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A. ED-DAHDAH1, M. LAGHDIR1,∗, M. MABROUK1, A. AMMAR2

1Department of Mathematics, Faculty of Sciences, Chouaı̈b Doukkali University, El Jadida, Morocco
2Department of Computer Engineering, Networks and Telecommunications, National School of Applied Sciences,

Cadi Ayyad University, Safi, Morocco

Abstract. In this paper, we provide a general formula concerning the weak and proper approximate
subdifferentials of the difference of two vector convex mappings (DC) in terms of the star difference. This
formula is applied to establish necessary and sufficient approximate optimality conditions, characterizing
weakly and properly approximate efficient solutions for a constrained DC programming problem and a
constrained multiobjective fractional programming problem.
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1. INTRODUCTION

DC programming problems are classified as a type of nonconvex optimization problems that
play an interesting and important role in real world problems due to their algorithmic aspects
and abundance of applications; see, e.g., [1, 2, 3, 4, 5] and the references therein. DC vector
optimization problems recently attracted a great deal of attention and numerous results on the
analysis and algorithms were obtained; see, e.g., [6, 7, 8, 9, 10, 11, 12, 13, 14] and the references
therein. In [6], Gadhi et al. established sufficient optimality conditions for a weak Pareto mini-
mal solution of DC vector optimization problems in an ordered Banach space. In [7], Guo et al.
gave sufficient optimality conditions for an approximate weak Pareto minimal solution of DC
vector optimization problem by using the concept of approximate pseudo-dissipativity. In [8],
Taa derived optimality conditions for DC vector optimization problems in terms of Lagrange-
Fritz-Joh and Lagrange-Karush-Kuhn-Tucker multipliers rules.

This paper is motivated by the recent result developed by Ammar et al. [15]. They discussed
the calculus rule for the strong approximate subdifferential of the difference of two convex
vector mappings defined in a locally convex topological vector space and considered their ap-
plications to DC vector programming problems. They obtained, under the concept of the regular

∗Corresponding author.
E-mail address: laghdirmm@gmail.com (M. Laghdir).
Received 26 May 2024; Accepted 21 October 2024; Published online 20 March 2025.

c©2025 Journal of Applied and Numerical Optimization

69



70 A. ED-DAHDAH, M. LAGHDIR, M. MABROUK, A. AMMAR

subdifferentiability (see [16]), the following formula

∂
s
ε (K1−K2)(x0) =

⋂
µ∈W+

{
A ∈ L(X ,W ) : A+∂

s
µK2(x0)⊆ ∂

s
µ+εK1(x0)

}
, (1.1)

where K1,K2 : X −→W ∪{+∞W} are two convex mappings, ∂ s
µK1 is the strong approximate

subdifferential at x0, X and W are real Hausdorff locally convex topological vector spaces, W+

is a convex cone inducing a partial preorder in W , and ε and µ are the elements of W+.
Our goal is to extend formula (1.1) for the approximate weak and proper Pareto subdif-

ferentials by using the scalarization process and the regular subdifferentiability. Our paper is
organized as follows. In Section 2, we recall some notions and give some preliminary results,
used in what follows. In Section 3, we develop the formula concerning the approximate weak
and proper Pareto subdifferentials for the difference of two vector convex mappings. In Section
4, we establish the Pareto approximate optimality conditions of a constrained DC programming
problem. In Section 5, the last section, we derive the Pareto approximate optimality conditions
for a multiobjective fractional programming problem.

2. PRELIMINARIES

In this section, we give some basic definitions and results. Let X , W , and Z be real sepa-
rated topological vector spaces whose continuous dual spaces are denoted by X∗, W ∗, and Z∗.
Throughout this paper, we denote by L(X ,W ) the set of all continuous linear operators from X
into Y . Let W+ be a convex cone of W with intW+ 6= /0. The subset l (W+) :=W+∩−W+ is the
lineality of W+. If it is null, then W+ is said to be pointed. For any w1,w2 ∈W , the cone W+

induces the following preorder relations

w1 ≤W+ w2⇐⇒ w2−w1 ∈W+,

w1 <W+ w2⇐⇒ w2−w1 ∈ intW+,

w1 �W+ w2⇐⇒ w2−w1 ∈W+\l (W+) .

To space W , we attach an abstract maximal element with respect to ”≤W+ ”, denoted by +∞W ,
such that w ≤W+ +∞W , for all w ∈W and w+ (+∞W ) := (+∞W ) +w := +∞W for all w ∈
W ∪{+∞W} and η · (+∞W ) := +∞W for all η ∈ R+. The polar cone W ∗+ and the strict polar
cone (W ∗+)

◦ of W+ are defined, respectively, as

W ∗+ := {w∗ ∈W ∗ : w∗(W+)⊆ R+}

and
(W ∗+)

◦ := {w∗ ∈W ∗ : w∗(W+\l(W+))⊆ R+\{0}}.
Clearly

(W ∗+)
◦ ⊆W ∗+\{0}. (2.1)

A mapping K1 : X −→W ∪{+∞W} is said to be

• W+- convex if, for any β ∈ [0,1] and any u1,u2 ∈ X ,

K1 (βu1 +(1−β )u2)≤W+ βK1 (u1)+(1−β )K1 (u2) ,

• proper if domK1 := {x ∈ X : K1(x) ∈W} 6= /0,
• star W+-lower semicontinuous if w∗ ◦K1 is lower semicontinuous for any w∗ ∈W ∗+.
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In the sequel, Γ(X ,W+) stands for the set of proper W+-convex mappings from X to W
and Γ0 (X ,W+) for the set of star W+-lower semicontinuous mappings in Γ(X ,W+), while
Γ0 (X ,R+) reduces to Γ0(X), the set of proper convex and lower semicontinuous functionals
from X to R. Let ” ≤Z+ ” be a partial preorder on Z induced by a nonempty convex cone
Z+ ⊂ Z. We say that a mapping K2 : Z −→W ∪{+∞W} is said to be (Z+,W+)-nondecreasing
if, for any z1,z2 ∈ Z

z1 ≤Z+ z2 =⇒ K2(z1)≤W+ K2(z2).

If K3 : X −→ Z∪{+∞Z}, then the composed mapping K2 ◦K3 : X −→W ∪{+∞W} is defined
by

(K2 ◦K3)(x) :=

{
K2(K3(x)) if x ∈ domK3,

+∞W otherwise.

We can easily observe that if K2 is W+-convex, (Z+,Y+)-nondecreasing, and K3 is Z+-convex,
then K2 ◦K3 is W+-convex.

Given a mapping K1 : X ⊇ S −→W ∪{+∞W} and ε ∈W , we consider the following con-
strained vector optimization problem

(P) min
x∈S

K1(x).

Let x0 ∈ S∩domK1. Then x0 is said to be

• a strongly ε-efficient (ε-optimal) solution if, ∀x ∈ S, K1(x)≥W+ K1(x0)− ε,
• a weakly ε-efficient solution if @x ∈ S such that K1(x)<W+ K1(x0)− ε,

• a properly ε-efficient solution if ∃Ŵ+ ( W , a convex cone, such that W+\l (W+) ⊆
intŴ+ and @x ∈ S such that K1(x)�Ŵ+

K1(x0)− ε.

The sets of strongly, weakly and properly ε-efficient solutions are denoted, respectively, by
Es

ε(K1,S,W+), Ew
ε (K1,S,W+), and E p

ε (K1,S,W+). Note that

E p
ε (K1,S,W+)⊆ Ew

ε (K1,S,W+).

The above definitions give important information about ε , and we can easily see if Eσ
ε (K1,S,W+) 6=

/0, then ε ≮σ
W+

0, where

ε ≮σ
W+

0⇐⇒


ε 6∈ −intW+ if σ = w,

ε 6∈ −W+\l(W+) if σ = p.

The ε-subdifferential of K1 at x0 ∈ domK1 can be defined according to the different concepts of
Pareto ε-solutions with respect to σ ∈ {s,w, p} as follows

∂
σ
ε K1(x0) := {A ∈ L(X ,W ) : x0 ∈ Eσ

ε (K1−A,X ,W+)},

i.e.,

• ∂ s
ε K1(x0) = {A ∈ L(X ,W ) : ∀x ∈ X ,K1(x)−K1(x0)≥W+ A(x− x0)− ε},

• ∂ w
ε K1(x0) = {A ∈ L(X ,W ) : @x ∈ X ,K1(x)−K1(x0)<W+ A(x− x0)− ε},

• ∂
p
ε K1(x0) = {A ∈ L(X ,W ) : ∃Ŵ+ (W a convex cone such that

W+\l (W+)⊆ intŴ+, @x ∈ X , K1(x)−K1(x0)�Ŵ+
A(x− x0)− ε},
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If ε = 0W , thn ∂ σ
0 K1(x0) := ∂ σ K1(x0) is the exact Pareto subdifferential (see [16]), for any

σ ∈ {s,w, p}. For simplicity, we consider the following notation

W σ
+ :=


W ∗+\{0} if σ = w,

(W ∗+)
◦ if σ = p.

For any subset S ⊂ X , the vector indicator mapping δ v
S : X −→W ∪{+∞W} of S is defined

by

δ
v
S (x) :=

{
0, if x ∈ S,
+∞W , otherwise.

When Y = R, the scalar indicator function is denoted by δS. The vector indicator mapping
δ v

S appears to possess properties such as scalar indicator function δS. It is easy to verify that
w∗ ◦δ v

S = δS for all w∗ ∈W σ
+ . For any η ≥ 0, the vector ε-normal set to S at x0 ∈ S is defined as

the strong Pareto ε-subdifferential of the indicator mapping δ v
S at x0 i.e.,

Nv
ε (S,x0) := ∂

s
ε δ

v
S (x0) = {A ∈ L(X ,W ) : A(x− x0)≤W+ ε, ∀x ∈ S}.

Following [17], for any λ ≥ 0, a mapping K1 : X →W ∪ {+∞W} is said to be σ -regular
λ -subdifferentiable at x0 ∈ domK1 with σ ∈ {p,w} if

∂λ (w
∗ ◦K1)(x0) =

⋃
ε∈W λ

+
〈w∗,ε〉=λ

w∗ ◦∂
s
ε K1(x0), ∀w∗ ∈W σ

+ ,

where W 0
+ = {0Y} and W λ

+ =W+ if λ > 0, and w∗ ◦∂ s
ε K1(x0) :=

{
w∗ ◦A : A ∈ ∂ s

ε K1(x0)
}
.

In the sequel, we need the following theorems. The first characterizes the approximate σ -
subdifferential for σ ∈ {w, p} and the second one gives a formula on the approximate subdif-
ferential of the difference of two convex real functions.

Theorem 2.1. ([17]) Let K1 : X →W ∪{+∞W} and x0 ∈ domK1. Then, for σ ∈ {p,w},

∂
σ
ε K1(x0)⊇

⋃
w∗∈W σ

+

{A ∈ L(X ,W ) : w∗ ◦A ∈ ∂〈w∗,ε〉(w
∗ ◦K1)(x0)}, ∀ε ≮σ

W+
0,

with equality if K1 is W+-convex and W+ is pointed as σ = p.

Theorem 2.2. ([18]) Let K1,K2 : X −→R∪{+∞} be two functions, x0 ∈ domK1∩domK2 and
α ≥ 0. If X is locally convex and K1,K2 ∈ Γ0 (X), then

∂α(K1−K2)(x0) =
⋂

β≥0

{
∂β+αK1(x0)

∗– ∂β K2(x0)
}
,

where ∂β+αK1(x0)
∗– ∂β K2(x0) :=

{
x∗ ∈ X∗ : x∗+∂β K2(x0)⊆ ∂β+αK1(x0)

}
is the set of star

difference between ∂β+αK1(x0) and ∂β K2(x0).

3. APPROXIMATE WEAK AND PROPER SUBDIFFERENTIALS OF THE DIFFERENCE OF TWO

VECTOR CONVEX MAPPINGS

In this section, we present our main result concerning the approximate weak and proper
subdifferentials for the difference of two vector convex mappings.
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Theorem 3.1. Let K1,K2 : X −→W ∪{+∞W} be two vector mappings, x0 ∈ domK1∩domK2
and σ ∈ {p,w} with W+ being pointed as σ = p. Then,

∂
σ
ε (K1−K2)(x0)⊆

⋂
µ∈W+

{
A ∈ L(X ,W ) : A+∂

s
µK2(x0)⊆ ∂

σ
µ+εK1(x0)

}
, ∀ε ≮σ

W+
0,

with equality if X is locally convex, K1,K2 ∈Γ0 (X ,W+), and K2 is σ -regular λ -subdifferentiable
at x0 for any λ ≥ 0.

Proof. Fist, let us prove

∂
σ
ε (K1−K2)(x0)⊆

⋂
µ∈W+

{
A ∈ L(X ,W ) : A+∂

s
µK2(x0)⊆ ∂

σ
µ+εK1(x0)

}
, ∀ε ≮σ

W+
0.

For the case σ = w, we let A ∈ ∂ w
ε (K1−K2)(x0). That is, for all x ∈ X ,

K1(x)−K2(x)−K1(x0)+K2(x0)−A(x− x0)+ ε ∈ (W\− intW+). (3.1)

Let µ ∈W+ and B ∈ ∂ s
µK2(x0). That is, for all x ∈ X ,

K2(x)−K2(x0)−B(x− x0)+µ ∈W+. (3.2)

By summing term by term in inequalities (3.1) and (3.2), we obtain, for all x ∈ X ,

K1(x)−K1(x0)− (A+B)(x− x0)+ ε +µ ∈ (W\− intW+)+W+.

Now, we need to show that (W\− intW+) +W+ ⊆ (W\− intW+). Let u = u1 + u2, with
u1 ∈ (W\− intW+) and u2 ∈W+. We proceed by contradiction. If u 6∈ (W\− intW+), then
u1 = u− u2 ∈ −intW+−W+ ⊆ −intW+, which contradicts u1 ∈ (W\− intW+). Thus, for all
x ∈ X ,

K1(x)−K1(x0)− (A+B)(x− x0)+ ε +µ ∈ (W\− intW+). (3.3)

For the case σ = p, we let A ∈ ∂
p
ε (K1−K2)(x0). Then there exists a convex cone W̃+ (W such

that W+\{0W} ⊆ intW̃+. For all x ∈ X ,

K1(x)−K2(x)−K1(x0)+K2(x0)−A(x− x0)+ ε ∈W\(−W̃+\l(W̃+)).

Following the proof in the case σ = w, we see that, for all x ∈ X ,

K1(x)−K1(x0)− (A+B)(x− x0)+ ε +µ ∈W\(−W̃+\l(W̃+))+W+.

We claim that W\(−W̃+\l(W̃+)) +W+ ⊆ W\(−W̃+\l(W̃+)). Indeed, let u = u1 + u2 with
u1 ∈W\(−W̃+\l(W̃+)) and u2 ∈W+. If u2 = 0W , then u ∈W\(−W̃+\l(W̃+)). Otherwise,
if u2 ∈W+\{0W} ⊆ int W̃+ ⊆ W̃+\l(W̃+), by assuming that u 6∈W\(−W̃+\l(W̃+)), we ob-
tain u1 = u− u2 ∈ −W̃+\l(W̃+)− W̃+\l(W̃+) ⊆ −W̃+\l(W̃+) which contradicts the fact that
u1 ∈W\(−W̃+\l(W̃+)). This yields that, for all x ∈ X ,

K1(x)−K1(x0)− (A+B)(x− x0)+ ε +µ ∈W\(−W̃+\l(W̃+)). (3.4)

Thus, from (3.3) and (3.4), we have, for any µ ∈W+,

A+B ∈ ∂
σ
ε+µ(K1)(x0), for all B ∈ ∂

s
µK2(x0),

which implies, for any µ ∈W+,

A ∈
{

A ∈ L(X ,W ) : A+∂
s
µK2(x0)⊆ ∂

σ
µ+εK1(x0)

}
,
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that is,
A ∈

⋂
µ∈W+

{
A ∈ L(X ,W ) : A+∂

s
µK2(x0)⊆ ∂

σ
µ+εK1(x0)

}
.

Conversely, letting

A ∈
⋂

µ∈W+

{
A ∈ L(X ,W ) : A+∂

s
µK2(x0)⊆ ∂

σ
µ+εK1(x0)

}
,

for all µ ∈W+, we have A+ ∂ s
µK2(x0) ⊆ ∂ σ

µ+εK1(x0), that is, A+B ∈ ∂ σ
µ+εK1(x0) for all B ∈

∂ s
µK2(x0). Following Theorem 2.1, we see that there exists some w∗ ∈W σ

+ such that

w∗ ◦ (A+B) = w∗ ◦A+w∗ ◦B ∈ ∂〈w∗,µ+ε〉 (w
∗ ◦K1)(x0),∀B ∈ ∂

s
µK2(x0),

that is,
w∗ ◦A+w∗ ◦∂

s
µK2(x0)⊆ ∂〈w∗,µ+ε〉 (w

∗ ◦K1)(x0), (3.5)
Let ϑ ∈ (intW+)∪{0W} as 〈w∗,ϑ〉 ≥ 0 and K2 be σ -regular 〈w∗,ϑ〉-subdifferentiable at x0.
Then

∂〈w∗,ϑ〉 (w
∗ ◦K2)(x0) =

⋃
µ∈W 〈w

∗,ϑ〉
+

〈w∗,µ〉=〈w∗,ϑ〉

w∗ ◦∂
s
µK2(x0), (3.6)

where

W 〈w
∗,ϑ〉

+ :=

{
0W , if ϑ = 0W ,

W+, if ϑ ∈ intW+.

From relation (3.5), we deduce that, for all ϑ ∈ (intW+)∪{0W},

w∗ ◦A+
⋃

µ∈W 〈w
∗,ϑ〉

+
〈w∗,µ〉=〈w∗,ϑ〉

w∗ ◦∂
s
µK2(x0)⊆

⋃
µ∈W 〈w

∗,ϑ〉
+

〈w∗,µ〉=〈w∗,ϑ〉

∂〈w∗,µ〉+〈w∗,ε〉 〈w∗ ◦K1)(x0),

that is,
w∗ ◦A+

⋃
µ∈W 〈w

∗,ϑ〉
+

〈w∗,µ〉=〈w∗,ϑ〉

w∗ ◦∂
s
µK2(x0)⊆ ∂〈w∗,ϑ〉+〈w∗,ε〉 (w

∗ ◦K1)(x0). (3.7)

Combining (3.6) and (3.7), we obtain

w∗ ◦A+∂〈w∗,ϑ〉 (w
∗ ◦K2)(x0)⊆ ∂〈w∗,ϑ〉+〈w∗,ε〉 (w

∗ ◦K1)(x0),

that is,
w∗ ◦A ∈ ∂〈w∗,ϑ〉+〈w∗,ε〉 (w

∗ ◦K1)(x0)
∗– ∂〈w∗,ϑ〉 (w

∗ ◦K2)(x0). (3.8)
Let us prove R+ = {〈w∗,ϑ〉 ,ϑ ∈ ( int W+)∪{0W}} , ∀w∗ ∈W σ

+ .
In fact, we start with the case σ =w. For the first inclusion {〈w∗,ϑ〉 ,ϑ ∈ ( int W+)∪{0W}}⊆

R+ is obviously, for any w∗ ∈W ∗+\{0}. For the reverse inclusion, let γ ∈R+. If γ = 0, we have
0 = 〈w∗,0W 〉. Otherwise, if γ > 0, by virtue of [16, Proposition 2.1], we find the existence of
w̃ ∈ intW+ such that 〈w∗, w̃〉 = 1. We can write γ = 〈w∗,γw̃〉, with γw̃ ∈ intW+. Conclusion,
R+ = {〈w∗,ϑ〉 ,ϑ ∈ ( int W+)∪{0W}} for any w∗ ∈W ∗+\{0}. For the other case σ = p, the
same result can be obtained from the first case σ = w by using (2.1) only.

Now, we can write (3.8) equivalently as

w∗ ◦A ∈ ∂〈w∗,ε〉+γ (w
∗ ◦K1)(x0)

∗– ∂γ (w∗ ◦K2)(x0), ∀γ ≥ 0,
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which yields
w∗ ◦A ∈

⋂
γ≥0

{
∂〈w∗,ε〉+γ (w

∗ ◦K1)(x0)
∗– ∂γ (w∗ ◦K2)(x0)

}
.

Since K1,K2 ∈ Γ0 (X ,W+), then w∗ ◦K1,w∗ ◦K2 ∈ Γ0 (X). As the space X is locally convex, we
obtain from Theorem 2.2 that

w∗ ◦A ∈ ∂〈w∗,ε〉(w
∗ ◦K1−w∗ ◦K2)(x0) = ∂〈w∗,ε〉(w

∗ ◦ (K1−K2))(x0),

which yields by applying the scalarization Theorem 2.1 A ∈ ∂ σ
ε (K1−K2)(x0). The proof is

complete. �

In particular case, when ε = 0W+ , we obtain the following corollary.

Corollary 3.1. Let K1,K2 : X −→W ∪{+∞W} be two vector mappings, x0 ∈ domK1∩domK2
and σ ∈ {p,w} with W+ being pointed as σ = p. Then

∂
σ (K1−K2)(x0)⊆

⋂
µ∈W+

{
A ∈ L(X ,W ) : A+∂

s
µK2(x0)⊆ ∂

σ
µ K1(x0)

}
,

with equality if X is locally convex, K1,K2 ∈ Γ0 (X ,W+) and K2 is σ -regular λ -subdifferentiable
at x0 for any λ ≥ 0.

4. PARETO APPROXIMATE OPTIMALITY CONDITIONS OF A CONSTRAINED DC
PROGRAMMING PROBLEM

In this section, we consider the following constrained DC programming problem

(Q1)

{
min(F(x)−G(x))
x ∈ S,

where S is a nonempty convex subset of X and F,G ∈ Γ(X ,W+). By using the vector indicator
mapping δ v

S , we transform equivalently the problem (Q1) to the unconstrained problem{
min

(
F(x)+δ v

S (x)−G(x)
)

x ∈ X .

The following Theorem is helpful in the sequel.

Theorem 4.1. ([17]) Let K1, K2 : X →W ∪{+∞W} and σ ∈ {p,w} with W+ be pointed as
σ = p. Assume that K2 is σ -regular λ -subdifferentiable at x0 ∈ domK1∩domK2 for any λ ≥ 0,
and one of the following two qualification conditions is satisfied

(MR)1

{
K1,K2 ∈ Γ(X ,W+) , X locally convex,
∃x ∈ domK1∩domK2 s.t. K1 or K2 is continuous at x.

(AB)1

{
K1,K2 ∈ Γ0 (X ,W+) , X Fréchet space,
R+[domK1−domK2] is a closed vector subspace of X .

Then, for all ε ≮σ
W+

0,

∂
σ
ε (K1 +K2)(x0) =

⋃
ε1≮σ

W+
0, ε2∈W+

ε2=0 i f ε=0,
ε1+ε2=ε

∂
σ
ε1

K1(x0)+∂
s
ε2

K2(x0).
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We are now in a position to establish the optimality conditions characterizing completely an
approximate weak and proper efficient solutions of problem (Q1).

Theorem 4.2. Let F,G : X −→W ∪ {+∞W}, S be a nonempty convex closed in X and σ ∈
{w, p} with W+ being pointed as σ = p. Assume that G ∈ Γ0 (X ,W+) and is σ -regular λ -
subdifferentiable at x0 ∈ domF ∩domG∩S for any λ ≥ 0, and one of the following two quali-
fication conditions is satisfied,

(MR)2

{
F ∈ Γ0 (X ,W+) , X locally convex,
domF ∩ int(S) 6= /0 or F is continuous at some point of domF ∩S.

(AB)2

{
F ∈ Γ0 (X ,W+) , X Fréchet space,
R+[domF−S] is a closed vector subspace of X .

Then, x0 is an ε-σ -efficient solution of (Q1) if and only if, for all ε ≮σ
W+

0,

∂
s
µG(x0)⊆

⋃
ε1≮σ

W+
0, ε2∈W+

ε2=0 i f µ+ε=0,
ε1+ε2=µ+ε

∂
σ
ε1

F(x0)+Nv
ε2
(S,x0), ∀µ ∈W+.

Proof. Let ε ≮σ
W+

0. Then x0 is an ε-σ -efficient solution to (Q1) if and only if

0 ∈ ∂
σ
ε ((F +δ

v
S )−G)(x0).

Since F,δ v
S ∈Γ0 (X ,W+), then

(
F +δ v

S

)
∈Γ0 (X ,W+). As X is locally convex and G is σ -regular

λ -subdifferentiable at x0 for any λ ≥ 0, by virtue of Theorem 3.1, one has

∂
s
µG(x0)⊆ ∂

σ
µ+ε (F +δ

v
S )(x0), ∀µ ∈W+. (4.1)

Following [16], the vector indicator mapping δ v
S is continuous at x0 if and only if x0 ∈ int(S).

Hence, by putting K1 := δ v
S and K2 := F , we observe by means of the condition (MR)2 or (AB)2

that all the assumptions of Theorem 4.1 are satisfied. Then expression (4.2) becomes equivalent
to

∂
s
µG(x0)⊆

⋃
ε1≮σ

W+
0, ε2∈W+

ε2=0 i f µ+ε=0,
ε1+ε2=µ+ε

∂
σ
ε1

F(x0)+Nv
ε2
(S,x0),∀µ ∈W+,

which completes the proof. �

Remark 4.1. (i) If S = X , then condition (MR)2 is satisfied. Furthermore, the statement
(4.1) in the above proof can be written equivalently as ∂ s

µG(x0) ⊆ ∂ σ
µ+εF(x0) for all

µ ∈W+ and ε ≮σ
W+

0.
(ii) If F = 0, then inclusion (4.1) reduces to ∂ s

µG(x0) ⊆ ∂ σ
µ+εδ v

S (x0) for all µ ∈W+ and
ε ≮σ

W+
0.

The following example explains how to apply Theorem 4.2 for the case S = X .

Example 4.1. Let X = S :=R, σ = w, and W :=R2 be endowed with its natural order induced
by the nonnegative orthant W+ := R2

+ = {(v1,v2) ∈ R2, v1,v2 ≥ 0}. Consider the following
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programming problem

(P)

 min
{(

[x]+,0
)
−
(

1+ x,
x2

2

)}
x ∈ R,

where [x]+ = max(0,x) is the nonnegative part of the scalar x. Let F(x) =
(

f1(x), f2(x)
)
=(

[x]+,0
)
, G(x) =

(
g1(x),g2(x)

)
=
(
1+ x, x2

2

)
, and x0 = 0. Obviously, F and G are convex, and

problem (P) becomes DC programming problem. It is easy to see that G satisfies condition
(5.5). Thus G is w-regular λ -subdifferentiable at x0 = 0 (λ ≥ 0) and immediately we have, for
all µ = (µ1,µ2) ∈ R2

+ and η = (η1,η2) ∈ R2
+,

∂
s
µG(x0) = ∂µ1g1(x0)×∂µ2g2(x0) = {1}×

[
−
√

2µ2,
√

2µ2

]
,

∂
s
ηF(x0) = ∂η1 f1(x0)×{0}= [0,1]×{0}.

By taking ε = (1
2 ,

1
2) and according to [19, Theorem 4.2], we obtain

∂ w
µ+εF(x0) =

⋃
(η1,η2)∈R2

+∩(µ+ε−R\−intR2
+)

∂
s
(η1,η2)

F(x0)+Zw
(
R,R2)

= [0,1]×{0}+Zw
(
R,R2)

where the set Zw
(
R,R2) of w-zerolike matrices can be given as

Zw
(
R,R2)= {B ∈ R1×2 : ∃ν ∈ R2

+\{0}, BT
ν = 0

}
=
{

B ∈ R1×2 : ∃ν ∈ R2
+, ‖ν‖1 = 1, BT

ν = 0
}

=
{
(x,y) ∈ R2 : ∃(ν1,ν2) ∈ R2

+,ν1 +ν2 = 1, ν1x+ν2y = 0
}

=
{
(x,y) ∈ R2 : 0 ∈ [x,y] or 0 ∈ [y,x]

}
= (R−×R+)∪ (R+×R−) .

It is easy to check that ∂ s
µG(x0)⊆ ∂ w

µ+εF(x0) for all µ = (µ1,µ2) ∈R2
+. Thus, by Theorem 4.2,

x0 is a weakly ε-solution to problem (P).

In the sequel, we establish the σ -efficient optimality conditions in terms of approximate
subdifferentials and the vector ε-normal set of the following constrained vector problem

(Q2)

{
min(F(x)−G(x))
H(x) ∈ −Z+,

where F,G ∈ Γ(X ,W+) and H ∈ Γ(X ,Z+). The unconstrained problem below is equivalent to
the problem (Q2) {

min
(

F(x)+δ v
−Z+
◦H(x)−G(x)

)
x ∈ X .

The following Theorem is needed.

Theorem 4.3. ([19]) Let K1 : X →W ∪{+∞W}, K3 : X → Z∪{+∞Z}, K2 : Z→W∪ {+∞W},
x0 ∈ domK1∩K−1

3 (domK2)∩domK3 and σ ∈ {p,w} with W+ being pointed as σ = p. Assume
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that K2 is (Z+,W+)-nondecreasing on Z and σ -regular λ -subdifferentiable at K3(x0) for any
λ ≥ 0, and one of the two following qualification conditions is satisfied

(MR)3

{
K1 ∈ Γ(X ,W+) , K3 ∈ Γ(X ,Z+) , K2 ∈ Γ(Z,W+) , X and Z locally convex,
∃x ∈ domK1∩domK3 s.t. K2 is finite and continuous at K3 (x) .

(AB)3

{
K1 ∈ Γ0 (X ,W+) , K3 ∈ Γ0 (X ,Z+) , K2 ∈ Γ0 (Z,W+) , X and Z Fréchet spaces,
R+ [domK2−K3(domK1∩domK3)] is a closed vector subspace of Z.

Then, for all ε ≮σ
W+

0,

∂
σ
ε (K1 +K2 ◦K3)(x0) =

⋃
ε1≮σ

W+
0, ε2∈W+

ε2=0 i f ε=0,
ε1+ε2=ε

 ⋃
A∈∂ s

ε2K2(K3(x0))

∂
σ
ε1
(K1 +A◦K3)(x0)

 .

Now, we are ready to state σ -efficient optimality conditions of the problem (Q2).

Theorem 4.4. Let F,G : X →W ∪{+∞W}, H : X → Z ∪{∞Z} and Z+ be nonempty convex
closed in X and σ ∈ {p,w} with W+ being pointed as σ = p. Assume that H−1 (−Z+) is closed,
G∈Γ0 (X ,Y+) and is σ -regular λ -subdifferentiable at x0 ∈ domF∩H−1(−Z+)∩domH∩domG
for any λ ≥ 0, and one of the two following qualification conditions is satisfied

(MR)4

{
F ∈ Γ0 (X ,W+) , H ∈ Γ0 (X ,Z+) , X and Z locally convex,
H(domF ∩domH)∩ int(−Z+) 6= /0.

(AB)4

{
F ∈ Γ0 (X ,W+) , H ∈ Γ0 (X ,Z+) , X and Z Fréchet spaces,
R+ [Z++H(domF ∩domH)] is a closed vector subspace of Z.

Then, x0 is an ε-σ -efficient solution to (Q2) if and only if, for all ε ≮σ
W+

0.

∂
s
µG(x0)⊆

⋃
ε1≮σ

W+
0, ε2∈W+

ε2=0 i f µ+ε=0,
ε1+ε2=µ+ε

 ⋃
A∈Nv

ε2(−Z+,H(x0))

∂
σ
ε1
(F +A◦H)(x0)

 , ∀µ ∈W+.

Proof. Let ε ≮σ
W+

0. Then x0 is an ε-σ -efficient solution to (Q2) if and only if

0 ∈ ∂
σ
ε

(
F +δ

v
−Z+
◦H−G

)
(x0).

Recall that the vector indicator mapping δ v
−Z+

: Z →W ∪{+∞W} is (Z+,W+)-nondecreasing
and W+-convex (see [16]). Since H is Z+-convex, then δ v

−Z+
◦H is W+-convex. From the fact

that w∗ ◦δ v
−Z+
◦H = δ−Z+ ◦H for any w∗ ∈W σ

+ , it follows that

Epi
(

w∗ ◦δ v
−Z+
◦H
)

= {(x,β ) : H(x) ∈ −Z+,β ∈ R+} ,
= H−1 (−Z+)×R+.

Since H−1 (−Z+) is closed, we deduce that Epi
(

w∗ ◦δ v
−Z+
◦H
)

is closed, which yields that
δ v
−Z+
◦H is star W+-lower semicontinuous. According to Theorem 3.1, we have, for all µ ∈W+,

∂
s
µG(x0)⊆ ∂

σ
µ+ε(F +δ

v
−Z+
◦H)(x0). (4.2)
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Note that δ v
−Z+

is σ -regular λ -subdifferentiable at G(x0) for any λ ≥ 0 (see [17]). By tak-
ing K1 := F , K2 := δ v

−Z+
and K3 := H, we observe by means of (MR)4 or (AB)4 that all the

hypotheses of Theorem 4.3 are satisfied. Thus inclusion (4.2) becomes equivalent to

∂
s
µG(x0)⊆

⋃
ε1≮σ

W+
0, ε2∈W+

ε2=0 i f µ+ε=0,
ε1+ε2=µ+ε

 ⋃
A∈∂ s

ε2δ v
−Z+

(H(x0))

∂
σ
ε1
(F +A◦H)(x0)

 , ∀µ ∈W+,

i.e.,

∂
s
µG(x0)⊆

⋃
ε1≮σ

W+
0, ε2∈W+

ε2=0 i f µ+ε=0,
ε1+ε2=µ+ε

 ⋃
A∈Nv

ε2(−Z+,H(x0))

∂
σ
ε1
(F +A◦H)(x0)

 , ∀µ ∈W+.

This completes the proof. �

5. THE APPLICATION TO A MULTIOBJECTIVE FRACTIONAL PROGRAMMING PROBLEM

In this section, by applying the previous results, we present weak and proper approximate
optimality conditions for the following multiobjective fractional programming problem

(Q3)

 min
{

f1(x)
g1(x)

, . . . ,
fs(x)
gs(x)

}
H(x) ∈ −Z+,

where f j,g j : X −→R, j = 1, . . . ,s, are proper and convex functions and H : X −→ Z∪{+∞Z} is
a proper and Z+-convex mapping. Moreover, we assume that f j(x)≥ 0, for any x ∈H−1(−Z+)
and j ∈ {1, ...,s} and the following additional hypothesis

(H ) ∃c1,c2 > 0, such that c1 ≤ g j(x)≤ c2, for all x ∈ H−1(−Z+) and j ∈ {1, ...,s}.
The following notations are used in the sequel

ε := (ε1, . . . ,εs),
ε0 := (ε1g1(x0), . . . ,εsgs(x0)),

v j := f j(x0)
g j(x0)

− ε j ≥ 0.

If we endow the finite-dimensional space W := Rs with its natural order induced by the non-
negative orthant W+ := Rs

+ = {(w1, . . . ,ws) ∈ Rs, w j ≥ 0, ∀ j = 1, . . . ,s}.

The following definitions can be found in [20, 21].

Definition 5.1. A point x0 ∈ H−1(−Z+) is said to be
• weakly ε-efficient solution of (Q3) if there does not exist x ∈ H−1(−Z+) such that

f j(x)
g j(x)

<
f j(x0)

g j(x0)
− ε j, ∀ j ∈ {1, . . . ,s}.

• ε-efficient solution of (Q3) if there does not exist x ∈ H−1(−Z+) such that

f j(x)
g j(x)

≤
f j(x0)

g j(x0)
− ε j, ∀ j ∈ {1, . . . ,s},
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with at least one strict inequality.
• properly ε-efficient solution of (Q3) in Geoffrion’s sense if it is ε-efficient of (Q3) and

there exists β > 0 such that, for each i ∈ {1, ...,s} and each x ∈ H−1(−Z+) satisfying
fi(x0)

gi(x0)
− fi(x)

gi(x)
− εi > 0, there exists an index k ∈ {1, ...,s} with fk(x)

gk(x)
− fk(x0)

gk(x0)
+ εk > 0

and
fi(x0)

gi(x0)
− fi(x)

gi(x)
− εi

fk(x)
gk(x)
− fk(x0)

gk(x0)
+ εk

≤ β .

By using a parametric approach, we can transform problem (Q3) into a vector DC program-
ming problem with the parametric v := (v1, ...,vs) ∈ Rs

+, defined as follows

(Qv)

{
min(F(x)−G(x))
H(x) ∈ −Z+,

where F,G : X −→ Rs are defined for any x ∈ X by

F(x) := ( f1(x), ..., fs(x)), G(x) := (v1g1(x), . . . ,vsgs(x)).

Proposition 5.1. ([20]) A point x0 ∈ H−1(−Z+) is said to be a weakly ε-efficient solution of
(Q3) if and only if x0 is a weakly ε0-efficient solution of (Qv).

Lemma 5.1. Let x0 ∈ H−1(−Z+). Then x0 is a properly ε-efficient solution of (Q3) if and only
if x0 is a properly ε0-efficient solution of (Qv).

Proof. Suppose that x0 is a properly ε-efficient solution of (Q3). By definition, x0 is an ε-
efficient solution of (Q3) and there exists β > 0 such that, for each i ∈ {1, ...,s} and each
x ∈ H−1(−Z+) satisfying

fi(x0)

gi(x0)
− fi(x)

gi(x)
− εi > 0, (5.1)

there exists an index k ∈ {1, ...,s} with

fk(x)
gk(x)

− fk(x0)

gk(x0)
+ εk > 0, (5.2)

and
fi(x0)

gi(x0)
− fi(x)

gi(x)
− εi

fk(x)
gk(x)

− fk(x0)

gk(x0)
+ εk

≤ β . (5.3)

Since x0 is an ε-efficient solution to (Q3), then, according to [20, Proposition 3.1], x0 is an
ε0-efficient solution to (Qv). Furthermore, putting li(x) := fi(x)− vigi(x), we find from (5.1),
(5.2), and the fact that gi(x)> 0 that

li(x0)− li(x)− εigi(x0) = gi(x)
[

fi(x0)

gi(x0)
− fi(x)

gi(x)
− εi

]
> 0,

lk(x)− lk(x0)+ εkgk(x0) = gk(x)
[

fk(x)
gk(x)

− fk(x0)

gk(x0)
+ εk

]
> 0.
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Clearly, condition (5.3) can be rewritten equivalently as

li(x0)−li(x)−εigi(x0)
lk(x)−lk(x0)+εkgk(x0)

=

gi(x)

[
fi(x0)

gi(x0)
− fi(x)

gi(x)
− εi

]
gk(x)

[
fk(x)
gk(x)

− fk(x0)

gk(x0)
+ εk

] ≤ β
gi(x)

gk(x0)
. (5.4)

According to the assumption (H ), we see that (5.4) becomes

li(x0)−li(x)−εigi(x0)
lk(x)−lk(x0)+εkgk(x0)

≤ β
c1
c2
.

Thus x0 is a properly ε0-efficient solution to (Qv). Similarly we prove the reciprocal implication.
This completes the proof. �

Now, we present some necessary and sufficient approximate optimality conditions character-
izing a weakly and properly ε-efficient solution for problem (Q3).

Theorem 5.1. Let fi,gi : X→R∪{+∞}, H : X→ Z∪{∞Z}, x0 ∈H−1 (−Z+), Z+ be nonempty
convex closed in X, and σ ∈ {w, p}. Suppose that H−1 (−Z+) is closed, gi ∈Γ0 (X) (i= 1, ...,s),
and there exists some b ∈

⋂s
i=1 domgi such that (s− 1) functions gi are continuous at b. If

assumption (H ) and one of the two following qualification conditions are satisfied

(MR)5


fi ∈ Γ0 (X) , H ∈ Γ0 (X ,Z+) , X and Z locally convex,

H
( s⋂

i=1

dom fi∩domH
)
∩ int(−Z+) 6= /0.

(AB)5


fi ∈ Γ0 (X) , H ∈ Γ0 (X ,Z+) , X and Z Fréchet spaces,

R+

[
Z++H

( s⋂
i=1

dom fi∩domH
)]

is a closed vector subspace of Z,

then x0 is an ε-σ -efficient solution to (Q3) if and only if, for all ε ≮σ

Rs
+

0 and µ = (µ1, ...,µs) ∈
Rs
+,

∂µ1 (v1g1)(x0)× . . .×∂µs (vsgs)(x0)

⊆
⋃

η1≮σ

Rs
+

0, η2∈Rs
+

η2=0 i f µ+ε0=0,
η1+η2=µ+ε0

 ⋃
A∈Nv

η2(−Z+,H(x0))

∂
σ
η1
(( f1, ..., fs)+A◦H)(x0)

 .

Proof. For W = Rs and W+ = Rs
+, since fi,gi ∈ Γ0 (X), we have F,G ∈ Γ0

(
X ,Rs

+

)
. Let λ ≥ 0.

By virtue of [17], the λ -subdifferential σ -regularity of G = (v1g1, . . . ,vsgs) holds under the
well-known Moreau-Rockafellar qualification condition{

gi ∈ Γ0 (X) , (i = 1, . . . ,s), X separated locally convex,
∃b ∈

⋂s
i=1 domgi such that (s−1) functions gi are continuous at b.

(5.5)

For our goal, this qualification condition is verified. By Proposition 5.1 and Lemma 5.1, x0 is
an ε-σ -efficient solution of (Q3) if and only if x0 is an ε0-σ -efficient solution of (Qv). Under
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(MR)5 or (AB)5, we observe that all the hypotheses of Theorem 4.4 are satisfied, so

∂
s
µG(x0)⊆

⋃
η1≮σ

Rs
+

0, η2∈Rs
+

η2=0 i f µ+ε0=0,
η1+η2=µ+ε0

 ⋃
A∈Nv

η2(−Z+,H(x0))

∂
σ
η1
(F +A◦H)(x0)

 . (5.6)

As ∂ s
µG(x0) = ∂µ1 (v1g1)(x0)× . . .×∂µs (vsgs)(x0), we see that (5.6) becomes

∂µ1 (v1g1)(x0)× . . .×∂µs (vsgs)(x0)

⊆
⋃

η1≮σ

Rs
+

0, η2∈Rs
+

η2=0 i f µ+ε0=0,
η1+η2=µ+ε0

 ⋃
A∈Nv

η2(−Z+,H(x0))

∂
σ
η1
(( f1, ..., fs)+A◦H)(x0)

 .

The proof is complete. �
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