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EDFM: AN ENHANCED DUAL-BRANCH FUSION MODEL FOR FACE
DEEPFAKE DETECTION
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Abstract. Face deepfake technology brings serious security risks such as privacy leakage, false infor-
mation dissemination, and network fraud, which need to be widely concerned and prevented. In recent
years, many detection methods were proposed, among which enhancing the robustness and general-
ization ability of the model has always been an important topic. In this paper, we propose a novel
enhanced dual-branch fusion model to improve the robustness and generalization ability of CNN-based
face deepfake detector. Our method begins by enhancing the RGB high-frequency noise in the face im-
age to extract its abnormal features, and then performs preservation fusion. Specifically, we use a deep
separable convolution module to improve the model performance when extracting image features. When
extracting noise features, we use a selective kernel module to adaptively extract more representative noise
features by dynamically adjusting the convolution kernel. In addition, we specially design a multi-scale
channel spatial attention fusion module to effectively fuse the feature information of each part, thereby
reducing model overfitting and enhancing the robustness and generalization ability of the model. Finally,
through comprehensive evaluation on several benchmark datasets, it is confirmed that our method has
significantly improved robustness and generalization.
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1. INTRODUCTION

Face deepfake technology [1] uses deep learning models to generate highly realistic fake
face images and videos. With the advancement of forgery techniques, these synthetic con-
tents are almost visually indistinguishable from real images, posing serious threats to personal
privacy, public opinion manipulation, and public safety [2, 15, 29]. To mitigate such risks, deep-
fake detection technology has become an essential research direction [23]. Current detection
methods can be divided into two main categories: feature extraction-based methods and deep
learningba-sed methods [10, 24]. The former identifies forgery by extracting manually designed
image features, such as abnormal facial textures and inconsistent lighting [4]. In contrast, deep
learningb-ased methods [16] use models like convolutional neural networks (CNNs) to auto-
matically learn feature representations that distinguish between real and fake content, achieving
high detection accuracy [34]. Despite of the proposed methods, deepfake detection still faces
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several challenges, especially in detecting forged datasets generated by different forgery meth-
ods, where robustness is clearly lacking. Additionally, some studies [3, 19] found that, due
to the model’s insufficient accuracy in extracting and selecting features, generalization across
datasets is limited. Therefore, further enhancing the robustness and generalization capability of
models in cross-dataset detection algorithms is crucial for information security and robustness
[35].

Recently, to address the issue of insufficient generalization capability, researchers begun ex-
ploring more refined detection methods, including dual-branch fusion strategies [37] , transfer
learning [30], domain adaptation and multi-task learning [36], to enhance model generaliza-
tion. The dual-branch fusion method combines information from different feature extraction
branches, allowing for a more comprehensive capture of multi-level features in forged images,
thereby improving detection accuracy and robustness [40]. This strategy typically integrates
information from both spatial and frequency domains, with two independent branches handling
detailed and global features, respectively, and a fusion module synthesizing them to assess the
likelihood of forgery [25]. Additionally, some studies attempted to obtain useful information
for face deepfake detection from the frequency domain, such as using Discrete Cosine Trans-
form(DCT), steganalysis features, and Fourier transform [13]. However, these methods have
not fully leveraged the interaction and extraction of features from normal images, failing to
thoroughly exploit the image data. Previous dual-branch recognition structures [12, 31] applied
the same processing to both the RGB branch and the high-frequency noise branch by using
Spatial Rich Model (SRM) [6]. Upon analyzing the high-frequency noise suppression areas
and RGB feature maps, it was found that training is overly focused on regions irrelevant to
forgery detection, leaving room for improvement in generalization. In this paper, our goal is
to further enhance the generalization and optimize the robustness of dual-branch face forgery
detectors. We propose an optimized solution for cross-dataset face forgery detection models. To
more adaptively utilize image noise and conventional image features, and to more reasonably
fuse the two features for improved robustness and generalization, we designed a combination
of three modules, each acting on the dual branches and the fusion process. The first is a Depth-
wise Separable Convolutional Module (DSCM), which reduces the performance overhead in
the RGB branch while ensuring stability. The second is a Selective Kernel Module (SKM)
[14], which uses a dyna-mic selection mechanism to adjust the receptive field size adaptively
in the noise extraction branch. After constraining the features from the two branches, we apply
our proposed multi-scale Branch Fusion Module (BFM), which performs multi-scale fusion of
the enhanced dual branches across spatial and channel dimensions, further weighting the core
features from both branches.

Our contributions are summarized as follows:

e We propose a novel enhanced dual-branch fusion mo-del to improve the robustness and
generalization capability of CNN-based face deepfake detectors.

e Based on the functional analysis of the RGB and hig-h-frequency noise branches, we in-
troduce the DSCM and SKM modules to optimize the corresponding branches. In the RGB
branch, we reduce performance overhead while maintaining feature extraction capability, and
in the high-frequency noise branch, we employ DSCM to more precisely expose tampered re-
gions.
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e During the dual-branch fusion process, we propose a multi-scale DFM that extracts multi-
scale features from both the RGB and high-frequency noise branches, followed by cross-fusion
in both spatial and channel dimensions, making full use of the features extracted by the two
branches.

We evaluate the model on several standard datasets, demonstrating its strong robustness and
generalization capability.

2. RELATED WORK

DeepFake Detection. Forged faces pose a significant th-reat to social security, making face
forgery detection crucial. To address the unique characteristics of deepfake fa-ces, researchers
proposed various detection methods. For instance, [36] used steganalysis and leverages spatial
and inter-frame correlations to determine whether a face has been tampered with. Other meth-
ods focus on specific facial representations to detect authenticity, such as head pose, blinking,
and mouth movements [26]. Employs frequency domain-aware decomposition, using frequency
domain statistics to reveal deepfake artifacts in the frequency domain for detecting forged faces.

Generalization of Detection Enhanced by Synthetic Data. Although most existing meth-
ods perform well in detecting known manipulations, some studies found that these methods fail
to generalize to faces forged by unknown techniques. To enhance the generalization capability
of detectors, researchers adopted various strategies. For example, some researchers combined
auxiliary localization tasks to guide the network to focus more precisely on the forged regions.
In [12], one branch processes RGB input, while another branch uses DCT to extract high-
frequency features from different frequency bands. The outputs of both branches are fused
together to form more generalizable forgery features. Many approaches also integrated both
RGB and frequency domain features. However, the high-fr-equency feature extraction methods
mentioned above cannot adaptively fit the data to capture the most discriminative features. To
improve detection generalization, different datasets of forged faces are needed. To this end,
many synthetic datasets were created, such as FF++, FWA, CDF, DFD, DFDCP, and FFIW. Re-
searchers used these datasets to train and cross-validate their methods, continuously improving
the generalization of forgery detection.

Branch Feature Fusion. The branch fusion model aims to combine the analysis of image
noise characteristics and manipulation traces to enhance the accuracy of image forgery detection
[31, 40]. The model’s two branches handle different aspects of the image: the first branch
inputs the RGB source face and the second branch focuses on capturing high-frequency noise
information. This noise exhibits unique patterns depending on the device and source, serving
as an inherent feature of the image. The second branch inputs noise extracted by the SRM,
concentrating on inconsistencies after image manipulation, analyzing how the manipulation
disrupts the spatial characteristics of the noise and uncovering residual manipulation traces.

High-frequency features. The role of high-frequency features in image authenticity de-
tection received widespread attention in recent years, especially in adversarial generative face
forgery (such as DeepFake) technology. Existing studies shown that the distribution of real
images and forged images in the high-frequency domain is significantly different [5], which
provides key clues for detection algorithms. Early work mainly used frequency domain analy-
sis methods such as discrete Fourier transform (DFT) and discrete cosine transform (DCT) to
extract high-frequency features [7], but they were mostly limited to feature extraction in a single
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domain. Recent studies pointed out that forged faces have inherent defects in the correlation of
high-frequency features across domains [11], especially in high-frequency details such as edge
sharpness and micro-texture consistency, which are prone to phase misalignment and energy
distribution anomalies.
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(a)Dual-branch fusion model diagram (H)DSCM

FIGURE 1. The diagram illustrates the overall flow of the model, which is
mainly divided into two branches: one consisting of the RGB branch and the
other consisting of high-frequency noise obtained through SRM processing.
These two branches undergo CMCE cross-learning, and are finally fused through
BFM.

3. METHOD

Figure 1 displays our proposed Enhanced Dual-Branch Fusion Model (EDFM). The model
mainly consists of two branches: one is the RGB branch, and the other is the high-frequency
noise branch obtained through SRM processing.

These two branches undergo cross-learning via Cross-Modality Consistency Enhancemen
(CMCE) [31] and are finally fused through BFM for classification. In the shallow layers of the
RGB branch, we take full advantage of the DSCM, which has the benefit of a small number
of parameters and high performance, reducing computational overhead while ensuring stable
performance for the RGB branch. Since SRM works through three fixed filters, it 1-imits its
ability to adapt to features. To address this, our method introduces the SKM, which allows each
neuron in the convolutional neural network to adjust its receptive field size adaptively based on
multi-scale input information, utilizing the dynamic selection mechanism of the neural network.
This effectively resolves the issue of SRM’s limit-ed adaptability. Thus, by using the SKM
and combining it with SRM high-frequency noise, we further enhance SRM’s ability to extract
effective representations. Additionally, we leverage CMCE for interactive learning in the middle
layers. Finally, we design a multi-scale channel-spatial attention fusion module to support
the fusion of multi-scale channel-spatial attention between the RGB and high-frequency noise
branches, fully integrating the representations learned from both branches for classification. In
the following sections, we will discusseach component in detail.
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3.1. Depthwise separable convolutional module. In the RGB branch, using the DSCM in-
stead of regular convolution significantly improves the model’s computational efficiency. DSCM
breaks down regular convolution into two steps: depthwise convolution and pointwise convo-
lution. This decomposition-greatly reduces the computational complexity, making the model
more lightweight and efficient during training and fusion. Moreover, since each depthwise con-
volution operates only on a single channel and the pointwise convolution handles the fusion
of information between channels, this design leads to a substantial reduction in the required
parameters, which in turn lowers the model’s storage and memory usage. In addition, while
maintaining stable model accuracy, the feature extraction process of the RGB branch is highly
efficient. Therefore, by using the DSCM in the RGB branch, the model can maintain its perfor-
mance while greatly improving computational efficiency.

The specific implementation details of the module are shown in Figure 1(b). It contains a 2D
convolution, normalization and LeakyReL U activation layer. First, we input the feature map Xg
into the deep convolution layer to get Xp, Then, Xp is input into a point-by-point convolution
layer to get the final output Xp.

3.2. Selective kernel module in high-frequency noise branch. In the dual-branch architec-
ture, the SRM branch performs well in extracting noise features. However, during filtering for
preprocessing, the use of three fixed convolution kernels limits the filter’s ability to adaptively
update to fit the data, which restricts its receptive field size for noise features. Therefore, we
propose to use the SKM approach, which implements a dynamic selection mechanism in convo-
lutional neural networks, allowing each neuron to adaptively adjust its receptive fields based on
the input. This effectively addresses the shortcomings of the SRM in extracting noise features,
enhancing its ability to capture noise across different receptive field sizes, and subsequently
providing more effective features for classification.

SKM utilizes a building block called the selective kernel unit, which consists of multiple
branches with different kernel sizes. These branches are fused through a softmax attention
mechanism, guided by the information from these branches. This fusion process enables neu-
rons to adaptively adjust their effective receptive field size based on the input. The specific
structure of the module is displayed in Figure 2. First, the input feature X is processed by con-
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FIGURE 2. Selective Kernel Module. It adjusts the receptive field by dynami-
cally selecting branches with different kernel sizes and attention mechanisms.

volution kernels of different sizes, where the convolution kernel sizes are 1 x 1,3 x 3,5 x 5, and
7 x 7, respectively, to extract feature maps of different receptive fields. The selection of 1 x 1,
3x3,5x5, and 7 x 7 convolutional kernels in multi-scale feature extraction is driven by em-
pirical and experimental considerations: 1 x 1 kernels enable lightweight channel-wise fusion,
3 x 3 kernels efficiently capture localized details while maintaining computational economy,
5 x 5 kernels model mid-range contextual patterns, and 7 x 7 kernels capture global dependen-
cies. These scales collectively capture the typical spectrum of object scales in natural images,
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spanning from fine-grained details to holistic structures. This multi-scale design ultimately
achieves an optimal balance between computational efficiency and feature representation ca-
pacity. Then the outputs of the four different convolution kernels are summed to obtain the
fused feature map, which is described as X = Zﬁzl For—1 (Xs), where Fy;_ represents the con-
volution operation with 2k — 1 as the convolution kernel

Subsequently, global average pooling is applied to the fused feature map Xy, followed by a
fully connected layer to obtain the dimension-reduced X;. In addition, we need to compute the
attention weights corresponding to each convolution kernel, apply each attention weight to the
corresponding feature map, and then perform a weighted summation of all the feature maps to
obtain the final output X,,.

3.3. Multi-scale branch fusion module. Since this paper adopts an RGB and SRM dual-
branch learning mode, effectively merging the features from both branches is a crucial issue.
Traditional methods of simple addition or multiplication for feature fusion have significant lim-
itations when handling these tasks, they are easily affected by noise and struggle to dynamically
adjust the importance of features. We propose a multi-scale branch fusion module that combines
multi-scale feature extraction with channel attention mechanisms to enhance the robustness of
feature fusion. In this process, multi-scale convolutions can capture feature information at dif-
ferent scales, while the attention mechanism dynamically adjusts the importance of features,
ensuring that key features receive higher weights during fusion.

Specifically, for the intermediate layer features 77 and 7> obtained from the RGB and SRM
dual branches, both are convolved by using three different kernel sizes: 3 x 3,5 x5, and 7 x 7.
After convolution, the results of the three convolutions are summed to produce a multi-scale
feature map T]/

T, = Comv3(T;) + Comv5 (T;) + Comv7(T}) ,i € {1,2},
where i = 1 and i = 2 represent the intermediate feature maps of RGB and SRM.

After multi-scale feature extraction, pooling operations in the channel and spatial dimensions
are also required. The cat operation in Figure 3 represents the connection of the channel-channel
dimension and the space-space dimension of the two branches by using the cat operation in
torch. Specifically, the obtained features Tl/ and TZI undergo global average pooling (AvgPool)
and global max pooling (MaxPool) operations in both the channel and spatial dimensions, de-
scribed as follows:

T = AdvAvgPool (Tll ) ,
) (3.1)
TIM = AdvMaxPool <T1> ,

where AdvAvgPool is the adaptive average pooling and AdvMaxPool is the adaptive maximum
pooling, which can be adaptively changed to the specified HxW size output. The implementa-
tion of adaptive pooling is as follows:

Tzl performs the same operation (3.1) to obtain TZA and T2M .

Wi = Soft (2DComv1 (Car (T{,74') ) ) + Soft (1DComs1 (Car (1, 731)))  (3.2)
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FIGURE 3. Diagram of the BFM via multi-scale convolution together with chan-
nel and spatial attention mechanisms.

and
W = Soft (2DCom2 (Car (T1,74') ) ) + Soft (1DCom2 (Car (1, 731))). (33)

Among them, Cat represents the concatenate operation, 2DConv1(or 2) and 1DConvl(or 2)
represent the convolution operation at time 1(or 2), and Soft represents SoftMax.

As shown in Figure 3, the results of channel pooling and spatial pooling calculated above
are concatenated to obtain channel features and spatial features, respectively. Then, a one-
dimensional convolution is applied to the concatenated spatial features to obtain two different
spatial weights. These weights are normalized using softmax, ensuring that their sum is 1,
which facilitates subsequent weighted fusion operations. Finally, using (3.2), (3.3), calculated
channel weight W; and spatial weight W,, the weighted addition and weighted multiplication of
the two features are performed to obtain the fused feature map F. The specific description is
F=Ti\W,+TW,.

3.4. Loss function. For the loss function, we use cross entropy loss to supervise network learn-
ing as follows: Lc = — [ylog$+ (1 —y)log¥], where y is a binary label.

4. EXPERIMENT

4.1. Implementation Settings. we evaluate our model on five common forgery datasets: Face-
Forensics++ (FF++), Celeb-DF [16], DeepFake Detection [27] (DFD), and the Deepfake Detec-
tion Challenge [9] (DFDC). The experiments used the high-quality version (c23) of the FF++
dataset, which contains 4,000 forged videos generated by four algorithms: DeepFake (DF),
Face2Face (F2F), FaceSwap (FS), and NeuralTextures (NT).

Implementation details: In the data preprocessing stage, we align the officially labeled FF++
dataset with the original videos and crop the facial regions. All experimental face images are
crop to 299 x 299 and uniformly normalized to [0, 1]. We utilize common augmentations
such as flipping, contrast adjustment, scaling, and blurring. Additionally, to increase dataset
diversity while ensuring annotations are aligned with images, we employ random cropping. We
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used Xception [28] for pre-training model initialization, with the Adam [41] optimizer set to
betas 0.9 and 0.999, and epsilon 1e-8. The batch size is set to 32, with a learning rate of 0.0002.
All experiments are implemented using PyTorch on the NVIDIA RTX 4090 24GB platform.

Source Image

Original

FIGURE 4. Comparison of the differences in the heatmaps before and after the
improvement. Ours refers to the EDFM, and Original refers to the dual-branch
basic model of direct additive fusion.

4.2. Evaluation. Intra-dataset Evaluation. Table 1 lists the results of testing four different
methods on the four forgery techniques in the FF++ dataset. It can be seen that when the traing
set and the testing set are the same dataset, our method can achieve high results comparable
to other methods, and our method achieves performance comparable to other methods with
similarly high results when test within the same dataset.

Cross-dataset evaluation. When applied to cross-dataset scenarios, reveals that some meth-
ods experience significantly low AUC (Area Under the Curve) during testing. For example, in
Table 1, the DCL method shows an AUC of 52.1% when test from NT to F2F, while Xcep-
tion displays an AUC of only 49% in the DF to FS scenario. Similarly, Face X-ray achieves
only 45.8% AUC when evaluate from FS to DF . In contrast, our method demonstrates balanced
performance, with AUC values consistently above 70%, indicating strong stability.

Additionally, when evaluating DF to other datasets and NT to other datasets, our method
generally achieves the best AUC results. For instance, when evaluating NT to the other four
forgery methods, the average AUC reaches an impressive 94.7%. Notably, in the DF to F2F
cross-dataset scenario, our method shows a significant improvement, with an AUC that is 9.4%
higher than the second-best DCL method. Furthermore, As shown in Table 2, our method
achieves excellent results in AUC test. As seen in Figure 4, the enhanced model more accu-
rately captures the forged regions, providing more valuable feature information for detection.
Heatmaps are generated by extracting feature maps from the last convolutional layer of a deep
learning model, then combining them with the target category weights from the fully connected
layer through weighted summation to create activation maps. These activation maps undergo
activation processing, normalization, and upsampling before being superimposed onto the orig-
inal image. This visualizes the model’s decision-critical regions (highlighted areas), intuitively
revealing the key areas the model focuses on when making classifications.
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TABLE 1. AUC evaluation across datasets on FF++(HQ).The boldface indicates
the best result, and the underlined one indicates the suboptimal result.

.. Testing Set(AUC)
Training Set Model BE B S NT  Ave
Xception [28] | 0.993 0.736 0.490 0.736 0.554
DF Face X-ray [13] | 0.987 0.764 0.600 0.698 0.762
DCL[32] | 1.00 0771 0610 0.782 0790
Ours 0.998 0.865 0.680 0.857 0.850
Xception [28] | 0.803 0.994 0.762 0.696 0.813
FOF Face X-ray [13] | 0.630 0.984 0.938 0.945 0.874
DCL [32] 0919 0.992 0.596 0.667 0.793
Ours 0.844 0.996 0.804 0.786 0.857
Xception [28] | 0.664 0.888 0.994 0.713 0.814
FS Face X-ray [13] | 0.458 0.961 0.981 0.957 0.839
DCL [32] 0.741 0.698 0.995 0.526 0.740
Ours 0.682 0.891 0.997 0.729 0.824
Xception [28] | 0.799 0.813 0.731 0.991 0.834
NT Face X-ray [13] | 0.705 0.917 0.910 0.925 0.864
DCL [32] 0912 0.521 0.783 0.990 0.801
Ours 0.922 0.955 0.918 0.994 0.947

Cross-method evaluation. We compare our method with LAE, ClassNSeg, and Forensic-
Trans, as shown in Table 3. First, all methods are train on NT and then test on F2F and NT. It
can be observed that our method achieves a 13% higher performance on F2F compared to the
second best, ForensicTrans, further proving the effectiveness of our method in cross-method
scenarios on the FF++ dataset. Even in within-method testing, our method outperforms Foren-
sicTrans by 4%.

These results are achieved through our BFM module, which preserves RGB-extracted infor-
mation during fusion, enabling high accuracy within methods. Additionally, the SKM module
accurately retains high-frequency noise features, enhancing the model’s generalization ability,
leading to the 13% improvement. Therefore, the experimental results further confirm the supe-
rior generalization capability of our method.

TABLE 2. The FF++ training and testing datasets are evaluated with other meth-
ods, and the evaluation metric is AUC.

Testing Set(AUC)
DF F2F FS NT  Avg
Xception [28] | 0.994 0.995 0.994 0.995 0.994
Face X-ray [13] | 0.991 0.993 0.992 0.993 0.992
DCL [32] 1.00 0990 0.999 0.976 0.991

Training Set Model

FF++ SOLA[S] | 1.00 0995 1.00 0.998 0.998
SBIs[33] | 1.00 0999 0999 0988 0.996
Ours 0998 0999 0995 0993 0.996

TABLE 3. Comparison of Acc evaluation with LAE, ClassNSeg, and Forensic-
Trans in NT to F2F, in High Quality (HQ) case.

.. Testing Set(Acc)
Training Set Model F2FHQ) NTHQ)

LAE [20] 0.72 0.87

ClassNSeg [22] 0.65 0.88

NTHQ ForensicTrans [12] 0.74 0.92

Ours 0.87 0.96
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Cross-dataset comparison.The cross-dataset comparison results are shown in Table 5. We
train the model on FF++ and then test it on four cross-datasets: DFD, DFDC, CelebDF, and
DF1. 0, comparing the results with Xception and Face X-ray. This test is more valuable since
the four datasets have less similarity to FF++, requiring better generalization from the model to
achieve good results.

The experimental results in Table 4 indicate that the model demonstrates strong robustness
against image compression at various quality levels. On original images, t-he model achieves
high accuracy and AUC, with 84.5% and 94%, respectively, showing excellent detection per-
formance. When the compression quality is reduced to 90% and 70%, the model’s performance
slightly decreases but still maintains good accuracy (81.7% and 77.4%) and AUC (89% and
85%), indicating strong resistance to mild and moderate compression. However, at a compres-
sion quality of 50%, the accuracy and AUC drop significantly to 70.2% and 81%, respectively,
suggesting that heavy compression impacts the model’s performance due to the loss of image
details. Overall, the model retains high detection capability across different compression con-
ditions, demonstrating good noise resistance and robustness.

As seen from the results in Table 5, our method demonstrates high stability, achieving the best
average AUC score of 76.2% across the four datasets. Unlike using Xception on CelebDF, our
method avoids significant drop and consistently maintaining good results. This cross-dataset
comparison confirms that our method improves generalization in some scenarios. For example,
in the DFDC dataset, our method outperforms Face X-ray by 4.5%. It also maintains strong
stability, with balanced results across all four datasets, highlighting the robustness of the model.

Finally, we compare our method’s generalization performance on the cross-dataset CD2 with
recent models like F3Net, FWA, MADD, and MTD-Net. As shown in Table 6, our approach
achieves better results than recent models like F3Net and FWA, further confirming that the
improved dual-branch fusion and SKM modules enhance the model’s generalization capability.

TABLE 4. Performance evaluation of the model on the FF++ dataset at different
JPEG compression qualities

Compression quality | Acc  AUC PSNR SSIM
Original Image 0.845 0.94 - -

90% 0.817 0.89 39.8 098
70% 0774 085 365 095
50% 0.702 0.81 312 0.90

TABLE 5. Cross-dataset evaluation from FF++ to other dataset.The boldface
indicates the best result, and the underlined one indicates the suboptimal result.

Testing Set(AUC)
DFD DFDC CelebDF DF1.0 AVG
Xception [28] | 0.831  0.679 0.594  0.689 0.698
FF++ Face X-ray [13] | 0.856 0.700 0.742 0.723  0.755
Luo [18] 0.839 0.732  0.810  0.690 0.767
Ours 0.842  0.745 0.842  0.732 0.790

Training Set Model

5. ABLATION EXPERIMENT

To evaluate the effectiveness of the three modules, we conduct ablation experiments. As
shown in Table 7, we first train the FF++ dataset using the RGB, SRM, and dual-branch models
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to establish baseline data. Then, we test the same training with the DSCM, SKM, and BFM
modules in succession. The process is as follows: we first evaluate the individual RGB and
SRM branches separately, then evaluate the fusion results of the two branches. As seen from
the third row in Table 7, the fusion results on DF and NT outperform the single-branch approach.

Starting from the fourth row, we test the methods proposed in this paper: DSCM, SKM, and
BFM. From the analysis of the table 7, it can be concluded that the basic DSCM module shows
certain improvements compared to the regular dual-branch model, especially with a 4.7% in-
crease in the NT evaluation. Next, the combination of the DSCM and SKM modules further
improves performance compared to the single DSCM module, with a 1.4% increase in both FS
and NT evaluations. This confirms that the SKM module enhances SRM’s ability to extract
high-frequency features. Finally, with the addition of the BFM module, the overall is improved
even more, particularly in the NT evaluation, where it increases from 95.5% to 96.7%. By ana-
lyzing the results from the last three rows, it is clear that with the addition of each module, the
overall model performance steadily improves, demonstrating the effectiveness of each module.

The primary rationale for selecting Leaky ReLLU as the activation function lies in its superior
performance, achieving the highest AUC (0.955) on the test set compared to other activation
functions. Additionally, Leaky ReLU addresses the ’dying neuron” issue inherent to standard
ReLU by preserving small gradients in negative input regions, while simultaneously mitigating
the vanishing gradient problem commonly observed in Sigmoid and Tanh functions. This dual
mechanism enhances training effectiveness in deep neural networks. Its enhanced nonlinear
expressive capability enables the model to capture more sophisticated feature representations,
thereby ultimately improving detection performance in face forgery identification tasks.

As shown in Table 9.From the experimental data, it is evident that the multi-scale convolu-
tional kernel combination of 1 x 1, 3 X3, 5 x5, and 7 x 7 achieves the best performance in
forgery detection. This combination yields the highest AUC values across all test sets, with
0.922 on DF, 0.955 on P2F, 0.918 on FS, and 0.994 on NT, significantly outperforming other
configurations. In contrast, removing certain kernel sizes (e.g., excluding 5 x 5 or 7 x 7) leads to
performance degradation, indicating that multi-scale features are crucial for forgery detection.
The 1 x 1,3 x 3,5 x5, and 7 X 7 combination effectively captures multi-scale features, thereby
enhancing detection performance.

TABLE 6. By training on FF++ (c23), we cross the dataset to CD2 and compare
with the nearest method(F3Net, FWA ,MADD,MTD-Net,Dual-branch,GFF). The
evaluation result is AUC.

. . Testing Set(AUC)
Model Training Set D2
F3Net [26] FF++(c23) 65.17
FWA [17] Self-made 57.32
MADD [39] FF++(c23) 67.44
MTD-Net [38] FF++(c23) 70.12
Dual-branch [21] | FF++(c23) 73.41
GFF [8] FF++(c23) 65.20
Luo [18] FF++(c23) 66.23
Shuai [31] FF++(c23) 67.38
Ours FF++(c23) 68.48
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TABLE 7. Ablation study on FF++. The metric is AUC. Results in grey indicate
performance within the dataset.

Method DF  F2F FS NT
RGB 0.803 1 0.994 0.762 0.696
SRM 0.758 1 0.994 0913 0.858
Dual-branch 0.805 0.994 0910 0.894
DSCM 0.821 1 0.995 0.931 0.941
DSCM + SKM 0.833 1 0.996 0.945 0.955
DSCM+ SKM + BFM | 0.838 0.996 0.956 0.967

TABLE 8. The test results of the model under different activation functions.

Training Set | Activation Function Testing : Se (AUC)
Tanh 0.892
ReLLU 0.920
NT Sigmoid 0.885
Leaky ReLU 0.955

TABLE 9. Detection results across datasets at different scales.

Testing set(AUC)
DF F2F FS NT
3x3,5x5,7x7 0.884 0.899 0.843 0.921
1x1,5x5,7x7 0.897 0.928 0.884 0.953
NT 1x1,3x3,7x7 0.901 0.848 0.855 0.909
1x1,3x3,5x5 0912 0937 0874 0.945
1x1,3x3,5x5,7x7 | 0922 0955 0.918 0.994

Training set | Size combination

6. CONCLUSION

We proposed a novel dual-branch fusion model that enhances the fusion of the RGB and SRM
branches using multiple modules. This approach significantly improves generalization and bal-
ance in cross-dataset face deepfake detection. We use DSCM to extract enhanced features of
RGB images and then combine it with SKM to obtain information that is more conducive to
detecting high-frequency noise. Finally, we proposed to perform multi-scale feature extraction
on the branches and then perform channel and spatial fusion module BFM to achieve the effect
of enhancing robustness. We achieved stable performance and enhanced the model’s overall
generalization ability across datasets. Finally, comprehensive experiments demonstrate the ef-
fectiveness of each module, and our method outperforms other detection methods.
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