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Abstract. In this paper, we introduce a two-stage algorithm for a large-scale least squares problem with a
simplex constraint. The basic idea is to use the accelerated proximal gradient (APG) method to generate
a relatively good precision solution for the primal problem, and take this point as the initial point of
the second stage. In the second stage, we use the semismooth Newton (SsN) based on the augmented
Lagrangian method (ALM) to solve the dual problem, that is, the ALM is used to solve the dual problem,
and the SsN method is used to solve the subproblem. It is worth mentioning that, due to the piecewise
linearity of the subproblem, the accuracy of the SsN method decreases relatively slowly in the early stage,
and the APG method can effectively reduce the time required in this stage. In addition, we also prove
the convergence and convergence rate of the proposed algorithm under certain conditions. Numerical
experiments demonstrate that our algorithm outperforms the current state-of-the-art algorithms for the
least squares problem with a simplex constraint.
Keywords. Augmented Lagrangian method; Accelerated proximal gradient method; Least squares prob-
lem; Simplex constraint; Semismooth Newton method.
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1. INTRODUCTION

In this paper, we focus on the following problem

min
x∈H

1
2
‖Ax− b̃‖2, (P0)

where H := {x ∈ Rn | ∑n
i=1 xi = 1,xi ≥ 0} is a simplex, A ∈ Rm×n, and b̃ ∈ Rn. Let Q = AT A

and b =−AT b̃. We can reformulate (P0) as

min
x∈Rn

1
2
〈x,Qx〉+ 〈b,x〉+δH(x), (P)
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where δH(x) is an indicator function, i.e., if x ∈ H, then δH(x) = 0, otherwise δH(x) = ∞. The
dual problem of (P) is

min
u,v∈Rn

1
2
〈u,Qu〉+δ

∗
H(v) (D)

s.t.Qu+ v+b = 0,u ∈ Ran(Q),

where δ ∗H(v) is the conjugate function of δH(x). Here we artificially restrict u in the range space
of Q to guarantee that the subproblem in the subsequent algorithm has a unique solution.

The least squares problem with a simplex constraint has significant real applications. For
instance, the unmixing problem, a crucial task in the hyperspectral image decomposition [1],
involves the abundance as the basic unit. This abundance must be non-negative and sum to
1, which is highly consistent with the model that we propose. In the financial domain, the
problem of constructing a constrained global minimum variance portfolio [2] can be framed
as a least squares problem with a simplex constraint. This model can be utilized to optimize
a portfolio, ensuring that the weights of each asset are non-negative and sum to 1, thereby
maximizing the portfolio’s return or minimizing its risk. Furthermore, in signal processing,
particularly for blind source separation techniques [3], this model is primarily employed to
separate independent source signals from mixed signals, ensuring that the separated signals are
non-negative and satisfy certain constraint conditions.

For problem (P), Boyd et al. [4] and Condat [5] proposed the alternating direction method
of multipliers and the Douglas-Rachford algorithm, respectively. However, when the problem
becomes large and ill-conditioned, the costs of these algorithms are very high, even unable to
converge within a certain number of iterations. In handling large-scale optimization problems,
the semismooth Newton (SsN) based on the augmented Lagrangian method (ALM) stands as
an excellent approach. However, owing to the piecewise linear nature of the objective functions
within the inner subproblems, we observe that, when the iteration point is not proximate to
the solution point, the accuracy hovers at low levels until the last iteration. That is, during the
initial stage, the computationally expensive Newton method is not the most suitable choice.
Consequently, we propose to employ a simple algorithm to provide a warm start for the ALM.

In this paper, we introduce a two-stage algorithm. In the first stage, we utilize the acceler-
ated proximal gradient (APG) method to generate an initial point. Subsequently, in the second
stage, we adopt the ALM, where the inner subproblems are solved using the SsN method. No-
tably, we fully exploit the sparsity structure of the Hessian matrices associated with the inner
subproblems, significantly reducing the computational cost. The results from our numerical ex-
periments demonstrate the efficiency and effectiveness of our proposed algorithm. The rest of
this paper is organized as follows. In Section 2, we present some preliminaries. In Section 3, we
describe the details of the algorithm. In Section 4, we analyze the convergence of the algorithm.
In Section 5, we present some numerical results. In Section 6, we give the conclusion.

1.1. Additional notations. Let Rn be the n-dimensional Euclidean space, and let In be the
n-dimensional identity matrix. For a convex function f :Rn→ (−∞,+∞], its conjugate function
is f ∗(x) := supy{〈x,y〉− f (y)}. In addition, for a given closed set S and a given vector x, we
denote the distance from x to S by dist(x,S), and the projection of x onto S by ΠS(x). For a
given matrix P ∈ Rn×n, we use P† to represent the Moore-Penrose pseudo-inverse of P.
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2. PRELIMINARIES

In this section, we present some basic preliminaries. More details about these contents,
one can refer to [6]. For a function f : Rn → [−∞,+∞], we define its effective domain as
dom( f ) := {x ∈ Rn| f (x) < +∞}. We call f a proper function if dom( f ) is not empty and for
any x ∈ dom( f ), f (x) > −∞. We say that f : Rn → [−∞,+∞] is lower semicontinuous at x̂
if limx→x̂ inf f (x) = f (x̂), and if f is lower semicontinuous at every point, then we call it a
lower semicontinuous function. For a convex function f : Rn→ (−∞,+∞], for any x̂ ∈ Rn, its
subdifferential is defined as

∂ f (x̂) := {z ∈ Rn |∀x ∈ dom( f ), f (x)≥ f (x̂)+ 〈z,x− x̂〉}.
Next, let X and Y be finite-dimensional Euclidean spaces, and let T : X ⇒ Y be a multi-

valued function. We call T a monotone operator if, for any x, x′ ∈X and y ∈ T (x), y′ ∈ T (x′),
〈x− x′,y− y′〉 ≥ 0. Especially, we call T a maximal monotone operator if the graph of T

graph(T ) := {(x,y) ∈X ×Y |y ∈ T (x)}
cannot be covered by the graph of any other monotone operator T ′ : X ⇒ Y .

3. ALGORITHMS

In this section, we address the details of the algorithms. For problem (D), its Lagrangian
function is defined by

l(u,v;x) =
1
2
〈u,Qu〉+δ

∗
H(v)−〈x,Qu+ v+b〉. (3.1)

The Karush-Kuhn-Tucker (KKT) condition is
Qu−Qx = 0
∂δ ∗H(v)− x = 0
Qu+ v+b = 0

. (3.2)

In addition, we can also derive the optimality condition without the dual variables

0 ∈ Qx+b+∂δH(x),

which is equivalent to
G f (x) := x−ΠH(x−Qx−b) = 0.

For problem (D) and a given parameter σ > 0, the augmented Lagrangian function for is as
follows

Lσ (u,v;x) :=
1
2
〈u,Qu〉+δ

∗
H(v)+

σ

2
‖Qu+ v+b− 1

σ
x‖2− 1

2σ
‖x‖2. (3.3)

For problem (D), we adopt a two-stage algorithm. In the first stage, we use the APG method
to generate an initial point, and in the second stage, we use the ALM. Firstly, we provide the
details of the APG method.

Algorithm 1 : The APG method for the problem (P)
Let ε1 > 0 and L = λmax(Q). Input an initial point x0. Take y1 = x0 and t1 = 1. For k = 1, 2,
· · · , iterate as follows:
Step 1. Compute

b̂ = yk− 1
L

AT (Ayk−b),
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xk = ΠH(b̂),

where the projection operator can be computed according to [7].
Step 2. Compute

tk+1 =
1+
√

1+4t2
k

2
.

Step 3. Update

yk+1 = xk +
tk−1
tk+1

(xk− xk−1).

Step 4. If ‖G f (yk+1)‖
1+‖yk+1‖ ≤ ε1, stop; else, go to the Step 1.

After describing the details of the APG method, we move to the second stage.

Algorithm 2 : The ALM for the problem (D)

Let ε2 > 0 and σ0 > 0. Take the result obtained by Algorithm 1 as x0. For k = 1,2, · · · , iterate
as follows:
Step 1. Compute

(uk+1,vk+1)≈ argmin
u∈Ran(Q),v∈Rn

Φ
k(u,v) := Lσ (u,v;xk). (3.4)

Step 2. Compute

xk+1 = xk−σk(Quk+1 + vk+1 +b).

Step 3. If ‖G f (xk+1)‖
1+‖xk+1‖ ≤ ε2, stop; else σk+1 = 2σk, end.

In Algorithm 2, we apply the SsN method to solve subproblem (3.4). We define

ϕ
k(u) := inf

v∈Rn
Φ

k(u,v)

=
1

2σk
‖ f (u)‖2 +

1
2
〈u,Qu〉− 1

2σk
‖xk‖2

− 1
2σk
‖ f (u)−ΠH( f (u))‖2,

where f (u) = xk−σk(Qu+b). Then we can obtain (uk+1,vk+1) by

uk+1 ≈ argmin
u∈Ran(Q)

ϕ
k(u), (3.5)

vk+1 = ( f (uk+1)−ΠH( f (uk+1))/σk.

Since ϕk(u) is convex, we can obtain the optimal solution of (3.5) by solving the following
equation

∇ϕ
k(u) = Qu−QΠH( f (u)) = 0.



A LARGE-SCALE LEAST SQUARES PROBLEM 89

To ensure that subproblem (3.4) has a unique solution, we restrict u to the range space Ran(Q).
That is, we solve the following problem

∇ϕ
k(u) = Qu−QΠH( f (u)) = 0,u ∈ Ran(Q).

Letting u be a given point, we define a multivalued mapping ∂̂ 2ϕk(u) : Rn→ Sn as

∂̂
2
ϕ

k(u) := Q+σkQJ( f (u))Q,

where J( f (u)) is the generalized Jacobian of ΠH at f (u).
Next, we provide the details about the computation of J( f (u)). More details about J( f (u)),

one may refer to [8]. For the sake of simplicity, we rewrite the projection problem as

min
x∈Rn

1
2
‖x− f (u)‖2

s.t.aT x = 1,Bx≤ z,

where a = [1, · · · ,1]T ∈ Rn, B =−In, and z = [0, · · · ,0]T ∈ Rn. Then we denote

I ( f (u)) := {i |BiΠH( f (u)) = zi, i = 1, · · · ,n},

where Bi is the i-th row of the matrix B, and

N = In−
[

BI ( f (u))
aT

]T
[

BI ( f (u))BT
I ( f (u)) BI ( f (u))a

aT BT
I ( f (u)) aT a

]†[
BI ( f (u))

aT

]
,

where BI ( f (u)) consists of the rows of B indexed by I ( f (u)). According to [9], we have
N ∈ J( f (u)). From the definition of BI ( f (u)), we have BI ( f (u))BT

I ( f (u)) = Ik, where k repre-
sents the number of elements in I ( f (u)). This is because the element (BI ( f (u))BT

I ( f (u)))i j

is the result of the inner product between i-th row and the j-th column of BI ( f (u)). If i = j,
(BI ( f (u))BT

I ( f (u)))i j = 1, else (BI ( f (u))BT
I ( f (u)))i j = 0. For the sake of simplicity, let S =

In−BT
I ( f (u))BI ( f (u)) and

M =

[
BI ( f (u))BT

I ( f (u)) BI ( f (u))a
aT BT

I ( f (u)) aT a

]
.

We can calculate the determinant of M as det(M) = aT Sa. If aT Sa 6= 0, then M is invertible and
the Moore-Penrose pseudo-inverse of M is just the inverse of M. Hence we have

N = In−
[

BI ( f (u))
aT

]T

M−1
[

BI ( f (u))
aT

]
= S(In−

1
aT Sa

aaT )S.

Similarly, if aT Sa = 0, we have N = S. In summary, we have

N =

{
S(In− 1

aT SaaaT )S, if aT Sa 6= 0,
S, otherwise,

(3.6)

is an element of J( f (u)).
Now we summerize the SsN method as follows.
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Algorithm 3 : The SsN method for the subproblem (3.4)
Give µ ∈ (0, 1

2), δ ∈ (0,1), τ ∈ (0,1], η ∈ (0,1), and an initial point u0 ∈ Rn. For i =
0,1,2, · · · , iterate the following steps:
Step 1. Let Pi = Q+σkQNiQ, where Ni defined in (3.6) is an element of J( f (ui)). Then we
apply the conjugate gradient method to find an approximate solution to the following system:

Pidi =−∇ϕ
k(ui) di ∈ Ran(Q), (3.7)

such that
‖Pidi +∇ϕ

k(ui)‖ ≤min(η ,‖∇ϕ
k(ui)‖1+τ).

Step 2. (Line search) Set αi = δ t , where t is the first non-negative integer such that

ϕ
k(ui +δ

tdi)≤ ϕ
k(ui)+µδ

t〈∇ϕ
k(ui),di〉.

Step 3. Set ui+1 = ui +αidi.

In fact, when the problem size is large, directly solving linear system (3.7) becomes costly.
But we note that at each iteration of Algorithm 3 we only require updating Qd and dQd. Hence,
instead of computing the solution d of (3.7), we solve a relatively smaller linear system to
obtain Qd and dT Qd by making full use of the sparsity structure of the generalized Hessian.
Let ρ := {1, · · · ,n}\I ( f (u)) be an index set, and t = |ρ| represent the number of the elements
in the set ρ . Assume that d̂ is the solution to linear system (3.7). According to the theory in
[10], we have
(a) If aT Sa 6= 0,

Qd̂ = QT
ρ hρ(u)−∇ϕ

k(u)+σk
aT

ρ Qρρhρ(u)−aT
ρ ∇ϕk

ρ(u)

aT
ρ aρ −σkaT

ρ Qρρaρ

QT
ρ aρ ,

where Qρρ is a matrix consisting of the rows and columns of Q indexed by ρ , ∇ϕk
ρ(u) ∈ Rt ,

aρ ∈ Rt , Qρ ∈ Rt×n are matrices consisting of the rows of ∇ϕk(u), a, Q indexed by ρ . Letting
s(u) := ΠH( f (u))−u, we have

d̂T Qd̂ = (hρ(u))T Qρρhρ(u)−2(hρ(u))T
∇ϕ

k
ρ(u)+(s(u))T Qs(u)

+ 2σk
(aT

ρ Qρρhρ(u)−aT
ρ ∇ϕk

ρ(u))
2

(aT
ρ aρ −σkaT

ρ Qρρaρ)2 aT
ρ aρ

− σ
2
k
(aT

ρ Qρρhρ(u)−aT
ρ ∇ϕk

ρ(u))
2

(aT
ρ aρ −σkaT

ρ Qρρaρ)2 aT
ρ Qρρaρ ,

where hρ(u) ∈ Rt is the solution of the following linear system

(
1
σk

It +Qρρ +
σkQρρaρaT

ρ Qρρ

aT
ρ aρ −σkaT

ρ Qρρaρ

)hρ(u) = (It +
σkQρρaρaT

ρ

aT
ρ aρ −σkaT

ρ Qρρaρ

)∇ϕ
k
ρ(u) (3.8)

(b) If aT Sa = 0, then Qd̂ = QT
ρ hρ(u)−∇ϕk(u) and

d̂T Qd̂ = (hρ(u))T Qρρhρ(u)−2(hρ(u))T
∇ϕ

k
ρ(u)+(s(u))T Qs(u),
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where hρ(u) ∈ Rt is the solution of the following linear system

(
1
σk

It +Qρρ)hρ(u) = ∇ϕ
k
ρ(u). (3.9)

For case (a), compared to linear system (3.7), the coefficient matrix in (3.8) is only a t× t
matrix. Due to the sparsity structure of the generalized Hessian, t is typically much smaller than
n, which means that we only need to solve a t-dimensional linear system. This greatly reduces
both the computational and storage costs. For case (b), we solve linear system (3.9) instead of
(3.7) in a similar approach.

4. CONVERGENCE OF THE ALGORITHMS

In this section, we present the convergence analysis of the algorithms.
For Algorithm 1, the APG method is a traditional algorithm with a well-developed theoretical

foundation. Let g := 1
2〈x,Qx〉+ 〈b,x〉, and ∇g be the gradient of g. Especially, ∇g is Lipschitz

continuous with constant L. Now we directly present the theory below. As for the details, one
may refer to [11].

Theorem 4.1. Let {xk} be a sequence generated by Algorithm 1 and x∗ be the optimal solution
of the problem (P). Then we have

g(xk)−g(x∗)≤ L‖x∗− x0‖2

k2 ,k ≥ 1.

For Algorithm 2, we first analyze the stopping criteria for subproblem (3.4). Based on [12,
13], we can adopt the following stopping criteria

Φ
k(uk+1,vk+1)− inf

u,v∈Rn
Φ(u,v)≤ ε

2
k /(2σk),Σ

+∞

k=1σk <+∞, (4.1)

Φ
k(uk+1,vk+1)− inf

u,v∈Rn
Φ(u,v)≤ δ

2
k /(2σk)‖xk+1− xk‖,Σ+∞

k=1δk <+∞, (4.2)

where {εk} and {δk} are two non-negative sequences. However, since we cannot directly obtain
the value of infu,v∈Rn Φ(u,v), we cannot use such a stopping criteria directly. Thus we need to
estimate an upper bound of Φk(uk+1,vk+1)− inf

u,v∈Rn
Φ(u,v). By [14, Theorem 2.1.10], we have

Φ
k(uk+1,vk+1)− inf

u∈Ran(Q),v∈Rn
Φ(u,v)

= ϕ
k(uk+1)− inf

u∈Ran(Q)
ϕ

k(u)≤ ‖∇ϕk(uk+1)‖2

2λmin(Q)
,

where λmin(Q) is the minimal eigenvalue of Q. When u∗ = argmin
u∈Ran(Q)

ϕk(u), we have ∇ϕk(u∗) =

0. Hence, we can replace (4.1) and (4.2) with the following easy-to-check stopping criteria

‖∇ϕk(uk+1)‖ ≤ ε̂k√
σk

, (4.3)

‖∇ϕk(uk+1)‖ ≤ δ̂k√
σk
‖xk+1− xk‖, (4.4)

where {ε̂k} and {δ̂k} are two non-negative summable sequences.
Now we present the following convergence theorem.
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Theorem 4.2. Assume that the solution set of KKT system (3.2) is not empty, and {xk} and
{(uk,vk)} generated by Algorithm 2 under the stopping criteria defined in (4.3) are bounded.
Let K be the solution set of (P), and (u∗,v∗) be the unique solution to dual problem (D). Then
{xk} converges to x∗ ∈ K, and {(uk,vk)} converges to the unique solution (u∗,v∗).

Proof. Since the solution set of the KKT system (3.2) is nonempty, then dual problem (D) has
a solution, and the supremum of its dual problem is not negative infinity. According to [12,
Theorem 1], the sequence {(uk,vk)} and {xk} generated by the ALM is bounded. Based on [13,
Theorem 4], the above conclusion holds immediately. �

For the convenience of the discussion, we define the maximal monotone operator Tl as follows

Tl(u,v,x) := {(u′,v′,x′)|(u′,v′,−x′) ∈ ∂ l(u,v,x)},

where ∂ l(u,v,x) is subdifferential of Lagrangian function (3.1).
Since what we solve is a quadratic programming problem, by [15], Tl(u,v,x) is a polyhedral

multifunction. Let c be a number satisfying c > Σ
+∞

k=1εk. According to [16], one sees that there
exists κ > 0 associated with c such that, for any (u,v;x) satisfying dist((u,v;x),T−1

l (0))< c,

dist((u,v;x),T−1
l (0))≤ κdist(0,Tl(u,v;x)).

Now we are in the position to present the theorem on the convergence rate of the algorithm
without the proof since we can follow [9, Theorem 2.5] to obtain the proof.

Theorem 4.3. Assume that the solution set of problems (P) and (D) is nonempty, and let
(u0,v0;x0) be an initial point satisfying dist((u0,v0;x0),T−1

l (0)) < c−Σ
+∞

k=1εk. Then, for any
k > 0, the sequence {(uk,vk;xk)} generated by Algorithm 2 under the stopping criteria (4.3)
and (4.4) satisfy

dist((uk+1,vk+1;xk+1),T−1
l (0))≤ µkdist((uk,vk;xk),T−1

l (0)),

where µk = (1−δk)
−1(δk +(1+δk)κ(σ

2
k +κ2)−

1
2 ), and µ∞ = κ(κ2 +σ2

∞)
− 1

2 < 1.

Based on the theory in [9], we directly present the conclusion of the convergence of the
subproblem.

Theorem 4.4. Let {ui} be a sequence generated by Algorithm 3. Then {ui} converges to the
unique u∗ which satisfies ∇ψk(u∗) = 0 and ‖ui+1−u∗‖= O(‖ui−u∗‖1+τ).

5. NUMERICAL EXPERIMENTS

In this section, we compare the performances of the ALM and APG-ALM in solving problem
(P). All the numerical experiments in this paper are implemented in MATLAB R2022a on a
laptop with AMD R7-7735H CPU 3.2GHz, 8 GB RAM.

We use the primal infeasibility RP and the dual infeasibility RD to measure the accuracy of
the solution, where RP, RD are defined as below

RP :=
‖Qu+ v+b‖

1+‖Qu+ v+b‖
,

RD :=
‖Qu−Qx‖+‖ΠH(v+ x)− x‖

1+‖Qu−Qx‖+‖ΠH(v+ x)− x‖
.
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If

RKKT := max{RP,RD} ≤ 10−1,

then we transfer from the first stage of the algorithm to the second stage. If RKKT < 10−5, then
we stop the iteration.

We use pobj, dobj, and RG to represent the primal objective value, the dual problem objective
value, and the relative gap between them, where

RG :=
|pobj−dobj|

1+ |pobj|+ |dobj|
.

We focus on problem (P) and compare the numerical performances of the APG-ALM and
ALM on the different datasets. In our comparison, we report the date name, the number of
samples (m), features (n), the iteration number (iter) (especially, since the iteration number of
the APG method is usually one, at most two, we omit it in the tables), the relative KKT residual
(RKKT), the relative gap (RG), the primal objective value (pobj), the dual objective value (dobj)
and the runing time (time). We list the numerical results with the random data in Tables 1 and
2, and the numerical results with the real data in Table 3. From the results, we can observe
that using the APG-ALM is more efficient than directly using the ALM. The reason for this
phenomenon is that the APG method in the first stage can quickly generate a rough solution,
and in this process the algorithm in the second stage is less efficient.

TABLE 1. Comparisons of the ALM and APG-ALM for the problem (P) with
the random data (m > n)

data name
(m,n)

Algorithm iter RKKT RG pobj dobj time(s)

rand1
(71254,8135)

ALM
APG-ALM

26
5

9.12e-6
8.70e-6

1.25e-9
3.74e-11

-8.93152e+3
-8.93152e+3

-8.93152e+3
-8.93152e+3

213.88
81.08

rand2
(26521,10051)

ALM
APG-ALM

61
7

2.29e-6
8.77e-7

4.12e-11
9.97e-12

-3.37249e+3
-3.37382e+3

-3.37249e+3
-3.37382e+3

254.5
38.66

rand3
(54725,5675)

ALM
APG-ALM

30
12

9.06e-6
8.67e-6

1.01e-6
6.23e-7

-6.83225e+3
-6.83224e+3

-6.83224e+3
-6.83223e+3

105.80
47.47

rand4
(17452,1024)

ALM
APG-ALM

9
3

9.06e-6
8.67e-6

6.58e-9
4.03e-9

-2.17901e+3
-2.18002e+3

-2.17901e+3
-2.18002e+3

23.68
6.74

rand5
(110053,2390)

ALM
APG-ALM

41
11

9.25e-6
8.47e-6

1.57e-8
6.51e-10

-1.38204e+4
-1.38216e+4

-1.38204e+4
-1.38216e+4

188.03
40.05

rand6
(82564,5975)

ALM
APG-ALM

30
7

8.60e-6
8.51e-6

3.97e-11
3.56e-11

-1.04426e+4
-1.04430e+4

-1.04426e+4
-1.04430e+4

69.24
17.24

rand7
(62500,7849)

ALM
APG-ALM

18
13

9.35e-6
8.74e-6

5.43e-8
9.64e-9

-7.81152e+3
-7.81160e+3

-7.81152e+3
-7.81160e+3

339.48
69.11

rand8
(30396,14749)

ALM
APG-ALM

10
4

8.88e-6
9.05e-7

6.80e-7
3.19e-7

-3.87032e+3
-3.87108e+3

-3.87031e+3
-3.87108e+3

110.52
66.68
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TABLE 2. Comparisons of the ALM and APG-ALM for the problem (P) with
the random data (m < n)

data name
(m,n)

Algorithm iter RKKT RG pobj dobj time(s)

rand1
(7924,72724)

ALM
APG-ALM

26
5

1.96e-6
1.70e-7

2.78e-11
2.38e-12

-1.02115e+3
-1.02115e+3

-1.02115e+3
-1.02115e+3

235.81
79.24

rand2
(9997,27824)

ALM
APG-ALM

26
7

1.07e-6
9.18e-7

3.15e-12
2.80e-12

-1.27032e+3
-1.27032e+3

-1.27032e+3
-1.27032e+3

134.98
64.04

rand3
(5678,57321)

ALM
APG-ALM

30
12

5.42e-7
8.90e-8

8.23e-9
9.45e-12

-7.22162e+2
-7.21706e+2

-7.22162e+2
-7.21706e+2

117.56
65.57

rand4
(1278,15732)

ALM
APG-ALM

9
3

9.06e-6
4.12e-6

4.29e-10
6.09e-11

-1.73230e+2
-1.73142e+2

-1.73230e+2
-1.73142e+2

24.63
13.90

rand5
(8499,62101)

ALM
APG-ALM

71
11

9.14e-6
1.69e-3

5.63e-7
1.51e-10

-1.09041e+3
-1.09035e+3

-1.09041e+3
-1.09035e+3

310.14
133.55

rand6
(15039,29467)

ALM
APG-ALM

30
7

9.11e-6
6.66e-6

7.03e-9
4.92e-12

-1.89174e+3
-1.89092e+3

-1.89174e+3
-1.89092e+3

239.49
108.41

rand7
(13094,27764)

ALM
APG-ALM

18
13

6.42e-6
1.69e-7

1.43e-10
6.29e-11

-1.66305e+3
-1.66304e+3

-1.66305e+3
-1.66304e+3

228.64
182.07

rand8
(14874,35031)

ALM
APG-ALM

7
5

9.08e-6
8.91e-6

1.54e-5
7.51e-6

-1.88122e+3
-1.88306e+3

-1.88116e+3
-1.88303e+3

131.55
95.21

TABLE 3. Comparisons of the ALM and APG-ALM for the problem (P) with
the real data

date name
(m,n)

Algorithm iter RKKT RG pobj dobj time(s)

pyrim.expanded
(74,201376)

ALM
APG-ALM

30
13

8.06e-6
7.02e-6

2.12e-8
1.71e-8

-1.66307e+1
-1.66307e+1

-1.66307e+1
-1.66307e+1

18.99
12.10

housing.expanded
(506,77520)

ALM
APG-ALM

7
5

9.57e-6
9.13e-6

1.12e-5
1.04e-5

-1.11262e+4
-1.11257e+4

-1.11258e+4
-1.11254e+4

19.10
15.31

mpg.expanded
(392,3432)

ALM
APG-ALM

4
3

8.51e-6
8.04e-6

5.56e-5
3.56e-5

-8.99219e+3
-8.99162e+3

-8.99119e+3
-8.99098e+3

2.78
1.93

bodyfat.expanded
(252,116280)

ALM
APG-ALM

9
6

9.89e-6
8.74e-6

3.57e-6
3.55e-6

-1.38962e+2
-1.39402e+2

-1.38961e+2
-1.39401e+2

13.47
9.18

E2006
(16087,150360)

ALM
APG-ALM

13
9

8.67e-6
8.34e-6

3.12e-5
2.94e-5

-1.01467e+5
-1.01465e+5

-1.01461e+5
-1.01459e+5

17.50
16.19

6. CONCLUSION

In this paper, we investigated a two-stage algorithm to solve a large-scale least squares prob-
lem with a simplex constraint. Numerical experiments demonstrate that the APG-ALM is a
more efficient algorithm than the ALM.
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