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EXPLICIT ITERATIVE METHODS FOR THE SPLIT FEASIBILITY PROBLEM
WITH MULTIPLE OUTPUT SETS

TRUONG MINH TUYEN

Department of Mathematics and Informatics, Thai Nguyen University of Sciences, Thai Nguyen, Vietnam

Abstract. The purpose of this paper is to introduce some new explicit iterative methods for finding a
solution of the split feasibility problem with multiple output sets. These methods are established by using
the Tikhonov regularization method in real Hilbert spaces.
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1. INTRODUCTION

Let H1 and H2 be two real Hilbert spaces. Let C and Q be nonempty, closed, and convex
subsets of H1 and H2, respectively. Let T : H1 → H2 be a bounded and linear operator. The
split convex feasibility problem (SCFP, for short) is presented as follows:

Find an element u? ∈C such that Tu? ∈ Q. (1.1)

The SCFP was first introduced by Censor and Elfving [4] in order to model certain inverse
problems. It plays an important role in medical image reconstruction and in signal processing;
see, e.g., [1, 2]. Recently, various iterative algorithms were introduced for solving (1.1); see,
e.g., [1, 2, 3, 5, 6, 9, 15, 16, 17, 19, 21, 24] and the references therein.

In 2010, Xu [19] introduced the following iterative method for solving Problem (1.1). For
any u0 ∈ H, he defined the sequence {un} by

un+1 = PC[(1− tnεn)un− εnT ∗(I−PQ)Tun], n≥ 0. (1.2)

He proved that the sequence {un} generated by (1.2) converges strongly to the minimum-norm
solution to Problem (1.1) when {tn} and {εn} satisfying the conditions below:

i) tn→ 0 and 0 < εn <
tn

‖T‖2 + tn
;

ii) ∑
∞
n=0 tnεn = ∞;

iii)
|εn+1− εn|+ εn|tn+1− tn|

t2
n ε2

n
→ 0.

In 2012, Yao et al. [23] proved the strong convergence of iterative method (1.2) under the
following conditions:
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i) tn→ 0, and ∑
∞
n=0 tn = ∞;

ii) 0 < εn <
2

‖T‖2 +2tn
, infn εn > 0 and |εn+1− εn| → 0.

In 2020, Reich et al. [10] presented and studied the following split feasibility problem with
multiple output sets in Hilbert spaces: Let H, Hi, i = 1,2, . . . ,m, be real Hilbert spaces, and
let Ti : H → Hi, i = 1,2, . . . ,m, be bounded linear operators. Let C and Qi be nonempty,
closed, and convex subsets of H and Hi, i = 1,2, . . . ,m, respectively. Suppose that ΩSFPMOS =
C∩ (∩m

i=1T−1
i (Qi)) 6= /0. They considered the following problem:

Find an element u? ∈Ω
SFPMOS, (1.3)

that is, a point u? ∈C such that Tiu? ∈ Qi for all i = 1,2, . . . ,m. In order to solve Problem (1.3),
Reich et al. [10, 11] introduced some iterative methods which are based on the optimization
approach. In 2022, Reich and Tuyen [12] proposed and studied the strong convergence of the
following iterative scheme. Take any u0 ∈ H and define the sequence {un} by

un+1 = un− εn(F(un)+ tnU(un)), n≥ 0, (1.4)

where F = I−PC +∑
m
i=1 T ∗i (I−PQi)Ti and U : H→ H is LU -Lipschitz and γU -strongly mono-

tone. They proved that the sequence {un} defined by (1.4) converges strongly to a solution of
Problem (1.3) when the parameters control satisfy the following conditions:

i) limn→∞ tn = 0, {tn} ⊂ (0,(γU − εnKLU)/εnL2
U), where K = 1+∑

m
i=1 ‖Ti‖2;

ii) {εn} ⊂ (0,γ/2KLU) and ∑
∞
n=1 tnεn = ∞;

iii) limn→∞ εn/tn = 0;

iv) limn→∞

|tn+1− tn|
tnεn

= 0.

In this paper, we analyze and establish the strong convergence of iterative scheme (1.4) based
on some conditions which are simpler than the conditions of Reich and Tuyen in [12]. We
introduce several relaxed iterative methods for solving Problem (1.3) in the case where C and
Qi, i = 1,2, . . . ,m, are sublevel sets of convex functions. Two numerical examples are also
presented to illustrate proposed methods.

2. PRELIMINARIES

Let H be a real Hilbert space. We denote by 〈u,v〉 the inner product of two elements u,v in
H. The induced norm is denoted by ‖ · ‖, that is, ‖u‖=

√
〈u,u〉 for all u ∈ H.

Let C be a nonempty, closed, and convex subset of H. It is known that, for each u ∈ H, there
exists a unique point PCu ∈C such that

‖u−PCu‖= inf
v∈C
‖u− v‖. (2.1)

The mapping PC : H→C defined by (2.1) is called the metric projection of H onto C. We also
recall (see, e.g., [8, Section 3 ]) that

〈u−PCu,v−PCu〉 ≤ 0, ∀u ∈ H, ∀v ∈C. (2.2)

Let S,A : H→ H are two operators from H into itself.
i) S is LS Lipschitz if there exists a positive real number LS > 0 such that

‖S(u)−S(v)‖ ≤ LS‖u− v‖
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for all u,v ∈H. If LS = 1, then we say that S is nonexpansive. In addition, if LU ∈ [0,1),
then S is called a strict contraction;

ii) S is firmly nonexpansive if 2S− I is nonexpansive, which is equivalent to S = (I+U)/2,
where U : H→ H is nonexpansive;

iii) S is averaged if S = (1− t)I + tU , where t ∈ (0,1) and U : H→ H is nonexpansive. In
this case, we say that S is t-averaged.

iv) A is monotone if 〈u− v,A(u)−A(v)〉 ≥ 0 for all u,v ∈ H;
v) A is βA-strongly monotone with βA > 0 if 〈u− v,A(u)− A(v)〉 ≥ βA‖u− v‖2 for all

u,v ∈ H;
vi) A is γA-co-coercive if 〈u− v,A(u)−A(v)〉 ≥ γA‖A(u)−A(v)‖2 for all u,v ∈ H.

We also need the following lemmas for our main results of this paper.

Lemma 2.1. (see [10]) Let H be a real Hilbert space. Let C be a nonempty, closed, and convex
subset of H. Then, for all u,v ∈ H,

i) 〈u− v,PCu−PCv〉 ≥ ‖PCu−PCv‖2;
ii) 〈u− v,(I−PC)u− (I−PC)v〉 ≥ ‖(I−PC)u− (I−PC)v‖2.

Remark 2.1. It follows from Lemma 2.1 that I−PC is a nonexpansive mapping.

Lemma 2.2. (see [2, 20]) The following statements hold:
i) If A is γA-co-coercive, then εA is γA/ε-co-coercive.

ii) S is averaged if and only if the component I− S is γ-co-coercive with γ > 1/2. More
precisely, for t ∈ (0,1), S is t-averaged if and only if I−S is 1/2t-co-coercive.

Lemma 2.3. [7] Let T be a nonexpansive self-mapping of a closed and convex subset C of a
Hilbert space H. Then I−T is demiclosed, that is, whenever {un} is a sequence in C which
weakly converges to some u ∈C and the sequence {(I−T )(un)} strongly converges to some v,
it follows that (I−T )(u) = v.

Lemma 2.4. [14] Let {an} and {bn} be bounded sequences in a Hilbert space H, and let {tn} be
a sequence in [0,1] with 0 < liminfn→∞ βn ≤ limsupn→∞ βn < 1. Let an+1 = (1−βn)bn +βnan
for all n≥ 0 and limsupn→∞(‖bn+1−bn‖−‖an+1−an‖)≤ 0. Then limn→∞ ‖an−bn‖= 0.

Lemma 2.5. [18] Let {Γn} be a sequence of nonnegative numbers, {bn} be a sequence in (0,1),
and {cn} a sequence of real numbers satisfying the following two conditions:

i) Γn+1 ≤ (1−bn)Γn +bncn;
ii) ∑

∞
n=0 bn = ∞, limsupn→∞ cn ≤ 0.

Then limn→∞ Γn = 0.

3. MAIN RESULTS

Consider Problem (1.3), and let Ψ : H→ R be defined by

Ψ(u) :=
1
2
‖(I−PC)u‖2 +

1
2

m

∑
i=1
‖(I−PQi)Tiu‖2

for all u ∈ H.
It is not difficult to see that Ψ is a convex, continuous, and proper function. Indeed, it is easy

to see that Ψ is a continuous and proper function. We now prove that Ψ is a convex function. To
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do this, we first show that function dC(u) = ‖(I−PC)u‖ for all u ∈H, is a convex function. For
every x,y ∈ H, it follows from the definition of dC(x) and dC(y) that there exist two sequences
{xn} and {yn} in C such that ‖x− xn‖ → dC(x) and ‖y− yn‖ → dC(y), as n→ ∞. Since C is a
convex set, λxn +(1−λ )yn ∈C for all λ ∈ [0,1] and for all n≥ 1. Thus

dC(λx+(1−λ )y) = inf
z∈C
‖λx+(1−λ )y− z‖

≤ ‖λx+(1−λ )y− [λxn +(1−λ )yn]‖
≤ λ‖x− xn‖+(1−λ )‖y− yn‖

for all n≥ 1. Letting n→ ∞, we obtain

dC(λx+(1−λ )y)≤ λdC(x)+(1−λ )dC(y).

This shows that dC(u) is a convex function. Hence, f (u) = d2(u,C)/2 is also a convex function
(note that, the square of a nonnegative convex function is a convex function).

For each i = 1,2, . . . ,m and for every x,y ∈ H, and for any λ ∈ [0,1], it follows from the
convexity of ‖(I−PQi)v‖2 on Hi that

‖(I−PQi)Ti[λx+(1−λ )y]‖2 = ‖(I−PQi)[λTix+(1−λ )Tiy]‖2

≤ λ‖(I−PQi)Tix‖2 +(1−λ )‖(I−PQi)Tiy‖2,

which implies that ‖(I−PQi)Tiu‖2 is a convex function on H. Thus we conclude that Ψ is a
convex function.

Let fi(u) = ‖(I−PQi)Tiu‖2/2 for all u ∈ H. We next prove that ∇ fi(u) = T ∗i (I−PQi)Tiu.
Indeed, we take any point x0 ∈ H and letting v = T ∗i (I−PQi)Tix0. For every h ∈ H, we have

fi(x0 +h)− fi(x0)−〈v,h〉

=
1
2
‖(I−PQi)Ti(x0 +h)‖2− 1

2
‖(I−PQi)Tix0‖2−〈v,h〉

=
1
2
(‖Ti(x0 +h)−PQiTi(x0 +h)‖2−‖(I−PQi)Tix0‖2)−〈v,h〉

≤ 1
2
(‖Ti(x0 +h)−PQiTix0‖2−‖(I−PQi)Tix0‖2)−〈v,h〉

=
1
2
(‖(I−PQiTi)x0 +Tih‖2−‖(I−PQi)Tix0‖2)−〈v,h〉

=
1
2
(‖(I−PQiTi)x0‖2 +‖Tih‖2−‖(I−PQi)Tix0‖2)

+ 〈(I−PQiTi)x0,Tih〉−〈v,h〉

=
1
2
‖Tih‖2 + 〈T ∗i (I−PQiTi)x0,h〉−〈v,h〉

≤ 1
2
‖Ti‖2‖h‖2.

Similarly, we also have

fi(x0)− fi(x0 +h)+ 〈v,h〉 ≤ 1
2
‖Ti‖2‖h‖2.
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Combining the two above inequalities, we see that

| fi(x0 +h)− fi(x0)−〈v,h〉|
‖h‖

≤ 1
2
‖Ti‖2‖h‖→ 0,

as ‖h‖→ 0. Hence, ∇ fi(x0) = T ∗i (I−PQi)Tix0. Then we infer that Ψ is a Fréchet differentiable
function and

∇Ψ(u) = (I−PC)u+
m

∑
i=1

T ∗i (I−PQi)Tiu

for all u ∈ H.
By Rockafellar’s theorem [13], F := ∇Ψ is a maximal monotone operator. Moreover, a

point u? ∈ H is a solution to Problem (1.3) if and only if u? is a minimum point of Ψ. This is
equivalent to

F(u?) = (I−PC)u?+
m

∑
i=1

T ∗i (I−PQi)Tiu? = 0. (3.1)

We first consider the following Tikhonov regularization method

min
u∈H

{
Ψ(u)+

t
2
‖u‖2

}
,

where t > 0. We see that
∇

(
Ψ(u)+

t
2
‖u‖2

)
= F(u)+ tu,

for all u∈H. Thus, in this case, we study and establish the convergence of the following explicit
iterative method: For any u0 ∈ H, construct the sequence {un} by

un+1 = un− εn[F(un)+ tnun], n≥ 0, (3.2)

where {tn} ⊂ (0,1) and {εn} is a sequence of real numbers. Note that the sequence {un}
generated by (3.2) can be rewritten in the following form

un+1 = (1− tnεn)un− εnF(un), n≥ 0. (3.3)

In order to establish the strong convergence of the iterative method (3.3), we first introduce
the following proposition.

Proposition 3.1. The mapping F is γF -co-coercive with γF = 1/(1+∑
m
i=1 ‖Ti‖2).

Proof. For any u,v ∈ H, it follows from Lemma 2.1 ii) that

〈u− v,F(u)−F(v)〉= 〈u− v,(I−PC)u− (I−PC)v〉

+
m

∑
i=1
〈u− v,T ∗i (I−PQi)Tiu−T ∗i (I−PQi)Tiv〉

= 〈u− v,(I−PC)u− (I−PC)v〉

+
m

∑
i=1
〈Tiu−Tiv,(I−PQi)Tiu− (I−PQi)Tiv〉

≥ ‖(I−PC)u− (I−PC)v‖2 (3.4)

+
m

∑
i=1
‖(I−PQi)Tiu− (I−PQi)Tiv‖2.
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We also have

‖F(u)−F(v)‖2

= ‖(I−PC)u− (I−PC)v+
m

∑
i=1

T ∗i (I−PQi)Tiu−T ∗i (I−PQi)Tiv‖2

≤ [‖(I−PC)u− (I−PC)v‖+
m

∑
i=1
‖T ∗i (I−PQi)Tiu−T ∗i (I−PQi)Tiv‖]2

≤ [‖(I−PC)u− (I−PC)v‖+
m

∑
i=1
‖Ti‖‖(I−PQi)Tiu− (I−PQi)Tiv‖]2

≤ (1+
m

∑
i=1
‖Ti‖2)[‖(I−PC)u− (I−PC)v‖2 (3.5)

+
m

∑
i=1
‖(I−PQi)Tiu− (I−PQi)Tiv‖2].

From (3.4) and (3.5), we obtain that

〈u− v,F(u)−F(v)〉 ≥ 1
1+∑

m
i=1 ‖Ti‖2‖F(u)−F(v)‖2,

for all u,v ∈ H, that is, F is γF -co-coercive with γF = 1/(1+∑
m
i=1 ‖Ti‖2). This completes the

proof. �

The following proposition is an important result that is needed to prove the strong conver-
gence of iterative method (3.2).

Proposition 3.2. If t ∈ (0,1) and ε ∈ (0,
2γF

1+2tγF
), then Gt,ε = (1− tε)I− εF is a strict con-

traction mapping with the coefficient k = 1− tε .

Proof. For any u,v ∈ H, using Proposition 3.1, we have

‖Gt,ε(u)−Gt,ε(v)‖2 = ‖(1− tε)(u− v)− ε(F(u)−F(v))‖2

= (1− tε)2‖u− v‖2−2(1− tε)ε〈u− v,F(u)−F(v)〉

+ ε
2‖F(u)−F(v)‖2

≤ (1− tε)2‖u− v‖2− ε[2(1− tε)γF − ε]‖F(u)−F(v)‖2

It follows from ε ∈ (0,
2γF

1+2tγF
) that 2(1− tε)γF − ε > 0. Thus

‖Gt,ε(u)−Gt,ε(v)‖ ≤ (1− tε)‖u− v‖,

for all u,v ∈ H. This completes the proof. �

Theorem 3.1. Let {tn} and {εn} be two positive sequences such that {tn} ⊂ (0,1) and

{εn} ⊂ [a,b]⊂ (0,
2γF

1+2tnγF
). Let {tn} satisfy the following conditions

tn→ 0,
∞

∑
n=0

tn = ∞.
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Then the sequence {un} generated by (3.2) converges strongly to an element u? = PΩSFPMOS0, as
n→ ∞.

Proof. We first show that {un} is bounded. Put u? = PΩSFPMOS0. It follows from (3.1) and
Proposition 3.2 that

‖un+1−u?‖= ‖Gtnεn(un)−Gtnεn(u?)− tnεnu?‖
≤ (1− tnεn)‖un−u?‖+ tnεn‖u?‖
≤max{‖un−u?‖,‖u?‖}

...

≤max{‖u0−u?‖,‖u?‖},
which implies that {un} is bounded.

We now prove that ‖un+1−un‖→ 0. Indeed, since F is γF -co-coercive, then εF is γF/εn-co-
coercive. We note that γF/εn > 1/2. Thus, from Lemma 2.2, we deduce that I− εnF is εn/2γF
averaged, which implies that there exists a nonexpansive mapping S such that

I− εnF = (1− εn

2γF
)I +

εn

2γF
S.

Thus, we can rewrite (3.3) in the following form

un+1 = (I− εnF)(un)− tnεnun

= [(1− εn

2γF
)I +

εn

2γF
S](un)− tnεnun

= βnun +(1−βn)vn,

where vn = S(un)−2γFtnun and βn = 1− εn

2γF
.

Next, we have

‖vn+1− vn‖= ‖S(un+1)−2γFtn+1un+1−S(un)+2γFtnun‖
≤ ‖S(un+1)−S(un)‖+2γF‖tn+1un+1− tnun‖
≤ ‖un+1−un‖+2γF(tn+1‖un+1−un‖+ |tn+1− tn|‖un‖).

It follows from the boundedness of the sequence {un} and tn→ 0 that

limsup
n→∞

(‖vn+1− vn‖−‖un+1−un‖)≤ 0.

Since {εn} ⊂ [a,b] ⊂ (0,
2γF

1+2tnγF
), then 0 < liminfn→∞ βn ≤ limsupn→∞ βn < 1. Thus, from

Lemma 2.4, we see that ‖un− vn‖→ 0. Hence,

‖un+1−un‖=
εn

2γF
‖un− vn‖→ 0. (3.6)

This together with (3.3) and the condition tn→ 0 obtains ‖F(un)‖→ 0. Observe that

〈un−u?,F(un)〉= 〈un−u?,F(un)−F(u?)〉

≥ ‖(I−PC)un‖2 +
m

∑
i=1
‖(I−PQi)Tiun‖2,
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which together with the boundedness of {un} and ‖F(un)‖→ 0 deduces that

‖(I−PC)un‖→ 0, (3.7)

‖(I−PQi)Tiun‖→ 0, (3.8)

for all i = 1,2, . . . ,m.
We next prove that the weak cluster point set of {un} is contained in ΩSFPMOS. Indeed,

suppose that p is an arbitrary weak cluster point of {un}. There exits a subsequence {ukn} of
{un} such that ukn ⇀ p, as n→ ∞. Since Ti is a bounded linear operator, one has Tiukn ⇀ Ti p
for each i = 1,2, . . . ,m. Thus, applying Lemma 2.3 and using (3.7)–(3.8), we obtain that p ∈
ΩSFPMOS, as claimed.

Finally, we prove that un→ u?, as n→ ∞. Note that

‖un+1−u?‖2 = 〈Gtn,εn(un)−Gtn,εn(u?)+Gtn,εn(u?)−u∗,un+1−u?〉
= 〈Gtn,εn(un)−Gtn,εn(u?),un+1−u?〉+ 〈Gtn,εn(u?)−u∗,un+1−u?〉
= 〈Gtn,εn(un)−Gtn,εn(u?),un+1−u?〉− tnεn〈u?,un+1−u?〉
≤ ‖Gtn,εn(un)−Gtn,εn(u?)‖‖un+1−u?‖− tnεn〈u?,un+1−u?〉
≤ (1− tnεn)‖un−u?‖‖un+1−u?‖− tnεn〈u?,un+1−u?〉

≤ (1− tnεn)
‖un−u?‖2 +‖un+1−u?‖2

2
− tnεn〈u?,un+1−u?〉

≤ 1− tnεn

2
‖un−u?‖2 +

1
2
‖un+1−u?‖2− tnεn〈u?,un+1−u?〉,

which implies that

‖un+1−u?‖2 ≤ (1− tnεn)‖un−u?‖2−2tnεn〈u?,un+1−u?〉. (3.9)

Putting Γn = ‖un−u?‖2, bn = tnεn and cn = 2〈u?,u?−un+1〉, we can rewrite (3.9) in the follow-
ing form Γn+1 ≤ (1−bn)Γn +bncn. Suppose that {uln} is a subsequence of the sequence {un}
such that

limsup
n→∞

〈u?,u?−un〉= lim
n→∞
〈u?,u?−uln〉. (3.10)

Since {un} is bounded, we see that there exists a subsequence {ukln
} of {uln} such that ukln

⇀ q,
as n→ ∞. We may assume without loss of generality that uln ⇀ q as n→ ∞. From the proof
above, we have that q ∈ΩSFPMOS. It follows from (2.2) and (3.10) that

limsup
n→∞

〈u?,u?−un〉= 〈u?,u?−q〉= 〈0−PΩSFPMOS0,q−PΩSFPMOS0〉 ≤ 0. (3.11)

In view of ‖un+1− un‖ → 0, we imply that limsupn→∞ cn ≤ 0. Furthermore, it is easy to see
that ∑

∞
n=0 tnεn = ∞. Hence, all the conditions of Lemma 2.5 are satisfied. Therefore, we deduce

that Γn→ 0, that is, un→ u? as n→ ∞, as asserted. This completes the proof. �

Next, we consider the Tikhonov regularization method

min
u∈H

{
Ψ(u)+

t
2
‖u− ū‖2

}
.

Using similar arguments as above, we can easily prove the following theorem.
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Theorem 3.2. Let {tn} and {εn} be two positive sequences such that {tn} ⊂ (0,1) and {εn} ⊂
[a,b]⊂ (0,

2γF

1+2tnγF
). For any ū ∈ H, let {un} be a sequence defined by u0 ∈ H and

un+1 = un− εn[F(un)+ tn(un− ū)], n≥ 0. (3.12)

Let {tn} satisfy tn→ 0 and ∑
∞
n=0 tn = ∞. Then {un} converges strongly to PΩSFPMOS ū, as n→ ∞.

Finally, we study the convergence of the sequence {wn} generated by the following scheme:
For any w0 ∈ H, we define sequence {wn} by

wn+1 = wn− εn[F(wn)+ tnU(wn)], n≥ 0, (3.13)

where U : H→ H is LU -Lipschitz and βU -strongly monotone operator.

Theorem 3.3. Let {tn} and {εn} be two positive sequences such that {tn} ⊂ (0,1) and {εn} ⊂
[a,b] ⊂ (0,

2γF

1+2tnγF
). Let {tn} satisfy the conditions: tn → 0 and ∑

∞
n=0 tn = ∞. Then the se-

quence {wn} defined by (3.13) converges strongly to an element p? ∈ ΩSFPMOS which is a
unique solution to the following variational inequality

〈y− p?,U(p?)〉 ≥ 0, ∀y ∈Ω
SFPMOS. (3.14)

Proof. Let µ be a positive number with µ ∈ (0,2βU/L2
U). We write tn = ρnµ with ρn = tn/µ .

Since tn → 0, we may assume that ρn < 1 for all n. Since µ ∈ (0,2βU/L2
U), we have that

I− µU is a strict contraction with the contraction coefficient τ =
√

1−µ(2βU −µL2
U) (see

[22]). Thus PΩSFPMOS(I−µU) is also a strict contraction. Banach fixed point theorem guarantees
that PΩSFPMOS(I− µU) has a unique fixed point p?. It follows from (2.2) that p? is a unique
solution to variational inequality (3.14).

Let {un} be a sequence defined by (3.12), where ū = (I−µU)(p?) and tn is replaced by ρn.
From Theorem 3.2, we obtain that un→ p? = PΩSFPMOS(I−µU)(p?), as n→∞. We now rewrite
the formulas to define {un} and {wn} in the following forms:

un+1 = Gρn,εn(un)+ρnεn(I−µU)(p?),

wn+1 = Gρn,εn(wn)+ρnεn(I−µU)(wn).

Note that

‖wn+1−un+1‖ ≤ ‖Gρn,εn(wn)−Gρn,εn(un)‖+ρnεn‖(I−µU)(wn)− (I−µU)(p?)‖
≤ (1−ρnεn)‖wn−un‖+ρnεnτ‖wn− p?‖
≤ (1−ρnεn)‖wn−un‖+ρnεnτ(‖wn−un‖+‖un− p?‖)
= [1− (1− τ)ρnεn]‖wn−un‖+ρnεnτ‖un− p?‖. (3.15)

Putting Γn = ‖wn− un‖, bn = (1− τ)ρnεn, and cn =
τ

1− τ
‖un− p?‖ we can rewrite (3.15)

in the form Γn+1 ≤ (1− bn)Γn + bncn. It is easy to see that ∑
∞
n=0 bn = ∞ and limn→∞ cn = 0.

Thus all the conditions of Lemma 2.5 are satisfied. Therefore, we infer that Γn → 0, that is,
‖wn−un‖→ 0. From un→ p?, we obtain that wn→ p?. This complete the proof. �

Remark 3.1. We see that the strong convergence of e iterative method (3.14) is established
based on simpler conditions than the results in [12]. In particular, when m = 1, Problem (1.3)
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becomes Problem (1.1). Thus our results are better than the result in [23] (we remove |εn+1−
εn| → 0).

4. RELAXED ITERATIVE METHODS

The relaxed iterative method for solving Problem (1.1) was first introduced and studied in
[21]. We now study Problem (1.3) when C and Qi, i = 1,2, . . . ,m, are sublevel sets of the lower
semicontinuous convex functions h : H → R and hi : Hi → R, i = 1,2, . . . ,m, respectively.
Suppose that

C = {u ∈ H : h(u)≤ 0},
Qi = {u ∈ H : hi(Tiu)≤ 0}, i = 1,2, . . . ,m.

We assume that h and hi, i = 1,2, . . . ,m, are subdifferentiable on H and that the subdifferentials
∂h and ∂hi, i = 1,2, . . . ,m, are bounded (on bounded sets). Recall that the subdifferential of a
convex function Ξ : H→ R is defined by

∂Ξ(u) := {ξ ∈ H : Ξ(w)−Ξ(u)≥ 〈w−u,ξ 〉 ∀w ∈ H}.
For a given point un ∈ H, we define the subsets Cn and Qi,n by

Cn := {u ∈ H : h(un)≤ 〈un−u,ξn〉},
Qi,n := {v ∈ Hi : hi(Tiun)≤ 〈Tiun− v,ηi,n〉}, i = 1,2, . . . ,m,

where ξn ∈ ∂h(un) and ηi,n ∈ ∂hi(Tiun) for all i = 1,2, . . . ,m. The sets Cn and Qi,n are called
the relaxed sets of C and Qi, respectively. It is easy to see that Cn and Qi,n are half-spaces of H
and Hi, respectively, and that C ⊂Cn and Qi ⊂ Qi,n for all i = 1,2, . . . ,m.

It is known that, in the general case, it is not easy to calculate the projections PCx and PQiy.
Therefore we introduce two relaxed iterative methods corresponding to the proposed iterative
methods, when PC and PQi are replaced by PCn and PQi,n , respectively, which are defined as
follows:

PCnu := u−max
{
〈u,ξn〉−〈un,ξn〉+h(un)

‖ξn‖2 ,0
}

ξn,

PQi,nv := v−max
{
〈y,ηi,n〉−〈Tiun,ηi,n〉+hi(Tiun)

‖ηi,n‖2 ,0
}

ηi,n.

By using a similar technique as in [12], we can easily prove the following theorem.

Theorem 4.1. Let {tn} and {εn} be two positive sequences such that {tn} ⊂ (0,1) and

{εn} ⊂ [a,b] ⊂ (0,
2γF

1+2tnγF
). Let µ be a positive real number with µ ∈ (0,2βU/L2

U). Sup-

pose that the sequence {tn} satisfies the following conditions

tn→ 0,
∞

∑
n=0

tn = ∞.

For any w0 ∈ H, let {wn} be the sequence defined by

wn+1 = wn− εn[Fn(wn)+ tnU(wn)], n≥ 0,

where Fn = I − PCn + ∑
m
i=1 T ∗i (I − PQi,n)Ti. Then {wn} converges strongly to an element

p? ∈ΩSFPMOS which is a unique solution to the following variational inequality (3.14).
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5. NUMERICAL EXPERIMENTS

In this section, our algorithms are implemented in MATLAB 14a running on the
DESKTOP-9RLTPS0, Intel(R) Core(TM) i5-10210U CPU @ 1.60GHz with 2.11 GHz and
8GB RAM.

Example 5.1. Consider the following split feasibility with multiple output sets: Let C, Q1, Q2,
and Q3 be closed and convex subsets of R5, R4, R3, and R2, respectively, which are defined by

C = {(x1,x2,x3,x4,x5) ∈ R5 : x1− x2 + x3− x4 +2x5 = 2},

Q1 = {(y1,y2,y2,y4) ∈ R4 : y1 + y2− y3 + y4 = 1},

Q2 = {(z1,z2,z3) ∈ R3 : z1−2z2 + z3 = 0},

Q3 = {(v1,v2) ∈ R2 : v1− v2 = 1}.

The representing matrices of the transfer mappings T1 : R5→R4, T2 : R5→R3, and T3 : R5→
R2 are

T1 =


1 2 −1 1 0
1 1 2 −1 1
2 −1 1 2 0
1 −5 1 1 −1

 ,

T2 =

2 1 −1 1 2
1 −1 2 1 −1
1 −4 6 1 −4

 ,

T3 =

(
2 1 3 0 −1
1 2 3 0 −1

)
.

It is easy to check that

Ω
SFPMOS :=C∩3

i=1 T−1
i (Qi) = {(1+ξ ,ξ ,−1,−1,0.5) : ξ ∈ R}.

We now test the convergence of the iterative methods (3.2) and (3.12). The parameters tn and
εn are chosen as follows:

tn = (n+1)−0.595, εn =


2γF

1+4γF
if n even ,

2γF

1+8γF
if n odd ,

for all n≥ 0. Note that, in this case, |εn+1− εn|9 0.
a) Applying the iterative method (3.2) with the initial point u0 = (1,2,3,4,5).
We see that u? = (0.5,−0.5,−1,−1,0.5) is the minimum norm solution to the problem. We

use the condition σn := ‖un− u?‖2 < ε to stop the iterative process, where ε is a given error.
We obtain the following table of numerical results.

b) Applying the iterative method (3.12) with the initial point u0 = (1,2,3,4,5) and ū =
(2,1,−2,1,2).

We see that p? = PΩSFPMOS ū = (2,1,−1,−1,0.5). Thus, in this case, we use the condition
σn := ‖un− p?‖2 < ε to stop the iterative process, where ε is a given error. We obtain the
following table of numerical results.
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ε σn n Time (s)
10−2 9.999885×10−3 78256 2.510100
10−3 9.999951×10−4 180996 5.883531
10−4 9.999973×10−5 448854 14.459758

TABLE 1. Table of numerical results for the iterative method (3.2)

ε σn n Time (s)
10−2 9.998124×10−3 7639 0.284367
10−3 9.999802×10−4 48086 1.781236
10−4 9.999975×10−5 335068 11.933642

TABLE 2. Table of numerical results for the iterative method (3.12)

The behavior of the function σn in Table 1 and Table 2 is presented in the figure below.
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FIGURE 1. The behavior of σn with ε = 10−2

Example 5.2. Suppose that H = L2[0,1] with the inner product 〈x,y〉 =
∫ 1

0 x(t)y(t)dt for all

x,y ∈ L2[0,1] and the norm ‖x‖ =
(∫ 1

0 x2(t)dt
)1/2

for all x ∈ L2[0,1]. Consider the split feasi-
bility problem with multiple output sets with the following data:

C = {x ∈ L2[0,1] : 〈a,x〉 ≤ b},

Qi = {y ∈ L2[0,1] : 〈ai,y〉 ≤ bi}, i = 1,2, . . . ,100,

where a(t) = t2, b = 0.5, ai(t) = cos(it)+ t, and bi = 1/i, for all i = 1,2, . . . ,100. For each
i = 1,2, . . . ,100, let Ti : L2[0,1]→ L2[0,1], be linear operator which is defined by Tix = ix for
all x ∈ L2[0,1].

It is easy to see that the solution set ΩSFPMOS 6= /0 because u(t) = 0 belongs to ΩSFPMOS.
We now test the convergence of the iterative method (3.2) with the initial point x0(t) = exp(t)

and the parameter εn is chosen as in Example 5.1. In this case, we use the condition σn :=
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‖un+1−un‖< ε to stop the iterative process, where ε is a given error. Moreover, at nth iteration
step, we also define the number Dn, which is determined by

Dn = max
{
〈a,un〉−b, max

i=1,2,...,100
{〈ai,Tiun〉−bi}

}
.

Note that if Dn ≤ 0, then un ∈Ω. We obtain the following table of numerical results.

tn ε σn n Dn Time (s)
tn = 1/n0.25

10−4 9.998781×10−5 240 0.646375 0.225530
10−5 9.999578×10−6 7680 0.194301 5.278357
10−6 9.999913×10−7 29673 0.021703 19.577540

tn = 1/n0.85

10−4 9.991735×10−5 239 0.646896 0.222085
10−5 9.999562×10−6 7674 0.196354 5.248964
10−6 9.999901×10−7 29542 0.023546 19.285241

TABLE 3. Table of numerical results for the iterative method (3.2) for Example 5.2

The behavior of the function σn in Table 3 is presented in the figure below.
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