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2Departamento de Matemática - Escuela Politécnica Nacional, Ladrón de Guevara E11-253, Quito, Ecuador
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Abstract. This paper focuses on the numerical solution of a variational inequality of the second kind,
which arises as a model for the laminar flow of a Herschel-Bulkley fluid in the cross-section of a pipe.
To tackle this problem, we develop a nonsmooth proximal bundle algorithm that bypasses the need
for regularization techniques. We begin by formulating and analyzing an associated nonsmooth and
convex optimization problem that characterizes the solution of the variational inequality. Following a
discretize-then-optimize approach, we employ a first-order finite element discretization for the objective
functional. The core of our method lies in the nonsmooth bundle algorithm, which leverages a Moreau-
Yosida approximation combined with a quasi-Newton BFGS update. This approach approximates the
function and gradient values through a finite inner bundle algorithm. We build and analyze the proposed
algorithm, examining its convergence properties in the context of the flow model. Additionally, we
demonstrate its efficiency through both theoretical analysis and numerical experiments.
Keywords. Bundle algorithms; BFGS algorithm; Herschel-Bulkley viscoplastic fluids; Moreau-Yosida
regularization; p-Laplacian operator.
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1. INTRODUCTION

Herschel-Bulkley fluids are a class of non-Newtonian fluids characterized by a yield stress
and a non-linear relationship between the applied shear stress and the resulting shear rate. These
fluids exhibit a combination of viscous, plastic, and sometimes elastic behavior, making their
flow properties more complex than those of Newtonian fluids. They can be found in both
natural systems—such as mud, quicksand, and blood—and in industrial products, including
foodstuffs like tomato sauce and industrial materials like clay suspensions. Their applications
are particularly prominent in the food, chemical, and oil industries, where understanding their
unique flow properties is critical for optimizing production processes.
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The Herschel-Bulkley model introduces two key parameters that define the fluid’s behavior:
the yield stress (or plasticity threshold) and the flow index. The yield stress represents the min-
imum stress required for the material to begin flowing, allowing it to transition from behaving
as a rigid solid to a fluid. The flow index determines the degree of shear-thinning or shear-
thickening behavior: fluids with a flow index less than 1 (shear-thinning) become less viscous
under increased stress, as seen in materials like ketchup and paint, while those with an index
greater than 1 (shear-thickening) become more viscous, such as the well-known cornstarch and
water mixture, oobleck.

In this paper, we focus on the numerical resolution of the following variational inequality,
whose solution characterizes the velocity of a stationary and laminar flow of a Herschel-Bulkley
fluid in a pipe with cross-section given by Ω∫

Ω

|∇u|n−1(∇u , ∇(v−u))dx+g
∫

Ω

|∇v|dx−g
∫

Ω

|∇u|dx≥
∫

Ω

f (v−u) dx, (1.1)

where 0 < n < ∞ stands for the flow index, g > 0 represents the yield stress and f ∈ Ln+1′(Ω).
Solving (1.1) is challenging due to the nonsmooth terms involved in the variational inequality.

There are two major approaches to address this difficulty. The first involves nonsmooth meth-
ods, such as augmented Lagrangian schemes, as employed in [13]. In this work, the authors
introduce two penalty terms into the functional in (1.1), and by solving a system of nonlinear
equations, they iteratively tackle the minimization problem. The second approach is based on
regularization techniques. For instance, in [10], the author applied a Huber-type regularization
to smooth the nondifferentiable part of the functional, converting the problem into a differen-
tiable one. A preconditioned descent algorithm was then designed for the numerical resolution
of the smoothed problem. Similarly, in [12], the authors again used a Huber-type regularization
and develop a multigrid optimization algorithm to solve the problem efficiently.

From our perspective, this problem has not been sufficiently explored within the framework
of Non-Smooth Optimization (NSO) and its existing numerical methods for tackling such is-
sues. NSO is a well-established field of study, applied across diverse areas like mechanics,
computational chemistry, machine learning, and data mining (see [3, Chapter 7]). In the mid-
1970s, NSO gained traction with the development of bundle methods, which remain among
the most efficient and reliable techniques for solving non-smooth problems (see [3, 15, 16]).
The primary goal of this paper is to construct an efficient and robust algorithm, grounded in
NSO and bundle methods, that solves problem (1.1) without regularization, while maintaining
efficiency comparable to other faster existing methods.

To construct the algorithm, we adopt a discretize-then-optimize approach, using a first-order
finite element discretization. For the nonsmooth discrete problem, we apply the Moreau-Yosida
penalization to obtain a smooth optimization problem that is equivalent to solving the origi-
nal one. The primary challenge with this regularization is that we cannot compute the exact
values of the objective function and its gradient at every point. This is where bundle methods
prove crucial, as they allow us to approximate these values. Specifically, using available in-
formation from previous iterations, a cutting-plane model approximates the objective function.
This enables us to formulate an inner optimization problem that returns approximated values of
both the objective function and its gradient at any given point. With these approximations, we
then propose a quasi-Newton algorithm, utilizing a BFGS-type update, for obtaining a descent
direction in an efficient way.
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The paper is organized as follows. In Section 2, we describe the subdifferential of the func-
tional J in its functional form and discuss the discretization of the problem by means of the finite
element method. In Section 3, we give a detailed construction of the nonsmooth algorithm and
analyze its convergence properties, particularly, we prove global and superlinear convergence
rate of the method. Section 4 is devoted to presenting the numerical results obtained. First
we discuss the main issues regarding the implementation of our algorithms. Mainly, the dis-
cretization techniques and the implementation of an oracle which determines a subgradient of
∂J. Next, several numerical experiments, which illustrate the main features of the proposed
approach, are carried out. Finally, in Section 5, we outline conclusions on this work and discuss
some challenging issues that can be analyzed in future contributions.

2. PROBLEM STATEMENT

This paper is devoted to the numerical resolution of the following problem

min
u∈W 1,p

0 (Ω)
J(u) =

1
p

∫
Ω

|∇u|p dx+g
∫

Ω

|∇u| dx−
∫

Ω

f u dx, (2.1)

where 1 < p < ∞, g > 0, and f ∈ Lp′(Ω). In this context, g represents the yield stress of the
material, p is the flow index, and f accounts for the pressure decay in the pipe. It is well known
that problem (1.1) expresses a necessary optimality condition for minimization problem (2.1).
Therefore, the upcoming sections will focus on this optimization problem. Some clarifications
are in order: We assume p = n+1, where n is the usual flow index, so that the problem aligns
with the classical structure of the p-Laplacian. Under this consideration, shear-thinning flow
occurs for 1 < p < 2, while shear-thickening flow is observed for p > 2. With these in mind,
we can conclude that the solution of (2.1) describes the velocity field of the stationary laminar
flow of a Herschel-Bulkley fluid in a pipe whose cross-section is represented by Ω.

The existence and uniqueness of solutions for (2.1) were thoroughly analyzed in, for instance,
[13, 10].

In the remainder of this section, we discuss several important properties of J, with a particular
focus on its regularity characteristics.

2.1. Subdifferential of J(·). As noted in [15], bundle methods rely on the assumption that
only the objective function value and a subgradient at each point are available. To incorporate
the bundle concept into the NSO method for numerically solving (2.1), we first examine the
subgradients of J(·) by analyzing its subdifferential at each point. In line with the approach of
[8], we then reformulate the functional as follows

J(u) = J1(u)+gJ2(u),

where
J1(u) =

1
p

∫
Ω

|∇u|p dx−
∫

Ω

f u dx and J2(u) =
∫

Ω

|∇u| dx.

Next, since J1(·) and J2(·) are weakly lower semicontinuous functionals, we can assert that the
subdifferential of J at u ∈W 1,p

0 (Ω) is given by (see [8])

∂J(u) = ∂J1(u)+g∂J2(u).

This formulation of J(·) significantly simplifies the analysis of its subdifferential and, conse-
quently, the characterization of the associated subgradients.
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First, we focus on J1(·), which corresponds to the energy functional associated with the p-
Laplacian operator. It is well known that this functional is Fréchet differentiable on W 1,p

0 (Ω)
(see, for instance, [2, Section 2.6]). Therefore, we conclude that its subdifferential simplifies to

∂J1(u) =
{

J′1(u)
}
, for u ∈W 1,p

0 (Ω), (2.2)

where J′1 represents the Fréchet derivative of J1 and is given by

J′1(u)v =
∫

Ω

|∇u|p−2 (∇u,∇v) dx−
∫

Ω

f v dx, ∀v ∈W 1,p
0 (Ω).

Now, we turn our attention to J2(·). Clearly, this functional is not differentiable at 0. However,
it is known that it is Féchet differentiable at u ∈W 1,p

0 (Ω)\{0} with (see, for instance, [2, Sec.
2.6])

J′2(u)v =
∫

Ω

(∇u,∇v)
|∇u|

dx, ∀v ∈W 1,p
0 (Ω).

Returning to the subdifferential of J2(·) at 0, we have by definition that

∂J2(0) =
{

ψ ∈W−1,p′(Ω) : J2(v)≥ 〈ψ,v〉 , ∀ v ∈W 1,p
0 (Ω)

}
,

which induces the following characterization of the subgradients of J2(·) at 0

ψ ∈ ∂J2(0)⇔ 〈ψ,v〉 ≤
∫

Ω

|∇v| dx, ∀ v ∈W 1,p
0 (Ω) . (2.3)

Finally, (2.2), (2.3), and [5, Proposition 9.20] allow us to obtain the following characterization
for the subdifferential of J

∂J(u) =


∫

Ω
|∇u|p−2(∇u,∇v) dx+g

∫
Ω

(∇u,∇v)
|∇u| dx−

∫
Ω

f v dx, ∀v ∈W 1,p
0 (Ω), if u 6= 0,

g
∫

Ω
(Ψ,∇v) dx−

∫
Ω

f v dx, ∀v ∈W 1,p
0 (Ω), if u = 0.

(2.4)
Here, Ψ := (Ψ1, . . . ,Ψn) with Ψi ∈ Lp′(Ω) for i = 1, . . . ,n.

Remark 2.1. The existence of the yield stress introduces an inherent discontinuity in the
Herschel-Bulkley model, which is reflected in the nonsmooth term

∫
Ω
|∇u|dx. As stated in the

introduction, there are two main approaches for analyzing and numerically solving the resulting
variational inequality of the second kind: smoothing-regularization techniques and nonsmooth
optimization methods.

Regarding regularization techniques for VIs, there are two general approaches: global and lo-
cal regularization schemes. In the first group, methods such as the Bercovier-Engelman and Pa-
panastasiou schemes generate a smooth approximation across the entire domain, which means
that the approximation to the exact solution is only achieved in the limit (see [4, 21, 22]). On
the other hand, local regularization techniques, such as the Huber or bi-viscosity schemes (see
[10, 12]), apply smoothing only within small neighborhoods around the discontinuity points
while preserving the original model in the rest of the domain. The main advantage of using reg-
ularization schemes is that the resulting smoothed systems can be solved using fast-converging
algorithms, typically based on Newton or generalized Newton-type schemes. However, the in-
troduction of smoothing may have physical drawbacks, as it modifies the original model and
can introduce perturbations in the computed solutions.
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Nonsmooth optimization methods, by contrast, allow the analysis of the problem without al-
tering the original model, preserving its intrinsic structure (see [9, 13]). However, these methods
are generally slower and less efficient compared to regularization-based approaches. To address
this limitation, in this paper, we explore the use of bundle methods in combination with a pre-
conditioned Moreau-Yosida scheme, where the BFGS update is employed as a preconditioner in
the associated metric (see (3.2)). This approach results in a nonsmooth algorithm that achieves,
at least locally, superlinear convergence, providing an efficient scheme while maintaining the
original nature of the model.

2.2. Finite element discretization. As mentioned in the introduction, we adopt a discretize-
then-optimize approach for addressing problem (2.1). In this context, before detailing the NSO
method, we first explore a first-order finite element discretization of J(·) and its subdifferential
∂J(·). Additionally, by means of the Galerkin method, we reformulate the problem in Rn,
setting the stage for the subsequent numerical analysis.

Let Ω be a nonempty, open, bounded, and sufficiently regular domain. Let T h be a reg-
ular triangulation of Ω in the sense of Ciarlet (see [6, p. 38]). Next, let Ωh be a polygonal
approximation of Ω, given by

Ω
h =

⋃
T∈T h

T ,

where all the triangles T are disjoint one to one and whose diameter is bounded by h. Further,
for any pair of triangles, their closures are either disjoint or have a common vertex or a common
edge. Finally, let {Pj}N

j=1 be the vertices (nodes) associated to the triangulation T h. Hereafter,
we assume that Pj ∈ ∂Ωh implies that Pj ∈ ∂Ω and that Ωh ⊂Ω.

Taking all this into account, we introduce the following finite-dimensional space associated
to the triangulation T h

W h
0 :=W 1,p

0 (Ω)∩{v ∈C(Ωh) : v|τ ∈ P1,∀T ∈T h and v = 0 on ∂Ω
h},

where P1 is the space of polynomials with degree less than or equal to 1.
Together with these considerations, it is possible to define the following finite element ap-

proximation of problem (2.1):

min
uh∈W h

0

Jh(uh) :=
1
p

∫
Ωh
|∇uh|pdx+g

∫
Ωh
|∇uh|dx−

∫
Ωh

f uhdx. (2.5)

The existence of a unique solution for (2.5) directly follows from the fact that W h
0 is a closed

subspace of W 1,p
0 (Ω) (see [9, Sec. 3.2]).

In the same manner, we introduce the following finite element approximation of the subdif-
ferential ∂J(·):

∂Jh(uh) =

{∫
Ω
|∇uh|p−2(∇uh,∇vh) dx+g

∫
Ω

(∇uh,∇vh)
|∇uh| dx−

∫
Ω

f vh dx if uh 6= 0,

g
∫

Ω
(ψ,∇vh) dx−

∫
Ω

f vh dx if uh = 0,
(2.6)

where ψ is a function that satisfies (2.4).
In order to have a discrete version of equations (2.5) and (2.6), we follow [10, Sec. 4.1].

In this aim, let {ϕ j}, j = 1, . . . ,n, be the basis functions of W h
0 , and let us denote by ~u the
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vector that stores the associated coefficients of the approximated functions uh. Assuming that
card(T h) = m, we use the following discrete version of the gradient

∇
h :=

(
∂ h

1

∂ h
2

)
∈ R2m×n, (2.7)

where (∂ h
1 )k, j := ∂ϕ j(x)

∂x1
|Tk and (∂ h

2 )k, j := ∂ϕ j(x)
∂x2
|Tk , for j = 1, . . . ,n, k = 1, . . . ,m and Tk ∈ T h.

Note that ∂ϕ j(x)
∂x1
|Tk and ∂ϕ j(x)

∂x2
|Tk are the constant values of ∂ϕ j

∂x1
and ∂ϕ j

∂x2
over each triangle Tk,

respectively. Therefore, ∇h~u is the discrete approximation of ∇uh(x).
Now, let us define the function η : R2m→ Rm by

η(w)k = |(wk,wk+m)|T , k = 1, . . . ,m.

This function allows us to approximate |∇uh(x)| by η(∇h~u), considering that η(∇h~u)k repre-
sents the value of |∇uh(x)| in each triangle Tk ∈T h.

Next, by applying Galerkin’s method, the approximation of the first term in Jh is given by

1
p

∫
Ω

|∇uh|p−2(∇uh,∇uh)dx≈ 1
p

n

∑
i, j=1

uiu j
∑

Tk∈T h

∫
Tk

(
η(∇h~u)k

)p−2
(∇ϕi,∇ϕ j) dx,

where
(
η(∇h~u)k

)p−2 is constant in every triangle Tk. Thus, if we introduce the matrix Ah(~u) ∈
Rn×n with entries given by

(a(~u))i, j = ∑
Tk∈T h

(
η(∇h~u)k

)p−2 ∫
Tk

(∇ϕi,∇ϕ j)dx,

we obtain that
1
p

∫
Ω

|∇uh|p−2(∇uh,∇uh)dx≈ 1
p
~u>A(~u)~u. (2.8)

On the other hand, we approximate the second term as follows

g
∫

Ω

|∇uh| dx≈ g ∑
Tk∈T h

∫
Tk

η(∇h~u)k dx =: I(~u),

where I(·) stands for a suitable quadrature rule. This quadrature rule also will be applied to∫
Ω

f hϕ j dx to generate the term ~f .
Summarizing, the discrete approximation of equation (2.5) is given as

Jh(~u) =
1
p
~u>A(~u)~u+ I(~u)+(~f )>~u. (2.9)

This will be our objective functional in the following sections.
In order to approximate the subdifferential of Jh(·), we proceed in the same way as before

to obtain that

∂Jh(~u) =

{
~u>A(~u)~v+~u>Ã(~u)~v− (~f h)>~v, ∀~v ∈ Rn, if uh 6= 0,
g~Ψ>~v− (~f h)>~v, ∀~v ∈ Rn, if uh = 0.

Here, Ã(~u) ∈ Rn×n is a matrix with entries given by

(ã(~u))i, j = ∑
Tk∈T h

(η(∇h~u)k)
−1
∫

Tk

(∇ϕi,∇ϕ j) dx,
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while ~Ψ is obtained by applying a suitable quadrature formula to the term
∫

Ω
(ψ,∇vh) dx.

Remark 2.2. Matrices A(~u) and Ã(~u) are weighted stiffness matrices, and they have the same
construction just like in [10, 11].

Equations (2.9) and (2.2) are the discrete approximations of Jh and ∂Jh(·) in its functional
form, respectively. From now on, we assume that Jh and ∂Jh are in their discrete form. Con-
sequently, it is possible to describe the NSO bundle algorithm for the numerical resolution of
problem (2.1).

Remark 2.3. Without causing any ambiguity, we can remove the vector notation “−→” for sim-
plicity of writing.

3. NONSMOOTH PROXIMAL BUNDLE ALGORITHM

In this section, we incorporate the core ideas of the quasi-Newton bundle-type algorithm in-
troduced in [18] with the aim of developing the NSO optimization method to solve the following
optimization problem

min
u∈Rn

Jh(u), (3.1)

where Jh(·) is defined as in (2.9). It is clear that Jh(·) is a strictly convex and continuos
functional. Also, we know explicitly its subdifferential at every point (see (2.2)).

3.1. Moreau-Yosida regularization. One way to apply a quasi-Newton algorithm to a non-
smooth problem is by means of the Morea-Yosida regularization (see, e.g., [14, 17, 18]). In this
regard, let M be a positive definite symmetric matrix. The Moreau-Yosida regularization of Jh
is given by

FM(u) := min
v∈Rn

{
Jh(v)+

1
2
‖v−u‖2

M

}
, (3.2)

where ‖x‖M :=
√

xT Mx. FM is a continuously differentiable convex function. Furthermore, the
derivative of FM at u is defined by

GM(u) := ∇FM(u) = M(u− pM(u)) ∈ ∂Jh(pM(u)),

where pM(u) is the unique solution of (3.2) and is called the proximal point of u. In addition,
GM is globally Lipschitz continuous with modulus ‖M‖, and minimizing FM is equivalent to
minimizing Jh, that is,

ū = arg min
u∈Rn

Jh(u)⇔ ū = arg min
u∈Rn

FM(u).

Therefore, ū minimizes Jh if and only if GM(ū) = 0 and pM(ū) = ū (see [18] and the references
therein).

The computation of FM(u) requires solving the optimization problem on the right-hand side
of (3.2). Instead of solving it directly, we employ the bundle method (see [3, Chap. 12]) to
implement a routine that provides approximate values for both FM and GM (see [17, 18]).

The matrix M plays a pivotal role in the following sections. As shown in (3.2), it defines
the Moreau-Yosida penalty metric, which “controls” the approximation and the determination
of the descent direction in the algorithm. A key idea in [18] is to combine this approximation
with a BFGS-type update. This not only preserves the positive definiteness of matrix M at each
iteration but also ensures superlinear local convergence rates for the algorithm.
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3.2. Appending the bundle concept. Let u be given in Rn. By taking w := v−u in (3.2) and
minimizing over w instead of v, we have

FM(u) = min
w∈Rn

{
Jh(u+w)+

1
2

w>Mw
}
,

and pM(u) = u+ w̄, where w̄ = arg min
w∈Rn

{
Jh(u+w)+ 1

2wT Mw
}

(see [18]).

Since Jh(·) is convex, we approximate Jh(u+w) by the following cutting plane model (see
[17, 18])

J̌h(u+w) = max
j=1,...,l

{
Jh(v j)+(ξ j)>(u+w− v j)

}
,

where the triplets
(
v j,Jh(v j),ξ j = ξ (v j) ∈ ∂Jh(v j)

)
constitute an array B that has been gen-

erated sequentially starting from u and ξ (u) ∈ ∂Jh(u), or possibly, a certain subset of past
iterations used to generate u.

Now, let us define the following linearization error

e(u,v j) = Jh(u)−Jh(v j)− (ξ j)T (u− v j).

Consequently, J̌h(u+w) can be written as

J̌h(u+w) = Jh(u)+ max
j=1,...,l

{
(ξ j)T w− e(u,v j)

}
. (3.3)

Thus, we define F̌M as follows

F̌M(u) := min
w∈Rn

{
J̌h(u+w)+

1
2

w>Mw
}

= Jh(u)+ min
w∈Rn

{
max

j=1,...,l

{
(ξ j)>w− e(u,v j)

}
+

1
2

w>Mw
}
.

(3.4)

Since Jh(u+w)≥ J̌h(u+w), it follows from the definition of FM that F̌M(u)≤ FM(u).
On the other hand, the auxiliary minimization problem in (3.4) can be reformulated as a

quadratic optimization problem, similar to the approach in [17]. Letting

ν = max
j=1,...,l

{
(ξ j)>w− e(u,v j)

}
,

the following optimization problem becomes equivalent to the inner optimization problem in
(3.4)

min
(w,ν)

ν +
1
2

w>Mw

s.t. − e(u,v j)+(ξ j)>w≤ ν , j = 1, . . . , l.
(3.5)

The optimality conditions of problem (3.5) imply the existence of non-negative multipliers
λ j(u) that sum one and verify

Mw(u) =−
l

∑
j=1

λ j(u)ξ j,

ν(u) = (ξ j)Tw(u)− e
(
u,v j) , if λ j(u)> 0,
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with (w(u),ν(u)) the unique solution of (3.5) (see [15, 17]). Therefore, is follows that

F̌M(u) = Jh(u)+ν(u)+
1
2
(w(u))>Mw(u).

Further, let a(u) = u+w(u) be an approximation of pM(u) and let

F̂M(u) = Jh(a(u))+
1
2
(w(u))>Mw(u).

Since pM(u) is the unique minimizer of (3.2), it follows that FM(u) ≤ F̂M(u), equality holds if
and only if a(u) = pM(u). Thus we have the similar statements of Lemma 2.1 in [18].

(1) FM(u)≤ FM(u)≤ F̂M(u),
(2) FM(u) = F̂M(u) if and only if a(u) = pM(u).

Let

ε(u) = F̂M(u)− F̌M(u). (3.6)

We accept that a(u) is an approximation of pM(u) if the next inequality is satisfied

ε(u)≤ δ (u)min
{
(w(u))>Mw(u),N

}
, (3.7)

where δ (u) and N are given positive numbers (see [18]), and δ (u) remains fixed during the
bundle subprocess. If (3.7) is not verified, we let v j+1 = u+w(u) and ξ j+1 ∈ ∂Jh(v j+1), add
(ξ j+1)T d−e(u,v j+1) to (3.3). Replace j = j+1 and update B=B∪

{(
v j+1,Jh(v j+1),ξ j+1)}.

Then, solve the new subproblem in (3.5) which gives a new w(u) and ε(u) to be tested in (3.7).
In the subsequent algorithm, we describe the bundle sub-process that returns an approxima-

tion of pM(u).

Algorithm 1 Bundle sub-process

Step 0. Call the oracle to obtain Jh(u) and ξ ∈ ∂Jh (u), initialize B = {(u,Jh(u),ξ )}, or
use a previous B that saves information from past iterations and has been used to generate u.
Step 1. Find w(u) by solving problem (3.5), then fix a(u) = u+w(u), and call the oracle to
obtain (Jh(a(u)),ξ a).
Step 2. Determine F̌M(u) and F̂M(u), and ε(u) as in (3.6).
Step 3. Check if (3.7) is satisfied, if so STOP. Otherwise, let v j+1 = a(u) and ξ j+1 = ξ a, ap-
pend (ξ j+1)T d−e(u,v j+1) to (3.3). Update j = j+1 and B =B∪

{(
v j+1, f (v j+1),ξ j+1)};

return to step 1.
Result: a(u) approximation of pM(u).

Remark 3.1. Let G̃M(u) := M(u−a(u)) =−Md(u). Thus G̃M(u) is accepted as an approxima-
tion of GM(u), which depends on ε(u). Therefore, it is possible to calculate the gradient of FM
approximately (see [18, Lemma 2.3]). In addition, if u does not minimize Jh, then Algorithm 1
ends in a finite number of steps (see [18, Lemma 2.4]).

As noted, it is possible to calculate the values of FM and GM approximately. Consequently,
we can use these values in order to build up a quasi-Newton type method.
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3.3. BFGS update. In this section, we discuss a BFGS update for the matrix M. The main
idea is to modify the Moreau-Yosida penalty metric, originally defined by M, to improve the
descent direction. Specifically, if certain conditions—outlined above —are satisfied, we apply
a BFGS update to replace M with a quasi-Newton approximation. This allows for more effi-
cient optimization by adjusting the metric to better capture the problem’s local curvature. If
the conditions are not met, we continue using the matrix M without modification. This adap-
tive strategy ensures we either refine the descent direction with the BFGS update or retain the
robustness of the original Moreau-Yosida metric.

Given the vectors ∆u and ∆y, the BFGS update of a symmetric matrix B ∈ Rn×n is

BFGS(B,∆u,∆y) := B+
∆u∆yT

∆uT ∆y
+

B∆u∆uT B
∆uT B∆u

.

If B is positive definite and ∆uT ∆y > 0, then the symmetric matrix B+ := BFGS(B,∆u,∆y) is
also positive definite (see [19, p. 31]).

In our method, we assume that B0 = M and additionally
∞

∑
k=1

δ
1/3
k < ∞ (see [18]). During each

iteration, if the following two conditions are verified, Bk is updated to Bk+1 =BFGS(Bk,∆uk,∆yk);
otherwise, Bk+1 := M is taken. Given α1 ∈ (0,+∞) and α2 ∈ (0,1), these two conditions are

‖∆uk‖M(
√

2εk +
√

2εk+1)≤ α1(∆uk)T
∆yk, (3.8)

2‖∆yk‖M(
√

2εk +
√

2εk+1)≤min{α2,δ
1/3
k +δ

1/3
k+1}|∆yk|2, (3.9)

where εk = ε(uk), ∆uk = uk+1−uk and ∆yk = G̃M
(
uk+1)− G̃M

(
uk).

3.4. Line search algorithm. In this section, we discuss the line search technique which is
used in the implementation of our method. The following algorithm relies in the use of poly-
nomial models of the objective function in order to perform a backtracking method, and it was
originally proposed in [7, Sec. 6.3.2].

Algorithm 2 Backtracking line search algorithm

Data: Let σ ∈ (0,1/2) and λ0 = 1.
Step 1. Decide wether FM(uk +λksk) ≤ FM(uk)+σλk(sk)>GM(uk) holds. If so, STOP and
let λk = λ0. Otherwise:
Step 2. : Decide whether the step length is too small. If so, STOP and terminate algorithm:
routine failed to locate uk+1 sufficiently distinct from uk. Otherwise:
Step 3. Decrease λ by a factor between 0.1 and 0.5 as follows:
(1) On the first backtrack: let λk := λ̃2 = argminm2(λ ), but constraint the new λk to be

greater than 0.1.
(2) On all the subsequent backtracks: set λk := λ̃3 = argminm3(λ ), but constraint the new

λk to be in [0.1λp,0.5λp].
Step 4. Return to step 1.

Here, m2 and m3 represent quadratic and cubic polynomial models, respectively, used to
approximate the value of Jh. We provide a brief description of these models for the sake of
clarity and completeness of the paper.
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Let ϕk(λ ) := FM(uk +λ sk). Then the quadratic model m2 is given by

m2(λ ) :=
(
ϕk(1)−ϕk(0)−ϕ

′
k(0)

)
λ

2 +ϕ
′
k(0)λ +ϕk(0),

while the cubic model m3 is given by

m3(λ ) = cλ
3 +dλ

2 +ϕ
′
k(0)λ +ϕk(0),

where (
c
d

)
=

1
λp−λ2p

 1
λ 2

p
− 1

λ 2
2p

−λ2p
λ 2

p

λp

λ 2
2p

( ϕk(λp)−ϕk(0)−ϕ ′k(0)λp
ϕk(λ2p)−ϕk(0)−ϕ ′k(0)λ2p

)
.

and λp and λ2p are the two previous values of λk. For further details, we refer the reader to [7,
Sec. 6.3.2], [10, 12] and the references therein.

Finally, our main algorithm is described as follows

Algorithm 3 Proximal bundle algorithm applied to the viscoplastic laminar flow

Data: Let σ ∈ (0,1/2), N ∈N and tol≪ 1. Also, let {δk} be a sequence of positive numbers
such that ∑

∞
k=0 δ

1/3
k < ∞. Let u0 ∈ Rn be an initial guess, M ∈ Rn×n be a symmetric positive

definite matrix, and B be a bundle.
Step 0. (Initialization) Fix k := 0 and B0 := M, find (w0,ν0) and ε0 by means of Algorithm
1 such that

ε0 ≤ δ
0{(w0)T Mw0,N

}
.

For example, initializing the bundle with
{
(u0,J0

h ,ξ
0)
}

.
Step 1. (Descent direction) If |νk|< tol, STOP with uk being optimal. Otherwise, calculate

sk =−B−1
k G̃M(uk).

Step 2. (Line search) Starting with λk = 1, determine if the following condition is satisfied

F̌M(uk +λksk)≤ F̌M(uk)+σλk(sk)>G̃M(xk), (3.10)

where F̌M(uk +λksk) is the approximation of FM at uk +λksk and verifies

F̂M

(
uk +λksk

)
− F̌M

(
uk +λksk

)
≤ δk+1 min

{(
w
(

uk +λksk
))>

Mw
(

uk +λksk
)
,N
}
.

If not, backtrack λk by means of Algorithm 2 until (3.10) be fulfilled. Fix uk+1 = uk +λksk.
Step 3. (Update of the Quasi-Newton matrix) Let ∆uk = uk+1−uk and ∆yk = G̃M(uk+1)−
G̃M(uk). If (3.8) and (3.9) are verified, update Bk to Bk+1 by using the BFGS update formula

Bk+1 = BFGS(Bk,∆uk,∆yk).

Otherwise, choose Bk+1 = M.
Step 4. Update k = k+1 and return to step 1.

The stopping criteria for the algorithm follows [17, Theorem 1]. Indeed, the method stops
if the subbundle algorithm returns ν(u) such that |ν(u)| ≤ tol, where tol is a small enough
positive parameter.
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3.5. Analysis of the algorithm. In this section, we study convergence properties of Algorithm
3. We assume that the solution of problem (3.1) is different from 0. This a reasonable as-
sumption since a zero velocity of deformation would not provide much information about the
behavior of the fluid in the pipe.

From now on, we assume that Algorithm 3 does not finish. Thus the sequence generated by
the algorithm {uk} is infinite.

Consider the set D which is defined by

D :=
{

u ∈ RN : FM(u)≤ FM(u0)+NC
}
.

We present the following result that turns out to be very useful in order to prove global conver-
gence of the method.

Lemma 3.1. For all k ≥ 0, uk ∈ D, and

FM(uk+1)≤ FM(uk)+Nδk+1. (3.11)

Proof. By the algorithm rules, it follows that

FM(uk+1)≤ F̌M(uk)+σλk(sk)>G̃M(uk)+Nδk+1,

= F̌M(uk)−σλkG̃M(uk)>B−1
k G̃M(uk)+Nδk+1.

Because Bk is definite positive, we see from the fact that F̌M ≤ FM that

FM(uk+1)≤ FM(uk)+Nδk+1.

Consequently, for all k ≥ 0, (3.11) holds and uk+1 ∈ D. Finally, u0 ∈ D. �

The next result guarantees global converge of Algorithm 3.

Theorem 3.1. Suppose that there exist two positive constants c1 and c2 such that ‖Bk‖ ≤ c1
and ‖B−1

k ‖ ≤ c2. Then any accumulation point of {uk} minimizes Jh.

Proof. By Lemma 3.1, it follows that FM(uk) is bounded from above. On the other hand, since
Jh is bounded from below, FM must also be bounded from below. Set F∗M := liminfk→∞ FM(xk).
From the fact that ∑k δk < ∞ and (3.11), we have limk→∞ FM(uk) = F∗M. Since δk → 0 and the
algorithm rules, we have that

lim
k→∞

F̌M(uk) = lim
k→∞

F̂M(uk) = F∗M.

On the other hand, it once again follows by the algorithm rules that limk→∞ λk(sk)T G̃M(uk) =
0. By using the fact that Bk y B−1

k are bounded, we conclude that

lim
k→∞

λk|G̃M(uk)|2 = 0. (3.12)

Now, let ū be any accumulation point of {uk}. We consider a subsequence {uk} (denoted as the
original one) such that uk→ ū. Thanks to Lemma 2.3 in [18], it follows that

0≤ |GM(uk)− G̃M(uk)|2 ≤ 2‖M‖εk.

Note that εk→ 0. Thus limk→∞ G̃M(uk) = limk→∞ GM(uk). From the continuity of GM, we have

lim
k→∞

G̃M(uk) = GM(ū). (3.13)



A PROXIMAL BUNDLE ALGORITHM 125

By the line search algorithm, it follows that liminf
k→∞

λk > 0. Therefore, from (3.12) and (3.13)

we conclude that GM(ū) = 0. Consequently ū minimizes Jh. �

In [18], in order to obtain a superlinear convergence rate of their method, the authors assumed
that FM is strongly convex and that GM is Fréchet differentiable. From our point of view, the role
of strong convexity has to do with granting the uniqueness of the solution and that the Hessian
of FM being positive definite at the minimum. This last property represents a challenging task,
since, the second derivative of FM only exists under certain conditions (see [14]). Moreover,
the strong convexity of the regularized functional is directly related to strong convexity of the
objective functional (see [14, Theorem 2.2]). However, we already know that, for any p ∈
(1,+∞), problem (3.1) has a unique solution. Now, for the last property, we proceed as follows:
Note that Jh is twice differentiable for any u 6= 0, and its second derivative is given by

J′′h (u
h)(vh,wh) = (p−2)

∫
Ω
|∇uh|p−4(∇uh,∇vh)(∇uh,∇wh) dx

+
∫

Ω
|∇uh|p−2(∇vh,∇wh) dx+g

∫
Ω

(∇vh,∇wh)
|∇uh| dx−g

∫
Ω

(∇uh,∇vh)(∇uh,∇wh)
|∇uh|3 dx,

for all vh ∈W h
0 . Further, since we have assumed that ū 6= 0, then J′′h (ū) exists. This fact allows

us to state that the Hessian of Jh is also well defined in Rn. We will use the notation J
′′

h (~u)
to represent this Hessian. Thus, by [14, Th. 3.1], the Hessian of FM at ū exists, and is given by

∇
2FM(ū) = M−M[J ′′(ū)+M]−1M. (3.14)

Moreover, considering V := Br(ū), where r := |ū|
max{2,Lp} , and Lp is the Lipschitz continuity

constant associated to the operator pM (see [14, Prop. 3.2]), we have the following lemma.

Lemma 3.2. For each u ∈V , pM(u) 6= 0.

Proof. Note that 0 /∈ BLpr(ū), since |ū| ≥ Lpr. Now, we claim that, for any u ∈ V , pM(u) ∈
BLpr(ū). Indeed,

|pM(u)− ū|= |pM(u)− pM(ū)| ≤ Lp|u− ū|< Lpr.

Thus the result follows. �

Remark 3.2. As a consequence of Lemma 3.2, for u ∈ V , the second derivative of Jh is well
defined. Thus FM is twice differentiable in V (see [14, Theorem 3.1]). In addition, since Jh is
strictly convex, we see from [1, Theorem 2.2] that FM is also strictly convex. Consequently, FM
has a positive definite Hessian in V .

Theorem 3.2 (Superlinear convergence rate of Algorithm 3). The sequence {uk} generated by
Algorithm 3 converges locally Q-superlinearly to ū. Moreover, the sequences of matrices {Bk}
and {B−1

k } are bounded.

Proof. We use the same procedure as in [18, Theorem 5.12]. From the fact that FM has a positive
definite Hessian in V , it remains to show that there exists a constant L > 0 such that

sup
|d|=1
|G′M(u;d)−G′M(ū;d)| ≤ L|u− ū|, (3.15)
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for any u ∈V . Note that

|G′M(u;d)−G′M(ū;d)|

≤ |M|2
∣∣J ′′

h (pM(u))+M]−1∣∣ ∣∣J ′′
h (pM(ū))+M]−1∣∣ ∣∣J ′′

h (pM(ū))−J ′′
h (pM(u))

∣∣ |d|
≤ L1

(
sup
u∈V

∣∣[J ′′
h (pM(u))+M]−1∣∣)∣∣J ′′

h (pM(u))−J ′′
h (pM(ū))

∣∣ |d|
≤ L2

∣∣J ′′
h (pM(u))−J ′′

h (pM(ū))
∣∣ |d|.

Observe that supu∈V
∣∣[J ′′

h (pM(u))+M]−1
∣∣ is finite, since J ′′

h is locally Lipschitz continuous
and pM is Lipschitz continuos. Thus, we conclude that

sup
|d|=1
|G′M(u;d)−G′M(ū;d)| ≤ L|u− ū|.

Therefore, (3.15) is verified in V .
Now, thanks to Lemma 2.2 in [20], (3.15) implies that

|∆ȳk−G′M(ū)∆uk|
|∆uk|

≤ Lmax
{
|uk+1− ū|, |uk− ū|

}
, (3.16)

for k large enough (uk belonging to V ), where ∆ȳk = GM(uk+1)−GM(uk). Thus, in virtue of
Theorem 5.9 in [18], equation (3.16) implies the boundedness of the sequences of the matrices
{Bk} y {B−1

k }. In addition, this also implies that

lim
k→∞

|(Bk−G′M(ū))∆uk|
|∆uk|

= 0.

From this equation, one has a Q-superlinear rate of convergence of Algorithm 3 (see [18, The-
orem 5.12]). �

4. NUMERICAL RESULTS

In this section, we carry out several experiments to demonstrate the behaviour of Algorithm
3. We focus on the numerical simulation of the laminar flow of Herschel-Bulkley fluid in a pipe
by considering a constant right hand side f , which represents the linear decay of pressure in the
pipe.

One key feature in our algorithm is the implementation of the oracle, which is nothing but
an evaluation algorithm for both Jh and ∂Jh. The algorithm needs to determine if the actual
uk, k ∈ N, equals to zero or not. If uk 6= 0, thanks to equation (2.2), the oracle just returns the
values of Jh(uk) and J ′

h(u
k) by direct calculation. Otherwise, if uk = 0, then the oracle has

to determine a function ψ ∈ ∂Jh(0). Note that if ψ ∈C∞
c (Ω) is such that |∇ψ| ≤ 1 in Ω, then

ψ ∈ ∂Jh(0). Thus, we define the following function

ψ(x,y) =

{
e1/(|(x,y)|2−1) if |(x,y)|< 1,
0 if |(x,y)| ≥ 1

whose gradient is given by

|∇ψ(x,y)|=

{
2e1/(|(x,y)|2−1) |(x,y)|

(|(x,y)|2−1)2 if |(x,y)|< 1,

0 if |(x,y)| ≥ 1.
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In Figure 1, the graph of |∇ψ(x,y)| is presented. Therefore, the oracle will return this function
and the value Jh(0).

FIGURE 1. Graph of the function |∇ψ(x,y)|.

We utilized MATLAB’s quadprog function to address the quadratic optimization problem
(3.5). This function, built upon efficient interior-point and active-set algorithms, is particularly
well-suited for solving constrained quadratic programming problems. One of its main strengths
is its ability to robustly manage both equality and inequality constraints while efficiently han-
dling large-scale problems, all while ensuring numerical stability.

4.1. Shear-thinning flow:1 < p < 2. In the next experiments, we observe the performance of
Algorithm 3 when modelling the laminar flow of a shear-thinning fluid (1< p< 2). We consider
a constant linear decay of pressure given by f = 1. Also, we take g as the number of Oldroy
which models the plasticity threshold of the fluid. For further details in the mechanichs of these
problems, we refer the reader to [10, 13] and the references therein.

From now on, we use uniform triangulations described by h, the radius of the inscribed
circumferences of the triangles in the mesh. In the next experiments, we initialize Algorithm
3 with the solution of the Poisson problem −∆uh

0 = f h. Unless otherwise stated, we consider
δ0 = 0.0001 and δk = 1/2k for k = 1, . . .. In addtion, the parameter for the stopping criteria is
tol = 1e−05 or tol = 1e−06.

4.1.1. Experiment 1. In this experiment, we consider Ω as the unit ball in R2. We model the
laminar flow of a Herschel-Bulkley material with p = 1.75. We analyze the behaviour of the
algorithm with g = 0.2 and a mesh of size h ≈ 0.0086. For the Moreau-Yosida regularization,
we consider M = A, the stiffness matrix of the finite element method.
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FIGURE 2. Calculated velocity u (left) and velocity profile along the diameter
of the pipe (right). Parameters: p = 1.75, g = 0.2 and M = A.

In Figure 2, it is shown the resulting velocity function and its profile along the diameter
of the pipe. These graphics illustrate the expected mechanical properties of the material, i.e.,
since the shear stress transmitted by a fluid layer decreases toward the center of the pipe, the
Herschel–Bulkley fluid moves like a solid in that sector. This effect explains the flattening of
the velocity in the center of the pipe .

In Table 1, we summarize the behaviour of the method in each iteration. For each one, we
also show the value of Jh, the norm of uk in W h

0 , the update type of the Bk matrix, the number
of iterations of the inner bundle process (Algorithm 1), the value of |ν |, the size of the step
lenght and the number of iterations of Algorithm 2.

it. Jh(uk) ‖uk‖ Bk Its. Bundle |ν | λk it. ls.
1 0.0812 0.6545 M 389 0.0914 1 0
2 −0.0102 0.3934 M 1 0.0189 1 0
3 −0.0252 0.2830 M 1 0.0045 1 0
4 −0.0293 0.2301 M 1 3.3207e−04 1 0
5 −0.0296 0.2123 M 1 8.2777e−07 1 0

TABLE 1. Convergence behaviour of Algorithm 3. Parameters: p = 1.75, g =
0.2 and M = A.

Note that the value of the functional Jh is reduced in each iteration. Regarding the number of
iterations of Algorithm 1, we observe that at least at the beginning it requires a higher quantity
of iterations to converge, later it only requires one iteration. This effect happens because of the
choice of {δk}, since at the beginning δ0 is much smaller than the firsts values of δk, making the
computational cost higher in the first iteration than the others. On the other hand, the stopping
criterion |ν | has a high decay rate in the last iterations, this allows us to verify the superlinear
convergence of Algorithm 3. It is also remarkable that, in this experiment, the step length
remained constant throughout the entire execution of the method.
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Next, in Figure 3, we observe the behaviour of ν . As expected, there is evidence of a fast
decrease, which is characteristic of a superlinear convergence rate.
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FIGURE 3. Calculated values of ν in each outer iteration of Algorithm 3. Pa-
rameters: p = 1.75, g = 0.2 and M = A.

4.1.2. Experiment 2. We set R2 ⊃Ω = [−1,1]× [−1,1]. Again, we model the laminar flow of
a Herschel-Bulkley material with p = 1.75, and analyze the behaviour of Algorithm 3 with g =
0.2 and a mesh given by h≈ 0.0047. Regarding the matrix for the Moreau-Yosida regularization
we set M = I, the identity matrix.

The resulting velocity function and its profile along the diagonal of the pipe are shown in
Figure 4. As in the previous experiment, these illustrate the expected mechanical properties of
the material (see Subsection 4.1.1).
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FIGURE 4. Calculated velocity u (left) and velocity profile along the diagonal
of the pipe (right). Parameters: p = 1.75, g = 0.2 and M = I.
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it. Jh(uk) ‖uk‖ Bk Its. Bundle |ν | λk it. ls.
1 0.1163 0.8133 M 57 0.0156 1 0

10 0.0300 0.6382 M 1 0.0058 1 0
19 −0.0104 0.5047 M 1 0.0034 1 0
38 −0.0421 0.2858 M 1 6.0815e−05 1 0
39 −0.0422 0.2800 M 1 2.9216e−05 1 0
40 −0.0422 0.2773 M 1 1.1508e−05 0.4973 1
41 −0.0422 0.2745 M 1 3.2250e−06 0.4973 0

TABLE 2. Convergence behaviour of Algorithm 3. Parameters: p = 1.75, g =
0.2 and M = I.
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FIGURE 5. Calculated values of ν in each outer iteration of Algorithm 3. Pa-
rameters: p = 1.75, g = 0.2 and M = I.

In Table 2, we summarize the behaviour of the method at each iteration. Compared with
the previous experiment, there is a large increase in the number of iterations performed until
convergence. Another aspect that stands out in this experiment is the decrease of the functional
Jh, during the last iterations its value does not show any variation. From the second iteration
of the method, the inner bundle process performed exactly one iteration, again, this is due to
the choice of {δk}. It is also observed that the values of ν show a monotonic decrease. As
for the step size λk it is corroborated that it was constant until the penultimate iteration, where
Algorithm 2 performed one iteration to converge, after that λk was reduced more or less by half.

Figure 5 shows the behaviour of the calculated values of ν in each iteration. It can be noticed
that, from iteration 31 onwards, the decrease is more pronounced, this is an evidence of the
good convergence properties of the algorithm, i.e., it has a superlinear convergence rate.

4.1.3. Experiment 3. In this experiment, we analyze the behavior of Algorithm 3 by varying
the initialization parameter δ0. We set Ω as the unit ball of R2. We model the flow of a material
with p = 1.75, g = 0.2 and a mesh given by h ≈ 0.0386. For the matrix associated with the
Moreau-Yosida regularization we consider M = I. We perform Algorithm 3 with δ0 equal to 1,
0.75, 0.50 and 0.25.
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The resulting velocity function and its profile along the diameter of the pipe are presented
in Figure 6. As in the first experiment, these graphs illustrate the same expected mechanical
properties of the material.
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FIGURE 6. Calculated velocity u (left) and velocity profile along the diameter
of the pipe (right). Parameters: p = 1.75, g = 0.2, M = I and δ0 = 0.25.

In Table 3 we summarize the general behavior of the method for each value of δ0. As can
be observed, for a greater δ0 the method presents less accuracy in computing the approximate
solution. Also, note that the number of iterations performed in the case when δ0 = 1 is very
much higher compared to the other cases. Regarding the behavior of the inner bundle process,
it is worth mentioning that, for each iteration of the general algorithm, this method performed
an average of 5 iterations to converge.

In this experiment it could be observed that the Algorithm 3 performs BFGS type updates, this
is a good characteristic of this experiment compared to previous ones. It can be noticed that, for
smaller values of δ0, the method made fewer iterations using BFGS type updates. This behavior
is also observed in previous experiments. In those cases we initialized with δ0 = 0.0001, causing
that Algorithm 3 did not perform BFGS type updates in its total execution.

δ0 Jh(ū) ‖ū‖ its. Its. Bundle Its. BFGS Total time
1 −0.0283 0.2074 108 436 24 8145.27 s

0.75 −0.0286 0.2096 38 161 4 787.35 s
0.50 −0.0288 0.2109 18 105 3 495.73 s
0.25 −0.0290 0.2115 26 253 3 624.65 s

TABLE 3. Convergence behaviour of Algorithm 3 with different choices of δ0.
Parameters: p = 1.75, g = 0.2 and M = I.

On the other hand, Table 4 collects the information of the Algorithm’s performance in the
case of δ = 0.75. It is observed that in the iterations when BFGS type update occurs the value
of the functional decays faster than the other iterations where the update matrix Bk =M is taken.
Note that the bundle inner process in general does not have a high computational cost, in the
last iterations of the method it is observed that this process requires to perform more iterations
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to converge, however, it does not exceed in large number as seen in the previous experiments.
In addition, the step length values are presented as same as the number of iterations performed
by Algorithm 2.

it. Jh(uk) ‖uk‖ Bk Its. Bundle |ν | λk it. ls.
1 0.0862 0.6516 BFGS 2 0.0576 1 0
2 0.0398 0.5522 BFGS 2 0.0316 1 0
3 0.0278 0.3400 BFGS 6 0.0210 1 0
5 0.0256 0.3361 BFGS 5 0.0538 0.0046 4

15 0.0246 0.3314 M 1 0.0501 0.0046 0
25 0.0223 0.3280 M 1 0.0478 0.0046 0
30 −0.0265 0.2361 M 3 4.0416e−04 0.5000 1
35 −0.0271 0.2117 M 14 2.1106e−05 0.5000 0
38 −0.0286 0.2065 M 9 2.7607e−07 0.2500 1

TABLE 4. Convergence behaviour of Algorithm 3. Parameters: p = 1.75, g =
0.2, M = I and δ0 = 0.75.

The convergence behaviour of the method for every value of δ0 is presented in Figure 7. For
δ0 = 1, a monotonic decay can be observed until the tenth iteration, subsequently, the parameter
ν oscillates until the end of the iterations, requiring the total execution of the method to take a
larger amount of time.
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FIGURE 7. Calculated values of ν by Algorithm 3 for each choise of δ0. Param-
eters: p = 1.75, g = 0.2 and M = I.

For the other values of δ0, it can be observed that the method presents a similar convergence
behavior (superlinear rate). In general, a monotonic decay of the values of ν is noticed, in the
case when δ0 = 0.75 the decay is deeper. In these cases, the execution time of the method is
much faster than the time required for δ0 = 1.

4.2. Shear-thickening flow: p > 2. In the next experiments, we observe the performance of
Algorithm 3 when modelling the laminar flow of a shear-thickening fluid (p > 2). As in the
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previous section, we set f = 1, the parameter that represents a linear decay of pressure in the
pipe. Also, we take g as the number of Oldroy which models the plasticity threshold of the
fluid. For further details in the in the mechanichs of these problems, we refer the reader to [13]
and the references therein.

Similarly, we use uniform triangulations described by h, the radius of the inscribed circum-
ferences of the triangles in the mesh. We initialize Algorithm 3 with the solution of the Pois-
son problem −∆uh

0 = f h. Unless otherwise stated, we consider δ0 = 0.0001 and δk = 1/2k for
k = 1, . . .. In addition, the parameter for the stopping criteria is tol = 1e−05 or tol = 1e−06.

4.2.1. Experiment 1. In this experiment, we consider Ω as the unit ball in R2. We model the
laminar flow of a Herschel-Bulkley material with p = 4. We analyze the behaviour of the
algorithm with g = 0.1, g = 0.2 and g = 0.3, and a mesh give by h≈ 0.0086. For the Moreau-
Yosida regularization we consider M = A, the stiffness matrix of the finite element method.

In Figure 8, the resulting velocity function and its profile along the diameter of the pipe are
displayed. These graphics illustrate the expected mechanical properties of the material, i.e., the
viscosity of shear-thickening materials increases with the rate of shear strain. In this case, since
the shear stress transmitted by a fluid layer decreases toward the center of the pipe, the velocity
takes a conical form with a flat part in the exact center of the geometry. Moreover, note that for
a greater value of g then this flat zones are bigger.

(a) Figure A (b) Figure B

(c) Figure C
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FIGURE 8. Calculated velocity u for p = 4 and g = 0.1 (Figure A), g = 0.2
(Figure B) and g = 0.3 (Figure C). Velocity profile for the calculated velocities
along the diameter of the pipe (Figure D).
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Table 5 describes the behavior of Algorithm 3 for each case of g. We exhibit the value of the
functional Jh at the minimum ū and the norm of this point. As mentioned in [10, 13], for large
values of g the problem is less regular and therefore harder to be approximated, however, it can
be observed that the algorithm requires fewer iterations for its convergence for g = 0.3 than
g = 0.2, which turns out to be a good quality of our method. On the other hand, note that the
number of iterations of Algorithm 1 increases when g is larger, which in terms of the execution
time of the method represents a higher computational cost.

g Jh(ū) ‖ū‖ its. Its. Bundle Its. BFGS Total time
0.1 −0.3780 0.8255 7 220 0 479.62 s
0.2 −0.2174 0.7282 12 367 0 2560.78 s
0.3 −0.1872 0.5656 9 532 0 32430.54 s

TABLE 5. Convergence behaviour of Algorithm 3. Parameters: p = 4 and M = A.
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FIGURE 9. Calculated values of ν in each outer iteration of Algorithm 3 for
every value of g. Parameters: p = 4 and M = A.

Finally, Figure 9 shows the convergence behavior of the Algorithm 3 for each value of g. It
is possible to corroborate the superlinear convergence of the method for this case, oscillations
are noticed during the first iterations, later an abrupt decrease is evidenced, typical of this type
of rate of convergence.

4.2.2. Experiment 2. In this experiment, we set Ω as the unit ball of R2. As mentioned in [10],
when the value of p is large, the numerical resolution of problem (3.1) becomes a challenging
task. Consequently, we test Algorithm 3 by modeling the flow of a material with p = 8 and
p = 10. We analyze the behavior of the method with g = 0.2 and a mesh given by h≈ 0.0086.
For the Moreau-Yosida regularization we consider M = A, the stiffness matrix obtained by the
finite element method.

The resulting velocities functions and their profile along the diameter of the pipe are shown
in Figure 10. Again, these graphs illustrate the expected mechanical properties of the material,
i.e., the viscosity of shear-thickening fluids increases with shear stress rate. Since the shear
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stress transmitted by a fluid layer decreases toward the center of the pipe, the velocity takes a
conical form with a flat part in the exact center of the geometry.

(a) Figure A
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(b) Figure B

(c) Figure C
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FIGURE 10. Calculated velocity u and profile of the velocity along the diameter
for p = 8 (Figures A and B) and for p = 10 (Figures C and D). Parameters:
g = 0.2 and M = A.

Behavior of Algorithm 3 for both cases is reported in Table 6. The value of the functional
Jh at its minimum points so as the norm of the points are presented. Regarding the number of
iterations it is interesting to note that for p = 10 the method needs 109 iterations to converge,
evidencing the difficulty of solving the problem. On the other hand, it is observed that the
iterations performed by the bundle inner process are numerous, which directly influences the
total time of the execution of the method. It can be noted that the convergence of the algorithm
took a large amount of time.

p Jh(ū) ‖ū‖ its. Its. Bundlle Its. BFGS Total time
8 −0.3376 0.8743 11 311 0 49325.69 s

10 −0.3639 0.8998 109 1045 0 92880.14 s

TABLE 6. Behavior of Algorithm 3 for higher values of p. Parameters: g = 0.2
and M = A.
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Finally, Figure 11 shows the convergence behavior of Algorithm 3 for each value of p. It is
possible to corroborate the superlinear convergence of the method for both. For p = 8 a mono-
tonic decay is observed followed by an abrupt decrease, typical of the superlinear behavior. On
the other hand for p = 10 it is possible to notice that the values of ν remain constant by sections,
this phenomenon is attributed to the bundle inner process, since the new information added to
the bundle was not good enough to obtain a better value of ν . However, it is possible to notice
a steep decrease starting at iteration 97.
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FIGURE 11. Calculated values of ν in each outer iteration of Algorithm 3 for
p = 8 (left) y p = 10 (right). Parameters: g = 0.2 and M = A.

4.2.3. Experiment 3. In this experiment, we analyze the behavior of Algorithm 3 by varying
the initialization parameter δ0. We set Ω as the unit ball of R2. We model the flow of a material
with p= 4, g= 0.2 and a mesh given by h≈ 0.0386. For the matrix associated with the Moreau-
Yosida regularization we consider M = I. We perform Algorithm 3 with δ0 equal to 1, 0.75,
0.50 and 0.25.
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FIGURE 12. Calculated velocity u (left) and its profile along the diameter of the
pipe (right). Parameters: p = 4, g = 0.2, M = I and δ0 = 0.25.
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Figure 12 shows the velocity function and its profile along the diameter of the pipe. As in the
first experiment of this section, these graphs illustrate the same expected mechanical properties
of the material. For each value of δ0, the behavior of Algorithm 3 is presented in Table 7. In
this case, it can be observed that for larger δ0 the solution is more accurate, since the value of
Jh functional at ū is smaller, as well as the value of ū, which increases. With respect to the
number of iterations, for δ0 = 1 the method has a better behavior than the cases δ0 = 0.75 and
δ0 = 0.50. However, it is evident that the Algorithm 3 has its best performance when δ0 = 0.25
than in the others.

It is important to mention that, for δ0 = 0.75 and δ0 = 0.50, the Algorithm 3 showed the
same behavior, it can be observed that in both cases the same solution was obtained, so as the
same number of iterations, same number of iterations of the bundle inner process and the same
number of BFGS type updates. As well as the same amount of execution time of the method.

The behavior of the Algorithm 1 is quite good for each initialization parameter. It is possible
to observe that in the last case it performs almost the same number of iterations as the general
method has performed. For the intermediate cases, it is noted that the number of iterations
performed are approximately twice the number of outer iterations. In the the first case, it is
observed that the number of iterations performed by the bundle inner process exceeds by more
than three times the number of outer iterations.

δ Jh(ū) ‖ū‖ its. Its. Bundle Its. BFGS Total time
1 −0.2087 0.7012 30 103 9 930.87 s

0.75 −0.2086 0.6969 37 71 6 1086.27 s
0.50 −0.2086 0.6969 37 71 6 1086.27 s
0.25 −0.2080 0.6798 19 21 1 365.21 s

TABLE 7. Convergence behaviour of Algorithm 3 with different choices of δ0.
Parameters: p = 4, g = 0.2 and M = I.

As in the previous section, the variation of the initialization parameter δ0 allows the method to
perform iterations with the BFGS type update. Again it is observed that, when delta0 is small,
then the method performs fewer BFGS type updates. This is also supported by the previous
experiments in this section, since when taking δ0 = 0.0001, the method does not perform any
BFGS iteration.

The most noticeable advantage of the BFGS type update is that the method converges more
quickly to the solution. This can be noticed in the total execution time of the Algorithm 3. In
the first case, the method requires less time than for the second and third cases. Even when the
number of iterations of Algorithm 1 is excessively higher than the iterations performed by the
general method.
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it. Jh(uk) ‖uk‖ Bk Its. Bundle |ν | λk it. ls.
1 −0.1695 0.4893 BFGS 1 0.0266 1 0
2 −0.1697 0.5703 BFGS 3 0.0140 1 0
3 −0.1759 0.6227 M 2 0.0243 0.3994 1
7 −0.2011 0.6540 BFGS 1 0.0043 0.3994 0
9 −0.2043 0.6597 BFGS 1 0.0021 0.3994 0

13 −0.2068 0.6716 M 1 6.5891e−04 0.3994 0
15 −0.2075 0.6782 BFGS 1 3.6662e−04 0.3994 0
18 −0.2080 0.6870 BFGS 1 2.1609e−04 0.3994 0
23 −0.2082 0.6980 BFGS 1 1.2821e−04 0.3994 0
25 −0.2084 0.7005 BFGS 1 1.0648e−04 0.3994 0
26 −0.2085 0.7008 BFGS 7 8.7622e−05 0.3994 0
29 −0.2086 0.7010 M 28 1.2858e−05 0.3994 0
30 −0.2087 0.7012 M 15 5.8191e−06 0.2500 1

TABLE 8. Convergence behaviour of Algorithm 3. Parameters: p = 4, g = 0.2,
M = I and δ0 = 1.

Table 8 compiles the information of the development of Algorithm 3 with δ0 = 1 as initial-
ization parameter. It is observed that there is a monotonic decrease in the value of the functional
Jh as an increase in the norm of uk at each iteration. In addition, the type of update of the Bk
matrix is reported for each iteration. With respect to Algorithm 1, it is noted that it does not
require a very high computational cost to converge; it is observed that it performs few itera-
tions in its majority, it presents an increase of these in the last iterations of the general method,
however, they are not excessively large as observed in the previous experiments. In addition, it
is observed that the linear search algorithm performs few iterations along the method, in most
iterations of the method the step length is constant and changes in the last iteration.
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FIGURE 13. Calculated values of ν in each outer iteration of Algorithm 3 for
each δ0. Parameters: p = 4, g = 0.2 y M = I.

The convergence of the method through the values of ν obtained in each iteration is observed
in Figure 13. Note that for all cases, these values decay monotonically in their majority. In
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addition, it is observed that in the final iterations the decrease of ν is more pronounced, and this
corroborates the superlinear convergence order towards the minimum for this type of materials.

5. CONCLUSIONS

In this paper, we focused on the numerical resolution of a class of variational inequalities
of the second kind involving the p-Laplacian operator and the L1-norm of the gradient. We
applied the Moreau-Yosida regularization in order to get rid of non differentiability and then
proposed a method which has an inner bundle algorithm, we proved that the outer algorithm
is globally and superlinearly convergent. Several numerical experiments were carried out to
show the main features of the numerical approach. These numerical examples were constructed
focusing on the applications to the flow of Herschel–Bulkley materials. Due to the structure
of the algorithm, it is observed that the inner bundle process has a higher computational cost
that in some experiments made the overall execution of the method very slow. Nevertheless, in
most of the experiments, we observe that the outer algorithm does not need of a higher number
iterations to achieve convergence, thanks to the rate of convergence. In order to continue this
research, we propose to study this problem by considering new techniques developed for bundle
methods that are more efficient and have a lower computational cost.
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