIONS

In this paper, we analyzed the problem of finding the optimal shape and control for gas
networks. Based on the assumption that a turnpike property holds for the dynamic optimal
control problem, we replaced the gas dynamics by a stationary model, enabling the presence
of an explicit solution for the pressure and the flow on the network. In Section 2, we laid the
groundwork for our analysis: The numerical study of a turnpike result for the gas dynamics on
networks. In Section 3, we presented the analysis for the explicit solution on a network junction.
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We computed the topological derivative for the network junction, while a negative value for the
topological derivative means that replacing the center node with a small cycle improves the
network in terms of cost. We also analyzed the optimal design and control problem as a bilevel
problem, in which control problem (depending on the cycle size) was solved on the lower level,
enabling us to solve the optimal shape problem depending on the optimal control. Based on this
analysis, in Section 4, we presented a strategy to find the optimal shape and control of a network
by considering the network junctions individually, allowing us to exploit the analysis presented
before.

An extension of our approach is possible in various directions. It can also be applied to tree-
structured gas networks with an arbitrary number of source nodes. Then, computing the explicit
solution as we did in (3.10), (3.11) is more challenging, but still possible, and Algorithm I can
be applied as well. Considering arbitrary gas networks is also possible, but due to the lack of
an explicit solution for the pressure, Algorithm I can only be performed numerically, without
exploiting the explicit solution. This means that a new strategy to solve the control problem on
the lower level and the shape problem on the upper level has to be developed, since the lower
level cannot be replaced by the root of the control cost, c.f., (3.18).

A natural next step is the analysis of the turnpike phenomenon for the semi-linear gas model.
Although there exist various turnpike results for linear problems, the number of turnpike results
for the nonlinear case is rather limited, especially in the context of hyperbolic PDEs. However,
the turnpike phenomenon for nonlinear hyperbolic systems deserves further attention, since it
is interesting and challenging. Without the turnpike assumption from Section 2, it becomes
necessary to analyze the control and shape problem for the gas dynamics, which was, to our
best knowledge, not considered yet.
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APPENDIX: A NUMERICAL EXAMPLE FOR ALGORITHM 1

We provide a numerical example for Algorithm I applied to the tree-structured graph shown
in Figure 7 here. The network topology is shown in 7able 2. The outflows for the exit nodes in
Vg are given by

k
b=1[50 20 80 60 30 50 40 20] —f.
m-s
Pipe friction, pipe diameter, temperature, and specific gas constant are given by
J
A =0.05, D =0.5m, T =10°C and Rg =519.66——,
kg K
where the latter is defined by the properties of methane. Further, we set
W= =1 vie{l1,2,3,5,7,8,10},
and for the reference pressures, we set
po=55bar  and  p=[40 50 45 48 46 45 48 49| bar.
For py = 60 bar, the objective value for the network without a cycle is given by

£(po,0) = 30.9536.

source node \ set of network junctions \ set of exit nodes
Ys={vo} | ¥ ={vi.v2,v3,v5,v7,v8,v10} | Y& = {V4,6,v0,V11,V12,V13,V14,V15}
TABLE 2. Source nodes, network junctions and exit nodes for the graph shown
in Figure 7.

Algorithm 1: First Iteration. We successively add a cycle to every network junction and
solve the corresponding optimal control problem (Line 2), and we compute the topological
derivative for every cycle (Line 3), which are shown in Table 3. We set v* := vy, since .7}, (v2)

J 1 2 3 5 | 1 | 8 10
10*- 75, (vj) = | —0.0649 | —0.3750 | —0.1269 | —0.0000 | —0.0000 | —0.0000 | —0.0000
TABLE 3. Topological Derivative for a cycle at network junction v; in the first

iteration.
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is the smallest derivative. The solution of the optimal design problem (4.1) is given by
g =1523.0205m,  pj(e;) =58.9968bar  and  Jr(g) = 19.048.
Thus we add a cycle with length €5 at node v», and we set
Yy ={v1,v3,vs,v7,v8,vi0}  and Y= {2},
which is shown in Figure 9.

Algorithm 1: Second Iteration. We successively add a cycle to every remaining network
junction and solve the corresponding optimal control problem (Line 2), and we compute the
topological derivative for every cycle (Line 3), which are shown in Table 4. We set v* := v3,

j_ |t | 3 | 5 | 7 | 8 | 10
10*-.75,(vj) = | —0.0594 | —0.1286 | —0.0000 | —0.0000 | —0.0000 | —0.0000 |
TABLE 4. Topological Derivative for a cycle at network junction v; in the sec-
ond iteration.

since 7, (v3) is the smallest derivative. The solution of optimal design problem (4.1) is given
by

& = 2866.2292 m, and Po(&3) = 58.9095 bar and J3(&7) = 18.7068.
Thus we add a cycle with length €] at node v>, and we set
Yy ={v1,vs,v7,v8,vi0}  and Y= {va,v3},
which is shown in Figure 10.

Algorithm 1: Third Iteration. We successively add a cycle to every remaining network
junction and solve the corresponding optimal control problem (Line 2), and we compute the
topological derivative for every cycle (Line 3), which are shown in Table 5. We set v* := vy,

j | 1 |5 |7 | 8 | 10
10*- 75,(vj) = | —0.0658 | —0.0000 | —0.0000 | —0.0000 | —0.0000 |
TABLE 5. Topological Derivative for a cycle at network junction v; in the sec-

ond iteration.

since 7, (v1) is the smallest derivative. The solution of the optimal design problem (4.1) is
given by

g =592.8666 m,and  p;(ef) =58.8963bar  and  Ji(gf) =18.6118.
Thus we add a cycle with length & at node v, and we set
Yy ={vs,vz,v8,v10}  and Yo ={vi,v2,v3},
which is shown in Figure 1.

Algorithm 1: Fourth Iteration. We successively add a cycle to every remaining network
junction and solve the corresponding optimal control problem (Line 2), and we compute the
topological derivative for every cycle (Line 3), which are shown in 7able 6. Since all topological
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J 5 | 7 | 8 10
10*- 75, (v;) = | —0.0000 | —0.0000 | —0.0000 | —0.0000 |

TABLE 6. Topological Derivative for a cycle at network junction v; in the sec-
ond iteration.

derivatives are close to machine accuracy, the exit condition (Line 5,6) is met and Algorithm 1
finished. In every step, we can observe a decrease of the cost J(g). Thus, Algorithm I provides
a network with three cycles €/, €5, €5 and the corresponding optimal control p(&f) with low
control cost.

Vi2

Vi3

V14

V15

FIGURE 8. Initial Graph before applying Algorithm 1.
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V15

FIGURE 9. Graph after one iteration of Algorithm 1.
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FIGURE 10. Graph after two iterations of Algorithm 1.
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FIGURE 11. Graph after three iterations of Algorithm 1.
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