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Abstract. In this paper, we show two methods to compute sampling-robust adversarial examples (AEs)
for deep neural networks with rectilinear units (DNNs). Both methods use an adjustable robust counter-
part of a MILP model by Fischetti an Jo. They rely on new uncertainty sets in (pseudo-)metric spaces
of DNNs with identical structure and compact inputs. One method (the inner method) needs full infor-
mation on weights and biases of a nominal DNN after training. The other one (the outer method) only
needs full information on the training data and the training method used. We compare the two meth-
ods in experiments on DNNs classifying small fashion images according to the type of apparel shown.
While the inner method generates AEs that are only robust w.r.t. very mild retraining of a DNN, the outer
method leads to AEs that are robust w.r.t. retraining from scratch on the same training data. The outer
approach can therefore in principle be used for grey-box attacks of DNNs with no knowledge on internal
parameters after training.
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mization.
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1. INTRODUCTION

In this paper, exact optimization methods to generate adversarial examples (AE) for a given
ReLU Deep Neural Network (DNN) are extended by using the methods of robust optimization
in order to obtain AEs that are robust w.r.t. ““small” changes in the DNN (definitions and details
below). Previous exact optimization methods need full information on the given DNN (all
weights and biases) and, therefore, enable only white-box attacks. Our proposed method only
needs information on the training data and the possible training methods that were used to train
the DNN to be attacked (no weights and biases), which can be seen as a grey-box attack. Our
new idea is the following two-step approach: first, formulate an adjustable robust counterpart
w.r.t. to an uncertainty set in some space of DNNs; second, solve this (intractable) counterpart
approximatively by sampling in the uncertainty set.

While there are numerous approaches for leveraging machine learning techniques for solving
optimization problems [1], classical mathematical optimization methods have in turn been used
to improve or analyze machine learning structures [2]. One direction of the second class of
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research is embedding DNNs in mixed-integer linear programs [3, 4]. More specifically, [5]
and [6] have independently used methods from mixed-integer linear optimization (MILP) to
evaluate the vulnerability of DNNs to adversarial examples.

The notion of an adversarial example (AE) was coined in [7] as follows. For a nominal
input with known true classification value, an AE is an input with “small” distance to the nomi-
nal input and different classification value. Sometimes, a minimal misclassification probability
(output activation) is required for an AE. With MILP-model in [5], e.g., one can exactly mini-
mize the distance of an AE from the nominal input for DNNs bases on rectilinear units (ReLU).
This minimal distance can be interpreted as the robustness of the DNN against perturbations of
a nominal input. For an overview other methods for generating adversarial examples see [8].
Note that only exact optimization methods (i.e., methods generating reliable lower and upper
bounds) can, e.g., deal with the non-existence of adversarial examples at a given distance, which
would prove that a DNN is robust in this sense. The draw-back of these known exact MILP-
approaches is that full information on the trained parameters (withs and biases) of a DNN is
needed and that the computational effort is quite large even for small DNN-structures.

For an AE it is not guaranteed that it stays an AE if the DNN changes a little. For example,
the information about weights and biases might be uncertain. For the transferability of AEs to
certain other DNNs see [9]. There, robust optimization appears only in the context of robus-
tification of a DNN w.r.t. to perturbed AEs or robustification of an AE w.r.t. to perturbations
of itself (see also [10]). However, our goal is to determine adversarial examples that are robust
to changes of the DNN. Such examples could give insights to more general limits of DNNs
or a certain class of DNNs, i.e. DNNs with a given structure. Furthermore, taking more than
one DNN into account can increase the transferability of adversarial examples (see, e.g., [11]).
However, as far as we know, the presented methods for generating adversarial examples for
multiple DNNs so far are not exact.

In this manuscript, we combine the proposed mixed-integer formulation of [5] with robust
optimization techniques [12] in order to generate robustness of an AE against perturbations
of the DNN. In particular, using adjustable robustness [13], we formally design a model for
determining adversarial examples that lead to misclassifications for an uncertainty set of DNNs.
Since this model contains binary variables in the second stage, the standard methods for exactly
solving adjustable robust optimization problems cannot be applied. For an overview of solution
methods for adjustable robust programs with integer second stage variables, see [14, Sec. 6].
The exact methods for such programs [15, 16] based on splitting the uncertainty set, require the
uncertain coefficient matrices to be linear in the uncertain parameter, which is not the case for
our program where the uncertain parameter is a neural network. Therefore, we suggest to use
extensive formulations based on a finite number of samples from the uncertainty set (see [17]).
AEs generated this way will be called sample-robust.

We investigate two possible types of uncertainty sets that are both €-neighborhoods in some
metric space of DNNs: one based on perturbations of the weights and biases of a nominal DNN
(inner neighborhood), and one based on perturbations of the resulting classification function
in the space of all such functions generated by DNNs of identical inner structure (layers and
neurons) that have been trained on a given set of training data by a given set of training methods
(outer neighborhood). While the computation of an AE that is sample-robust w.r.t. an inner
neighborhood set (inner-sample robust AE) still needs the weights and biases of a nominal
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DNN, the computation of an AE that is sample-robust w.r.t. an outer neighborhood (outer-
sample robust AE) is independent from any weights and biases. Sampling in the latter case
consists of simulation, i.e., of generating DNNs from scratch using the training data and the
training methods used for the DNN to be attacked and dismissing DNNs that are not in the
outer neighborhood.

Table 2 of our experimental results shows that DNNs representing similar classification func-
tions do not necessarily have similar internal trained parameters. Thus, the inner neighborhood
may miss many DNNs with similar classification properties. Therefore, it can be expected that
inner-sample robustness need not be similar to outer-sample robustness. Indeed, our computa-
tional results show on examples from the MNIST-fashion dataset that the two approaches differ:
while the inner-sample robustness can be achieved easily even without or any kind of robust op-
timization, the outer-sample robustness can only be achieved by outer-sample robust AEs. In
all cases, surprisingly few samples are sufficient to obtain a reasonable level of robustness.

The contributions of this paper are the following:

e We define two types of robust adversarial examples by defining two (pseudo-)metric
spaces on the set of all deep neural networks.

e We compare the two types of robust adversarial examples on a standard data set of small
fashion images from ten classes of apparel.

e We show that even a small number of samples from a suitable uncertainty set can sub-
stantially increase the robustness of the generated adversarial example.

e We show how the so-called outer-sampling robustness can be utilized for a grey-box
attack of a DNN with unknown trained parameters but with known training data and
training method.

The rest of the paper is organized as follows. In Section 2 we recapitulate the notions for
DNNs and Robust Optimization that are important for this paper. In Section 3 we introduce the
two types of metric spaces on the set of all DNNs that lead to suitable uncertainty sets for the
robust-optimization approach. Section 4 presents our adjustable robust optimization model and
some details on the sampling method used to solve it. The experimental results are provided in
Section 5, before our conclusions are drawn in Section 6.

2. PRELIMINARIES

In this paper, DNNs are formally considered as parametrized functions (for more explana-
tions, see, e.g., [5]):

Definition 2.1 (DNN). A ReLU Deep Neural Network Structure (DNN-structure) with K + 1
layers of sizes ng,ny,...,ng is a function

f. { R™0 XRnoxnl—O—m—O—nK,lan XRn1+~~-—|—nK - R
. (X,W,b) = Y
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where

Ng—1
= max{ Y owh ! +b’;,o} fork=1,2,...,K.

i=1

The vector x is the input data, the vector y is the output data, the w are the weights, and the b
are the biases of the DNN-structure.

A ReLU Deep Neural Network (DNN) N = (f,w,b) is a DNN-structure f together with given
weights w and biases b, resulting in a function of the following form:

fo (R o R
wb: x = y:= f(x,wmb).

The process of generating weights and biases for a DNN-structure to obtain a DNN is called
training.
The standard softmax function is the following function:

RY¥  — [0,1]"

softmax : B exp (yl) exp (ynK) )
Yo <Z?K1 eXP(YH,-) Y 2751 eXP(Yn,-) ’

The classification probability function of a DNN N = (f,w,b) is the composite function p,,;, :=
softmax of,, », and the classification function of a DNN N = (f,w,b) is the function

on: R — {1,2,...,ng} =%
N x > argmax(p,p(x)).

For the training of a DNN-structure weights and biases are adapted to known pairs (x,y) of
input and output data (the training data) using some training method that aims to find weights w
and biases b that minimize some norm of f,, ,(x) —y. The classification functions of DNNs are
often used for classification problems. The accuracy of (the classification function of) a DNN
of a classification problem on known pairs (x,y) of input and output data not in the training data
(the test data) is the percentage of pairs (x,i) in the test data with cy(x) = i.

For the purpose of judging whether a possible input that is neither contained in the training
data nor in the test data, can be considered as incorrectly classified by a DNN, we need the
“true” classification of this input. We, therefore, define the true classifier of a classification
problem that allows us to define rigorously what an adversarial example is supposed to be.

Definition 2.2. Let 2" be the input domain of a classification problem with classes %’. The true
classifier is a function T*: 2~ — ¥ that maps each possible input x € 2 to a class T*(x) € ¥
The output of 7*(x) is called the true class of x. Given a DNN N, an input X with cy (%) = T*(X),
and a distance 0 > 0, an adversarial example for N w.r.t. X and 6 is an input x with || X —x|| < o
so that cy(x) # T*(x) = T*(%).
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The following MILP model for generating adversarial examples was presented in [5]:

710

min d;
x,s,z,djzo
s.t. —d; <x)—%) <d, Vi=1,...,n
d;i>0 Vji=1,...,n9
0 <x)<a) Vi=1,...,n9
Ng—1
Zwﬁj_.le_l—i—b];:xlj—s]; Vk=1,...,KVj=1,...,n;
i=1
k _ s
k>0 Vk=1,....KVj=1,...,m
ZeB Vk=1,....K¥Vj=1,...,m
d=1-4<0 Vk=1,...,KVj=1,...,m
A=0-s<0 Vk=1,...,KVj=1,...,m

xhay = (1495 Vie{l,... ng}\ {adv}

In this model (we call it the FJ-model), [ and i are lower and upper bounds on the components
of the input (application dependent). The data X denotes the correctly classified input (frue
class) and the variable xfdv is the output activation for a fixed incorrect class (target class).
Moreover, the parameter Y measures by how much the activation for the target class must be
larger than the activation for the true class on input x. This x is the variable for the adversarial
example input. Furthermore, d is an auxiliary variable used to measure the L;-distance of x
and X. The objective function models that we seek for an input x with minimal L-distance
to a correctly classified input xX. The constraints guarantee that the wrong classification has at
least a given “confidence”. In order to model the ReLU-propagation of activation values in the
inner layers, the binary auxiliary variables z and the slack variables s. The variable-dependent
indicator constraints (with a “—”") denote a case distinction between different constraints that
should hold when zlj‘. is 0 or 1, resp. It is a standard-technique of MILP to translate these into
feasible MILP-constraints by the so-called “Big-M-method”.

In this model it is implicitly assumed that a small distance of inputs implies that the true
classification does not change. This is a matter of human interpretation, though. Note that all
weights and biases of the DNN are needed as input parameters of the FJ-model.

The main reason for the hope that there must be adversarial examples that are robust against
small changes in the weights and biases of the given DNN is the following result.

Remark 2.1 ([18]). Any DNN-structure f is Lipschitz continuous.

For finding robust adversarial examples we seek to formulate and solve a suitable robust
counterpart of the FJ-model. Since the inner activation values are completely arbitrary (as long
as they exist), the concept of adjustable robust counterparts is appropriate.

The concept of adjustable robust optimization has been introduced in [13]. We will briefly
describe the general idea following the notation of [19]. As usual in robust optimization, we are
given an uncertainty set %/, consisting of scenarios & € %, representing different realizations



296 J.RAMBAU, R. RICHTER

of uncertain data. The goal is to solve the family of problems (P(§),& € %) with
min £ (x,y, &)
s.t. F(x,y,E) <0
xeX
yeY
with functions F(-,-,&): RO+ s R” and f(-,-,€): R1%% 5 R for all & € % . The infor-
mation structure is so, that the variable x must be set independently of the scenario & € % (the
non-anticipative variables or first-stage variables or here-and-now variables), whereas y can

be chosen individually dependent on & (the recourse variables or second-stage variables, or
wait-and-see variables, or adjustable variables). The set of feasible solutions in scenario & is

F (&)= {(xy) e RU*|F(x,y.8) <0}
while the set of feasible first-stage adjustable robust solutions is denoted as
F={xeX|VEewIyeY F(x,y,E) <0}.

The goal of adjustable robust optimization is to find the feasible first-stage solution with the
minimal objective value in the worst case, i.e., solving the problem

(P(8))

min sup  inf  f(x,y,&).
XeF ecq (xy)eF ()
This optimization problem is called the adjustable robust counterpart of the uncertain optimiza-
tion problem (P(&),& € % ). For a given nominal parameter & € 7/ the optimization problem
P(&) is called the nominal problem of (P(§),§ € %).
For a finite uncertainty set %/, the adjustable robust counterpart can be written as follows:

min sup f(x,y(§),§)

Eew
s.t. F(x,y(6),6) <0 VéEew
xeX
yE) ey vVEew

This is called the extensive form of the adjustable robust counterpart. It usually is an optimiza-
tion problem of the same type as the nominal problem but larger. Hence, it can be solved by the
same techniques as the nominal problem. There is no general exact solution method known for
the adjustable robust counterpart for infinite uncertainty sets. One class of problems for which
no exact solution algorithm is known is an adjustable robust counterpart with binary recurse
variables that have coefficients that are non-linear in &. In such cases, an approximate method
to solve a robust adjustable counterpart is to replace the uncertainty set by a finite number of
samples ([17]) and solve the corresponding extensive form of the adjustable robust counterpart
exactly.

3. METRIC SPACES OF DNNS

In this section, we define two metric spaces on the set of all DNNs with identical DNN-
structure. The plan is to generate uncertainty sets for an adjustable robust counterpart based
on
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e a nominal DNN N := (f,w,b), representing some known DNN correctly classifying
input X,

e an £-neighborhood around N in some metric space of DNNS, representing all DNNs for
which an adversarial example x close to X for N shall stay an adversarial example.

Definition 3.1. For a DNN-structure f, let 4" := {N|N = (f,w,b) } be the set of all DNNs with
DNN-structure f.

From now on we assume that the set 2 of possible inputs is compact. This is, e.g., the case
for all pixel images with a given resolution and bit-depth. Our benchmark example will be 8-bit
gray-scale images with 28 x 28 pixels.

The first metric space on ./#” that comes to mind is the space of all weights and biases with
some vector norm. We make the following choice. The goal we keep in mind is to obtain an
adjustable robust counterpart of the FJ-model that is “as tractable as possible”.

Definition 3.2. The inner distance of two DNNs N = (f,w,b) and N' = (f,w',b') in A" is
w\ (W
b 4

The inner €-neighborhood of a DNN N is a set of the form U}"(N) := {N|d"™(N,N) < &}. The

inner-DNN-space is the metric space A := (A", d"™).

d"(N,N') := ‘

Robustness of an AE w.r.t. to the inner neighborhood means that the AE stays an AE even
when in N small modifications of the weights and biases are initiated. Such a small perturbation
of weights and biases may happen when an otherwise known DNN is retrained on very few
additional training data.

However, if a DNN is trained from scratch with the same training data and training method
as N the usual stochastic nature of the training methods can lead to completely different weights
and biases although the resulting classification function maybe very similar. Table 2 shows this
for our benchmark example. Therefore, in the more sophisticated approach below we focus on
the DNN representing classification probabilities.

Definition 3.3. The outer distance of two DNNs N = (f,w,b) and N’ = (f,w’,b’) representing
classification probabilities py := p,,;, and py := p, iy respectively, is defined as

NN = [ ow) = pae ()]

The outer €-neighborhood of a DNN N is U™ (N) := {N|d°*'(N,N) < €}. The outer-DNN-
space is the metric space A := (A", d°").

Since DNNS are Lipschitz continuous (see Remark 2.1), d®"(N,N’) defines a metric on the
space of DNNs with input domain 2.

Unfortunately, the outer distance cannot be evaluated exactly since we cannot check all inputs
to evaluate the integral. With this intractability problem we again deal with sampling in the
following way.

Definition 3.4. Let X = {)EO, . ,)Z’”} C Z be a fixed set of samples of possible inputs. For a
DNN N = (f,w,b) representing classification probabilities py = p,, , let

Oy := (pN()EO), . ,pN()Em)) € R,
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The outer-sampling pseudo-distance of two DNNs N and N’ is then defined as
_ ox—0l
p :
The outer-sampling €-neighborhood of aDNN N is US(N) := {N|d***(N,N) < €}. The outer-
sampling-DNN-space is the pseudometric space A4 % := (.4, d°).

dOSd(N,N/) :

For a nominal DNN N and a given uncertainty parameter € we can now define possible
uncertainty sets we want to be robust against as follows.

LN = UP(N),
ffi“(N) = Ué“(N).
4. A MODEL FOR ROBUST ADVERSARIAL EXAMPLES

The next step of our plan is to setup an adjustable robust counterpart for generating robust
adversarial examples with protection level ¥ > 0 against some finite uncertainty set 2. The
not-anticipative variables only consist of the input and the auxiliary variables for its distance
to the nominal DNN, whereas all the other activation levels and all other auxiliary variables
are recourse variables. That is, we are only interested in their existence, but do not care about
their values. Note that the objective function does not contain any dependence on the uncertain
parameter (i.e., the DNN). Therefore, the supinf is just a constant value. This leads to

10

min dj
xs,z,dj 0
s.t. —djgx(}—)??gdj Vi=1,...,n9
di >0 Vi=1,...,n9
l-?gxggﬂ(} Vi=1,...,n9
ng—1
Y Wi oM E) + PG =A(E) —55(&) vk=1,... KVj=1,..mVEeZ |
i=1
A(&),s5(E) >0 Vk=1,... . KVj=1,... mV¥E e %
A(E)eB Vk=1,... KVj=1,...mVEe X
AE)=1-x4&) <0 Vk=1,...KVj=1,...mVée ¥
AE)=0—5(&)<0 Vk=1,...KVj=1,...mVée ¥
(&) > (1+pxf(&) Vied{l,...,ng}\{adv}Vé € Z

4.1)

where 2 is a finite uncertainty set. We call this model the adjustable robust FJ-model (ARFJ-
model).

We would like to plug-in the uncertainty sets 2"(N) and 2°*¢(N), resp. However, those
sets are uncountably infinite. Be aware, that the z-Variables are binary recourse variables. And
other recourse variables are bound by an equality constraint. Therefore, the standard methods
for solving adjustable robust programs for arbitrary uncertainty sets cannot be applied [14, Sec.
6]. Thus, for approximating solutions, we restrict ourself to discrete samples of the uncertainty
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set. As presented in [17], discrete sampling of the uncertainty set leads to a two-stage problem
in extensive form as it is used in stochastic programming [20], that may be solved with standard
MILP-methods. For further reference, we denote random samples of size o as follows:

FI(N) = {51,...,5“ £l e FN(N) Vi= 1,...,a}u{1‘v},

2PNy =g, e

The ARFJ-model w.r.t. the inner-sampling uncertainty set Z"(N) is called the ISFJ-model.
The ARFJ-model w.r.t. outer-sampling uncertainty set Z9°4(N) is called the OSFJ-model. In

v]_:) + x. For

2954 we include N and train networks N from scratch with the same training data by the same
training method as N. If d°(N,N) < €, we include N in Z". Otherwise we discard N. We
repeat this strategy until @ DNNs have been included. The weights and biases of the nominal
DNN and the o sampled DNNs are then used in the OSFJ-model. Since we have full control
over the sampled DNNs, this does not require any information on weights and biases of any
opaque DNN except the nominal DNN N. This methods seems to be specifically appealing for
our purpose: if we only know the DNN-structure, the training data, and the training method but
not the weights and biases of a nominal DNN, then all these sampled DNNs could have been
the ones we would like to find an AE for.

Even more appealing is the fact that we could as well use the nominal DNN only as an oracle
on the training data, without any knowledge of its weights and biases, only to evaluate the
outer-sampling pseudodistance. Using only the o sampled DNNs in the OSFJ-model gives us
the opportunity to attack an uncertainty set of DNNs without any knowledge on weights and
biases that we have not generated by ourselves. This is the core of our grey-box attack.

In the following, an AE computed by the FJ-model is called a nominal AE denoted by FJAE,
an AE computed by the ISFJ-model is called an inner-sampling robust AE, denoted by IRAE,
an AE computed by the OSFJ-model is called an outer-sampling robust AE denoted by ORAE.

Ele YN Vi= 1,...,a} U{NY.

. ~ : . w
practice, for 2" we uniformly draw a vector x with ||x|| = € and set < b) = (

5. EXPERIMENTAL RESULTS

In this section we experimentally compare our IRAEs and ORAEs with the FJAE on a stan-
dard dataset. We estimate for all examples their robustness w.r.t. to the inner-sampling and the
outer-sampling uncertainty sets.

5.1. Experimental Setup. For our experiments, we used TensorFlow [21] to train networks for
recognizing images of the Fashion-MNIST dataset [22], which contains a training set of 60,000
fashion pictograms with corresponding labels of ten categories and a test set of 10,000 images
of the same kind. The input domain is taken as 2~ = [0,255]7%% and represents the possible
pictures (we ignore integrality constraints on pixel values to avoid further integrality constraints
in the MILP-models). For determining the outputs of 7* we used our own perception. For
example, for all given adversarial examples, we checked, if one would reasonably include them
into the same class as the respective original image.

For a fixed nominal image of each of the ten classes of apparel we did the following: We built
5 different DNNs with the same DNN-structure. Each DNN had an input layer of 784 neurons,
representing the 28 x 28 pixels of the input image, 3 inner layers with 8 neurons each and an
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output layer of 10 neurons, one for each possible class. All neurons of the inner layers were
given as rectified linear units (ReLUs).

We independently trained our DNNSs using stochastic gradient descent and cross-entropy loss
for 50 epochs, which finished in minutes for each DNN. Our models achieved an accuracy
between 85.76% and 87.39% on the training data. The accuracy on the test data is between
83.22% and 85.12%. For comparison: The human performance on the Fashion-MNIST dataset
is estimated to be at 83.5% [22]. This is a surprisingly poor performance that can be attributed
to the low resolution of the images. Unfortunately, for benchmarks with higher resolution the
computational effort would have been prohibitive.

All MILPs have been solved using the publicly available software PySCIPOpt [23, 24]. All
norms presented are Li-norms. The € used to define the uncertainty sets was € = 0.05 for the
inner-sampling uncertainty set and € = 0.2 for the outer-sampling uncertainty set. Note that
those values are unrelated and were chosen by the requirement that the DNNs in the uncertainty
sets should have similar classification-functions with a similar accuracy. A larger € of the
inner-sampling uncertainty set would have reduced the accuracy of the DNN on the test-data by
too much. The value of 0.05 corresponds to a mild retraining on only one additional training
example (see below). A smaller € of the outer-sampling uncertainty set would have led to too
many rejected samples. The numbers of robustification samples to represent the uncertainty sets
together with the nominal DNN in the optimization models was set to & = 5. This balances the
wish to have many samples with the requirement to be able to solve the resulting optimization
problems fast enough. The cross-evaluation of all examples (FJRE, IRAE, ORAE) w.r.t. the
inner-sampling and outer-sampling uncertainty sets was carried out on 15 fresh test-samples in
the respective uncertainty sets.

As results, we compiled the probabilities of the DNNs to return the true class and the target
class, the average classification probabilities, and the sum of probabilities for all other classes
with non-maximal classification probabilities. Furthermore, we report the average weak confi-
dence levels, which we define as the difference in classification probabilities between the target
class and the true class. Note, we consider misclassifications to other classes than the target
class as uncontrolled failures that cannot be attributed to our method.

5.2. Experimental Examples. For the generation of the following examples, we consider a
trained network N and a nominal input for each of the ten possible classes of apparel in the
data. For example, for a fixed image of a pullover from the test data, the adversarial example
shown in figure 1 can be obtained by feeding this image into the model of [5]. Taking o« =5
samples of ffoi‘“ and solving our model 4.1 for the same image, we obtain the inner-sample
robust adversarial example shown in figure 2. Note, that inner-sample robustness can be inter-
preted as robustness to slight retraining of the same DNN. To demonstrate this, we retrained
our 5 DNNs by refitting them to just one of the images of the training set for one additional
epoch. The implications of this retraining for the accuracy on the test dataset and the inner
distance between original and the retrained DNN are shown in table 1. This shows that only
mild retraining results in DNNGs that are close in both .4 and .4, For the calculation of
an outer-sampling robust adversarial example, we created a sampled neighborhood ,,@’5505‘1 of N
consisting of the networks N, Ny, ..., Ns. For the approximate outer distance d*sd, we used the
first 50 images contained in the training set as X. Information on the DNNs Ny, ..., N5 is given
in table 2. This shows that DNNs that are close in .4"°¢ can be very far apart in 41",
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FIGURE 1. FJAE: An adversarial example for the class “pullover” calculated
with FJ-model in [5] and y = 0.2

FIGURE 2. IRAE: An inner-sampling robust adversarial example for the class
“pullover” with parameters Y= 0.2, € =0.05 and o« = 5

retraining no. accuracy before accuracy after am d°sd
1 84.84% 84.81% 0.03079 0.00198
2 85.12% 85.13% 0.05666 0.00304
3 84.83% 84.86% 0.09492 0.00817
4 84.12% 84.10% 0.00873  0.00066
5 84.30% 84.32% 0.06660 0.00501

TABLE 1. Overview of inner-sampling distances and outer-sampling pseudodis-
tances for five different models after small “retraining”

Table 3 shows that the increases in the objective functions (which determine the costs of
robustness) are higher for the ORAE:S, i.e., their total deviation from the original input is larger
than the deviation for the IRAEs and the FJAEs. Moreover, we see that the solution times are
acceptable though the weakness of the Big-M-constraints leads to large numbers of branch-and-
bound nodes.

Table 4 shows the evaluation of all examples w.r.t. the inner-sampling neighborhood. It is
striking that all AEs (including the nominal FJAE) are robust against perturbations of weights
and biases this small (¢ = 0.05). A plausible explanation for this is that the confidence level
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DNN accuracy on test data d*4(N,N) d"™(N,N)
M 84.50% 0.14960 926.93145
N, 84.74% 0.13601  970.53378
N; 84.46% 0.14474  918.99309
Ny 84.95% 0.14590 949.78444
Ns 84.32% 0.10915  892.70951

TABLE 2. Overview of the sampled DNNSs in the outer-sampling neighborhood of N

true class AE #vars (#bin, #con) Ftconst  opt. val cpu time (s) #B&B-nodes
— target class
2—1 FJAE 1772 (68, 1704) 2565 12.96978 4.26 245
IRAE 6712 (408, 6304) 8334 12.97047 240.01 12365
ORAE 6712 (408, 6304) 8334 17.95743 2583.26 192972
32 FJAE 1772 (68, 1704) 2565 11.66269 2.61 146
IRAE 6712 (408, 6304) 8334 11.66349 287.11 27568
ORAE 6712 (408, 6304) 8334 26.67617 724.69 51764
4—3 FJAE 1772 (68, 1704) 2565 10.84349 16.14 1368
IRAE 6712 (408, 6304) 8334 10.84455 712.14 67016
ORAE 6712 (408, 6304) 8334 13.52954 30948.71 925595
5—4 FJAE 1772 (68, 1704) 2565  7.13864 5.90 921
IRAE 6712 (408, 6304) 8334  7.13903 178.91 20092
ORAE 6712 (408, 6304) 8334  9.07107 26721.04 774492
6—5 FJAE 1772 (68, 1704) 2565  8.50062 5.41 378
IRAE 6712 (408, 6304) 8334  8.50075 283.00 14265
ORAE 6712 (408, 6304) 8334 19.95219 6992.87 377562
7—6 FJAE 1772 (68, 1704) 2565 10.49392 8.96 785
IRAE 6712 (408, 6304) 8334 10.49442 1530.70 118516
ORAE 6712 (408, 6304) 8334 15.34994 7634.02 626016
8—7 FJAE 1772 (68, 1704) 2565  9.88721 7.48 644
IRAE 6712 (408, 6304) 8334  0.88818 287.75 11654
ORAE 6712 (408, 6304) 8334 11.78623 4622.17 577305
9—8 FJAE 1772 (68, 1704) 2565  3.75070 9.32 1285
IRAE 6712 (408, 6304) 8334  3.75102 544 .40 29103
ORAE 6712 (408, 6304) 8334 6.16432 1509.27 96774
0—9 FJAE 1772 (68, 1704) 2565 28.90331 16.12 963
IRAE 6712 (408, 6304) 8334 28.90401 758.73 47348
ORAE 6712 (408, 6304) 8334 43.52225 5420.18 325253
1—0 FJAE 1772 (68, 1704) 2565  6.87471 6.67 470
IRAE 6712 (408, 6304) 8334  6.87596 230.79 17428
ORAE 6712 (408, 6304) 8334  8.29834 312.67 16343

TABLE 3. Solution statistics of the three adversarial examples
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FIGURE 3. ORAE: An outer-sampling robust adversarial example for the class
“pullover” with parameters y=0.2, € =0.2and ot =5

Y required in the FJ-model together with Lipschitz continuity w.r.t. weights and biases auto-
matically generates a certain level of robustness of the FJAE. However, the outer-sampling
robustness w.r.t. to DNNSs trained from scratch is then much smaller for FJAE and IRAE com-
pared to ORAE, as table 5 shows. That is, the ORAE is much more likely to stay an adversarial
example for unknown DNNs in the outer-sampling uncertainty set for a test image in each of
the ten classes. In particular, the superiority in outer-sampling robustness is not due to any
special structure of a type of apparel in the experimental data. Our results indicate that the
outer-sampling uncertainty set is most likely a disconnected set of many small inner-sampling
uncertainty sets, and the IRAE has been computed to be robust against only one of them.

Finally, we tried a grey-box attack against a single given DNN. We chose this as the nominal
DNN in the previous experimental results. This DNN can be regarded as a DNN run by a
stakeholder who keeps the information on its weights and biased secret but uses a standard
training method on public training data. The goal was to generate an AE that is an AE for the
given DNN without knowing its weights and biases. For comparison, an FJAE and an IRAE
were generated by training an artificial nominal DNN from scratch on the same training data
with the same training method. Its weights and biases were then used to feed the FJ-model and
the IRAE-model to generate an FJAE and an IRAE for the same fixed images in each class as in
the previous experimental results. The ORAEs were generated by sampling the outer-sampling
uncertainty set using the given DNN as an oracle to evaluate the outer-sampling distance to the
given DNN. Then the ORAE-model was used to generate a single ORAE for the fixed image
on each class. Afterwards, the classifications returned by the given DNN on all the FJAEs, the
IRAEs and the ORAEs were compared.

The result of this preliminary gambling experiment was that for the given DNN to be attacked
1 out of 10 FJAEs were AEs, 0 out of 10 IRAEs were AEs, while 2 out of 10 ORAEs were AEs.
Moreover, for the FIAEs the classification probability function of the DNN for the target class
returned values very close to zero except for the one hit, which therefore could be named a
“lucky punch”. In contrast to this, for the ORAEs the classification probability function of
the DNN for the target class returned much larger values, 4 times over 30%. See Figure 4
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true class AE classification avg. activation level
— target class target true other miss target true other miss weak conf.
2—1 FJAE 100.00% 0.00% 0.00% 63.06% 2.00% 34.94% 38.82%
IRAE  100.00% 0.00% 0.00% 63.07% 2.00% 34.93% 38.85%
ORAE 100.00% 0.00% 0.00% 57.81% 2.69% 39.50% 34.02%
3—2 FJAE 100.00% 0.00% 0.00% 67.01% 12.75% 20.23% 54.26%
IRAE  100.00% 0.00% 0.00% 67.02% 12.75% 20.23% 54.27%
ORAE 100.00% 0.00% 0.00% 590.04%  6.80% 34.16% 41.82%
4—3 FJAE 100.00% 0.00% 0.00% 39.83% 16.37% 43.80% 23.46%
IRAE  100.00% 0.00% 0.00% 39.84% 16.37% 43.79% 23.47%
ORAE 100.00% 0.00% 0.00% 76.84% 17.11% 6.05% 59.73%
5—4 FJAE 100.00% 0.00% 0.00% 16.03% 14.69% 69.27% 1.34%
IRAE  100.00% 0.00% 0.00% 16.04% 14.68% 69.28% 1.34%
ORAE 100.00% 0.00% 0.00% 16.34% 15.31% 68.35% 1.02%
6—5 FJAE 100.00% 0.00% 0.00% 48.19% 24.45% 27.36% 23.74%
IRAE  100.00% 0.00% 0.00% 48.20% 24.45% 27.35% 23.75%
ORAE 100.00% 0.00% 0.00% 40.79% 27.96% 31.24% 12.83%
7—6 FJAE 100.00% 0.00% 0.00% 36.75%  0.00% 63.25% 19.08%
IRAE  100.00% 0.00% 0.00% 36.77%  0.00% 63.23% 19.09%
ORAE 100.00% 0.00% 0.00% 46.51% 0.00% 53.49% 26.31%
8—7 FJAE 100.00% 0.00% 0.00% 72.36% 21.75% 5.90% 50.61%
IRAE  100.00% 0.00% 0.00% 72.39% 21.72% 5.89% 50.67%
ORAE 100.00% 0.00% 0.00% 78.67% 20.25% 1.08% 58.41%
9—8 FJAE 100.00% 0.00% 0.00% 43.73% 18.93% 37.34% 24.80%
IRAE  100.00% 0.00% 0.00% 43.76% 18.93% 37.31% 24.83%
ORAE 100.00% 0.00% 0.00% 73.70% 25.76% 0.54% 47.94%
0—9 FJAE 100.00% 0.00% 0.00% 47.12% 17.40% 35.48% 29.72%
IRAE  100.00% 0.00% 0.00% 47.15% 17.39% 35.46% 29.76%
ORAE 100.00% 0.00% 0.00% 36.57% 18.17% 45.26% 18.39%
1—0 FJAE 100.00% 0.00% 0.00% 78.25% 13.41% 8.34% 64.84%
IRAE  100.00% 0.00% 0.00% 78.28% 13.38% 8.34% 64.89%
ORAE 100.00% 0.00% 0.00% 70.99% 11.61% 17.40% 59.37%

for detailed results in terms of a histogram for the number of instances with percentage values
larger than or equal a given value. This histogram clearly indicates that the grey-box attack by

TABLE 4. Classification of the three examples by 15 sample-DNNss of the inner-
sampling neighborhood

the ORAE is far more powerful than the grey-box attacks by the FJAE or the IRAE.

Though this increase in the final hit rate of the target class in this one-shot experiment is not
overwhelming, one has to keep in mind that we have undertaken only three single grey-box
attacks of a single DNN with all the effects of luck mixing with the methodological effects.
This, of course, cannot replace a “clinical” study assessing the effectivity of either method on

the basis of statistical evidence.
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true class AE classification avg. activation level
— target class target true other miss target true other miss weak conf.
2—1 FJAE 6.67% 86.67% 6.67% 8.51% 81.77% 9.72% -75.92%

IRAE 6.67% 86.67% 6.67% 8.51% 8L.77% 9.72% -75.91%
ORAE 66.67% 26.67% 6.67% 63.88% 25.99% 10.13% 33.53%

3—=2 FJAE 0.00% 86.67% 13.33% 1.13% 77.46% 21.41% -80.14%
IRAE 0.00% 86.67% 13.33% 1.13% 77.46% 21.42% -80.14%
ORAE 26.67% 20.00% 53.33% 28.83% 17.13% 54.04% -17.51%

4—3 FJAE 6.67% 13.33% 80.00% 8.67% 16.69% 74.64% -35.62%
IRAE 6.67% 13.33% 80.00% 8.67% 16.69% 74.64% -35.62%
ORAE 60.00% 26.67% 13.33% 45.05% 31.61% 23.33% 10.22%

54 FJAE 6.67% 40.00% 53.33% 6.61% 34.76% 58.63% -46.34%
IRAE 6.67% 40.00% 53.33% 6.61% 34.76% 58.63% -46.33%
ORAE 26.67% 20.00% 53.33% 23.76% 17.63% 58.61% -21.52%

6—5 FJAE 6.67% 86.67% 6.67% 6.38% 73.21% 20.41% -71.48%
IRAE 6.67% 86.67% 6.67% 6.38% 73.21% 20.41% -71.48%
ORAE 5333% 6.67% 40.00% 45.01%  9.65% 45.34% 7.23%
7—6 FJAE 6.67%  6.67% 86.67% 10.11%  6.67% 83.22% -57.47%

IRAE 6.67% 6.67% 86.67% 10.11%  6.67% 83.22% -57.46%
ORAE 33.33% 0.00% 66.67% 29.42%  0.02% 70.56% -18.19%

8—7 FJAE 13.33% 66.67% 20.00% 10.37% 66.16% 23.47% -72.20%
IRAE  13.33% 66.67% 20.00% 10.37% 66.16% 23.47% -72.20%
ORAE 33.33% 60.00% 6.67% 35.14% 51.95% 12.90% -23.31%

9—8 FJAE 0.00% 66.67% 33.33% 0.96% 56.69% 42.35% -79.05%
IRAE 0.00% 66.67% 33.33% 0.96% 56.70% 42.34% -79.06%
ORAE 66.67% 20.00% 13.33% 54.31% 22.22% 23.47% 15.71%

0—9 FJAE 0.00% 20.00% 80.00% 0.00% 29.73% 70.27% -67.94%
IRAE 0.00% 20.00% 80.00% 0.00% 29.73% 70.27% -67.94%
ORAE  6.67% 26.67% 66.67% 6.76% 20.87% 72.37% -50.39%

1-0 FJAE 13.33% 86.67% 0.00% 12.94% 76.40% 10.67% -64.09%
IRAE  13.33% 86.67% 0.00% 12.94% 76.39% 10.67% -64.08%
ORAE 46.67% 40.00% 13.33% 35.03% 35.84% 29.13% -15.44%
TABLE 5. Classification of the 3 examples by 15 sample-DNNs of the outer-
sampling neighborhood

6. CONCLUSIONS

We have seen that sampling can be a useful method to approach an adjustable robust linear
program that is otherwise intractable. Just the small number of five additional DNN samples
could lead to a noticeably improved outer-sampling robustness of the ORAE. Furthermore,
outer-sampling robustness has shown to be the more meaningful of our two variants. On the
one hand, the ORAE achieves almost the same level of inner-sampling robustness, while the
IRAE could not show any better outer-sampling robustness than the FJAE. On the other hand,
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number of examples

=0% =10% =20% =30% =40% =50% =60% =70%
activation level for target class

FIGURE 4. A histogram of the numbers of instances with classification prob-
abilities at least a given value of the given DNN for the target class on the
FJAE/IRAE/ORAE grey-box attacks.

outer-sampling robustness comes with the advantage that one can simply exclude the nominal
DNN from the model whenever one cannot rely on information on the weights and biases of it.

However, outer-sampling robustness comes with a cost. The calculation of an ORAE with
standard MILP-methods is harder than the calculation of an IRAE, even for the same number of
networks to be included in the uncertainty sets. Furthermore, the ORAE deviates further away
from the original input than the inner robust example does. This again emphasizes, that the set
of DNNs with similar input-output relations is larger than the set of DNNs with similar internal
parameters.

Clearly, this paper could only give preliminary evidence about benefits of the proposed
method. In order to apply the method to more general settings, future research is needed.
One direction concerns the representation of DNNs as MILPs. This could speed-up the neces-
sary calculations and could, therefore, allow to handle more advanced DNN-structures. Such
DNN-structures encompass DNN-structures with more layers and neurons, in particular more
input neurons (larger resolution and bit-depths in the case of images) or convolutional networks
(taking into account spatial information of the pixels in an image). Since this paper strongly
relies on the FJ-model in [5], any improvement for the FJ-model would immediately lead to
computational improvements for our approach. Sampling has shown to be a useful method
for approaching our adjustable robust MILP. Thus, research on finding “good” samples for ad-
justable robust MILP would immediately be effective in our method. It would, therefore, be
interesting to identify particularly representative samples in the outer £-neighborhoods.

Finally, the further investigation of grey-box attacks to DNNs with unknown internal param-
eters need a careful experimental setup and well-founded statistical analysis to achieve conclu-
sive results.



TOWARDS ROBUST ADVERSARIAL EXAMPLES FOR DNNS 307

REFERENCES

[1] Y. Bengio, A. Lodi, A. Prouvost, Machine learning for combinatorial optimization: A methodological tour
d’horizon, European Journal of Operational Research, 290 (2021), 405-421.

[2] C. Gambella, B. Ghaddar, J. Naoum-Sawaya, Optimization problems for machine learning: A survey, Euro-
pean Journal of Operational Research, 290 (2021), 807-828.

[3] T. Akutsu, H. Nagamochi, A mixed integer linear programming formulation to artificial neural networks, In:
Proceedings of the 2nd International Conference on Information Science and Systems, pp. 215-220, 2019.

[4] R. Anderson, J. Huchette, W. Ma, C. Tjandraatmadja, J.P. Vielma, Strong mixed-integer programming for-
mulations for trained neural networks, Mathematical Programming, 183 (2020), 3-39.

[5] M. Fischetti, J. Jo, Deep neural networks and mixed integer linear optimization, Constraints, 23 (2018),
296—3009.

[6] V. Tjeng, K.Y. Xiao, R. Tedrake, Evaluating robustness of neural networks with mixed integer programming,
In: International Conference on Learning Representations, 2019.

[7] C. Szegedy, W. Zaremba, . Sutskever, J. Bruna, D. Erhan, I.J. Goodfellow, R. Fergus, Intriguing properties of
neural networks, In: Y. Bengio, Y. LeCun, (ed.), 2nd International Conference on Learning Representations,
ICLR 2014, Banff, 2014.

[8] N. Akhtar, A. Mian, N. Kardan, M. Shah, Advances in adversarial attacks and defenses in computer vision:
A survey, IEEE Access, 9 (2021), 155161-155196.

[9] J. Gu, X. Jia, P. de Jorge, W. Yu, et al., A survey on transferability of adversarial examples across deep neural
networks, Transactions on Machine Learning Research, 2024.

[10] A. Athalye, L. Engstrom, A. Ilyas, K. Kwok, Synthesizing robust adversarial examples, In: International
Conference on Machine Learning, PMLR, pp. 284-293, 2018.

[11] M. Gubri, M. Cordy, M. Papadakis, Y.L. Traon, K. Sen, Lgv: Boosting adversarial example transferability
from large geometric vicinity, In: European Conference on Computer Vision, pp. 603—-618, Springer, 2022.

[12] A.Ben-Tal, L. El Ghaoui, A. Nemirovski, Robust Optimization, Princeton University Press, Princeton, 2009.

[13] A. Ben-Tal, A. Goryashko, E. Guslitzer, A. Nemirovski, Adjustable robust solutions of uncertain linear pro-
grams, Mathematial Programming. 99 (2004), 351-376.

[14] I. Yanikoglu, B.L. Gorissen, D. den Hertog, A survey of adjustable robust optimization, European Journal of
Operational Research 277 (2019), 799-813.

[15] D. Bertsimas, I. Dunning, Multistage robust mixed-integer optimization with adaptive partitions, Operations
Research, 64 (2016), 980-998.

[16] K. Postek, D. den Hertog, Multistage adjustable robust mixed-integer optimization via iterative splitting of
the uncertainty set, INFORMS Journal on Computing, 28 (2016), 553-574.

[17] D. Bertsimas, C. Caramanis, Adaptability via sampling, In: 2007 46th IEEE Conference on Decision and
Control, pp. 4717-4722, 2007.

[18] A. Virmaux, K. Scaman, Lipschitz regularity of deep neural networks: analysis and efficient estimation,
Advances in Neural Information Processing Systems, 31, 2018.

[19] M. Goerigk, A. Schobel, Algorithm engineering in robust optimization, In: Algorithm Engineering: Selected
Results and Surveys, pp. 245-279, Springer, 2016.

[20] J.R. Birge, F. Louveaux, Introduction to Stochastic Programming, Springer, 1997.

[21] M. Abadi, A.Agarwal, P. Barham, et al., TensorFlow: Large-scale machine learning on heterogeneous sys-
tems, 2015. Software available from tensorflow.org.

[22] H. Xiao, K. Rasul, R. Vollgraf, Fashion-mnist: A novel image dataset for benchmarking machine learning
algorithms, 2017.

[23] S. Maher, M. Miltenberger, J.P. Pedroso, D. Rehfeldt, R. Schwarz, F. Serrano, PySCIPOpt: Mathematical
programming in python with the SCIP optimization suite, In: Mathematical Software — ICMS 2016, pp.
301-307, Springer, 2016.

[24] S.Bolusani, M. Besangon, K. Bestuzheva, et al., The SCIP Optimization Suite 9.0. Technical report, Opti-
mization Online, February 2024.



	1. Introduction
	2. Preliminaries
	3. Metric Spaces of DNNs
	4. A Model for Robust Adversarial Examples
	5. Experimental Results
	5.1. Experimental Setup
	5.2. Experimental Examples

	6. Conclusions
	References

