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Abstract. In this paper, a nonconvex variational model with log total variation is proposed to investi-
gate robust image reconstruction from a certain number of measurements. Due to the form of the new
model, the difference of convex functions (DC) programming is presented and a DC algorithm (DCA) is
adopted. The specific DCA subproblem can be solved by the alternating direction method of multipliers
(ADMM). Theoretically, we prove the sequence generated by the DCA converges to a stationary point.
The experimental results demonstrate that the new method outperforms the competitive methods when
the measurement is limited or the noise level is significant.
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struction; Nonconvex optimization.
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1. INTRODUCTION

In numerous real-world applications, it is necessary to use a small amount of data to per-
form the task of reconstructing high-quality images. Moreover, the limitation of experimental
conditionals may result in the observation data being contaminated by noise. The famous total
variation (TV) regularization given by [1] is now widely applied in the field of imaging because
of the excellent ability of edge preserving. As the same as [2] analyzed in depth, the advantage
of TV model is that it can reconstruct high-quality images from relatively small number of mea-
surements. The TV model has the advantage of being able to reconstruct high-quality images
from a relatively small number of measurements. However, it has the disadvantage of creating
staircasing artefacts. In order to obtain high-quality images and further reduce artifacts, various
models of TV were investigated recently; see, e.g., [3, 4, 5].

We know that the TV norm includes the L1 norm and gradient operators. According to statis-
tical factors, the L1 norm may have biased estimations on lager coefficients. Oracle property [6]
would be lost. In order to ensure sparseness, the L0 norm is chosen appropriately instead of the
L1 norm. But, the minimization of L0 is NP hard. Then, some penalty functions were proposed,
which not only can avoid the restriction, but also take advantage of both the L1 and L0, such as
SCAD [7], Capped-L1 [8], transformed-L1 [9], and L1−L2 [10]. These nonconvex relaxations
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are superior to L1 minimization in empirical results, although different algorithms need to be
designed.

Recently, plenty of algorithms for convex optimization were introduced and investigated,
including the augmented Lagrange multiplier algorithm [11] and the alternating minimization
(AM) algorithm [12]. There are also two benchmark methods including ADMM [13] and primal
dual approach [14, 15]. In order to solve the nonconvex models, various efficient algorithms
were also suggested, such as the proximal AM method [16] and DCA [17]. In [18], a DCA was
created for solving the DC programming. It has been widely used and extensively investigated
due to its simplicity and efficiency. In [19, 20], Lou et al proved that L1-L2 is closer to L0
than L1. Then, the regularization model with anisotropic and isotropic TV was developed for
magnetic resonance imaging(MRI) and other applications. In [21], a multiplicative denoising
model was introduced, and the primal dual gradient method was used to solve non-convex
optimization problems whose objective function can be written as the DC functions. In [22], a
DCA with adaptive parameters was discussed for impulsive noise removal.

In this paper, we propose a constrained log total variation nonconvex model for image recon-
struction, where the constraint matches the statistical properties of the Gaussian noise, i.e., the
norm of residual is L2. Generally, it is difficult to deal with the nonconvex model. To handle
this, the original optimization problem is equivalently transformed into DC programming and
DCA is naturally adopted. The main contributions are as follows:

First, a new variational model with constraint is proposed, which is nonconvex in terms of
regularization terms. The pixels of the image are restricted to [0,1], and the data fidelity term
is the L2 norm of the residual between the observed data and unknown image. In contrast to
the unconstrained regularization model, the proposed model does not require adjustment of the
regularization parameters.

Second, the DC programming and algorithm are used to solve the nonconvex variational
model. Using the special properties of log functions, the objective function in the new model is
reformulated as the difference of two convex functions. Then, the original optimization problem
is translated into a DC programming. With the help of indicator functions, the global conver-
gence of the DCA is proved. The analysis provides a new idea for the convergence of the DC
programming.

Third, experiments on image reconstruction demonstrate that the new method outperforms
other competitors, especially, for the scenario where the amount of measurements is limited or
the level of noise is significant.

The rests are as follows. Our new model is demonstrated in Section 2. Section 3 presents DC
programming and the DCA with ADMM for the proposed model. The convergence analysis of
the DCA is given in Section 4. In Section 5, we demonstrate the effectiveness of the new model.
In the last section, Section 6, the conclusion is provided.

2. THE MODEL

Given a linear measurement data y∈Rm and y=M X +e, from the original image X ∈RN×N ,
M : RN×N → Rm is the linear operator and e ∈ Rm is the noise, which is bounded by ‖e‖ ≤ τ

with τ ≥ 0. Under the framework of variational approaches, the reconstruction of original image
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X is modeled as:
min

X∈RN×N
‖X‖TV ,

s.t. ‖M X− y‖ ≤ τ,
(2.1)

where ‖ · ‖TV is the TV norm and can be categorized as anisotropic:

‖∇X‖1 = ‖∇xX‖1 +‖∇yX |‖1,

and isotropic:

‖∇X‖2,1 = ‖
√
|∇xX |2 + |∇yX |2‖1,

where ∇ is the gradient operator for the discrete image, the horizontal and vertical derivative
operators are represented by ∇x and ∇y, and ‖·‖1 is the L1 norm. So, the TV norm is made up of
the gradient operator and the L1 norm. From the viewpoint of statistics, it would lose the oracle
property [6]. Then, some correction procedures and nonconvex approaches are introduced.
Inspired by L1−L2 minimization [10] in compression sensing problems, Lou et al. [20] gave
the famous L1− γL2 regularization term by coupling of the anisotropic and isotropic TV for
image processing applications:

min
X∈RN×N

‖∇X‖1− γ‖∇X‖2,1 +
α

2
‖M X− y‖2

2,

where 0 < γ ≤ 1 is a parameter and α > 0 is a regularization parameter. The authors proposed
a DCA for the constrained formulations, and proved its convergence.

In [23], enhanced total variation regularization was discussed as:

min
X∈RN×N

‖∇X‖1−
γ

2
‖∇X‖2

2,1,

s.t. ‖M X− y‖ ≤ τ.

The stable reconstruction guarantees were also established for the noisy subsampled measure-
ments with non-adaptive and variable-density sampling. Transformed L1 (TL1) regularization
[9] was demonstrated to have comparable signal recovery capability with L1−L2 regulariza-
tion, regardless of whether the measurement matrix satisfies the restricted isometry property.
In the spirit of the TL1 method, Huo et al. introduced a transformed total variation (TTV)
minimization model [24] to investigate robust image recovery from a certain number of noisy
measurements

min
X∈RN×N

(γ +1)‖∇X‖1

γ +‖∇X‖1
+

α

2
‖M X− y‖2

2,

and the numerical results of image reconstruction illustrated the efficiency of their TTV mini-
mization model.

In this study, the new nonconvex variational model with log penalty is given as

min
0≤X≤1

1
s

Log(1+ s‖∇X‖1),

s.t. ‖M X− y‖ ≤ τ,
(2.2)

where s > 0 is the scale parameter and
1
s

Log(1+ s‖∇X‖1) =
1
s

Log(1+ s‖∇xX‖1)+
1
s

Log(1+ s‖∇yX‖1).
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Different from the above models, the pixel values of images in our model are scaled into [0,1],
which is more suitable for real applications. Furthermore, we observe that the concave log
function is steeper and more closely approximates the L0 norm if s is small. It promotes sparsity
[25] more effectively than the L1 norm and makes the unbiased estimator.

3. DC PROGRAMMING AND DCA

DC programming and algorithms are powerful tools for nonconvex optimization [17, 26]. We
adopt DC technique to solve the proposed model and present the iterative DCA.

First, we split (2.2) as follows:
min

0≤X≤1
Γ(X) = Φ(X)−Ψ(X),

s.t. ‖M X− y‖ ≤ τ,
(3.1)

where {
Φ(X) = ‖∇xX‖1 +‖∇yX |‖1,

Ψ(X) = ‖∇xX‖1 +‖∇yX |‖1− 1
s (Log(1+ s‖∇xX‖1)+Log(1+ s‖∇yX‖1)).

By [27], Ψ(X) is continuously differentiable and convex. Hence, (3.1) is a DC programming
problem.

In general, DCA optimizes problem (3.1) by linearizing Ψ(X) as follows:

Xk+1 = arg min
0≤X≤1

{Φ(X)− (Ψ(Xk)+ 〈qk
x,∇xX)〉+ 〈qk

y,∇yX)〉)+ c
2
‖X−Xk‖2,

s.t. ‖M X− y‖ ≤ τ},
(3.2)

where
qk

x =
s∇xXk

1+ sign(∇yXk)s∇xXk

and
qk

y =
s∇yXk

1+ sign(∇yXk)s∇yXk
,

and sign as the signum function. Moreover, the solution Xk+1 of (3.2) is unique because the
objective function is strongly convex. Clearly, convex DCA subproblem (3.2) is the following
optimization problem:

Xk+1 = arg min
0≤X≤1

‖∇xX‖1 +‖∇yX |‖1− (〈qk
x,∇xX〉+ 〈qk

y,∇yX〉)+ c
2
‖X−Xk‖2,

s.t. ‖M X− y‖ ≤ τ},
(3.3)

In order to use ADMM, (3.3) is transformed into the following problem by introducing free
variables dx,dy,z,V :

min‖dx‖1 +‖dy|‖1− (〈qk
x,dx〉+ 〈qk

y,dy〉),
s.t. ∇xX = dx,∇yX = dy,
X =V,V ∈B(0,1) := {0≤V ≤ 1},
z− (M X− y) = 0,
z ∈Q(0,τ) := {‖z‖ ≤ τ}.
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The augmented Lagrangian function of (3.3) is
L (X ,dx,dy,z,bx,by)

= ‖dx‖1 +‖dy|‖1−〈qk
x,dx〉−〈qk

y,dy〉+
µ

2
‖z− (M X− y)−ρ‖2

+
λ

2
‖dx−∇xX−bx‖2 +

λ

2
‖dy−∇yX−by‖2,

+
β

2
‖V −X−ν‖2 +

c
2
‖X−Xk‖2.

(3.4)

where µ,β ,λ > 0 are penalty parameters, and ρ , ν , bx, and by are Lagrange multipliers. Next,
alternating minimization for the above Lagrangian consists of solving X ,dx,dy,z,V subprob-
lems, and updating the dual variables. Below we elaborate on solving each subproblem in (3.4)
with j-th iteration.

The solution of subproblem X can be expressed as:

X j+1 = argminL (X ,d j
x ,d

j
y ,b

j
x,b

j
y). (3.5)

By the optimality condition of (3.5), we have

(µM T M +λ∇
T

∇+ c+β )X j+1

= λ∇
T
x (d

j
x −b j

x)+λ∇
T
y (d

j
y −b j

y)+µM T (y− z j−ρ
j)+ cXk +β (V j−ν

j).
(3.6)

In the compressive sensing undersampling MRI reconstruction problem [28], M is composed
of the Fourier transform F and sampling operator R, i.e., M = RF . When the periodic bound-
ary condition is applied, µM T M +λ∇T

x ∇x +λ∇T
y ∇y can be diagonalized by the fast Fourier

transform (FFT). Hence, (3.6) is efficiently solved by FFT: X j+1 =

F−1(F (λ∇T
x (d

j
x −b j

x))+F (λ∇T
y (d

j
x −b j

x))+µF (M T (y− z j−ρ j))+ cF (Xk)+βF (V j−ν j)

µF (M )∗�F (M )+λF (∇)∗�F (∇)+F (c+β )

)
,

where F−1 and F represent inverse FFT and FFT, ∗ denotes conjugation, and � refers to the
elementwise multiplication.

The optimal solutions of dx,dy-subproblems are obtained by the shrinkage operator:

d j+1
x = shrink(∇xX j+1 +b j

x +qk
x/λ ,1/λ ) (3.7)

and
d j+1

y = shrink(∇yX j+1 +b j
y +qk

y/λ ,1/λ ), (3.8)
where

shrink(t1, t2) = signmax{|t1|− t2,0}.
For the z-subproblem, the solution can be obtained by the projection operator

z j+1 = PB(0,τ)(M X j+1− y+ρ
j). (3.9)

For the V -subproblem, the solution can also be obtained by the projection operator

V j+1 = PB(0,1)(X
j+1 +ν

j). (3.10)

The multipliers of bx, by ρ , and ν are expressed as:

b j+1
x = b j

x +Dxu j+1−d j+1
x , (3.11)

b j+1
y = b j

y +Dyu j+1−d j+1
y , (3.12)
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ρ
j+1 = ρ

j +M X j+1− y− z j+1, (3.13)
and

ν
j+1 = ν

j +X j+1−V j+1. (3.14)
In fact, the above schemes for solving subproblem (3.3) is a straightforward application of
ADMM to X and (dx,dy,z,V ). Then, by [29, Theorem 3.2], ADMM for two blocks of variables
converges.

Finally, we give our DCA for solving (2.2) in Algorithm 1.

Algorithm 1 DCA for solving (2.2).

Set X0 = d0
x = d0

y = z0 =V 0 = ρ0 = 0, MaxDCA, jmax,,
For k = 0,1,2, · · · , MaxDCA, b0

x = b0
y = ρ0 = ν0 = 0,

For j = 0,1,2, · · · , jmax
Compute X j+1 by (3.6),
Compute d j+1

x by (3.7),
Compute d j+1

y by (3.8),
Compute z j+1 by (3.9),
Compute V j+1 by (3.10),
Update b j+1

x by (3.11),
Update b j+1

y by (3.12),
Update ρ j+1 by (3.13).
Update ν j+1 by (3.14).
End For
Xk+1 = X j+1,

qk+1 = (qk+1
x ,qk+1

y ) = (
s∇xXk+1

1+sign(∇yXk+1)s∇xXk+1
,

s∇yXk+1
1+sign(∇yXk+1)s∇yXk+1

). End For

4. CONVERGENCE ANALYSIS

In this section, we show that the proposed DCA converges to a stationary point by using the
toll of variational analysis. First, we introduc the indicator function

δB(0,1)(X) =

{
0, 0≤ X ≤ 1,
+∞, otherwise

and

δQ(0,τ)(X) =

{
0, ‖M X− y‖ ≤ τ,

+∞, otherwise,
and we rewrite (3.1) as an unconstrained problem

min
X

Γ(X) = Φ(X)−Ψ(X)+δQ(0,τ)(X)+δB(0,1)(X). (4.1)

Let
g(X) = Φ(X)+δQ(0,τ)(X)+δB(0,1)(X), h(X) = Ψ(X).

Now, we present that the object function in our method is decreased.
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Lemma 4.1. Let {Xk} be the sequence generated by Algorithm 1. Then

Γ(Xk)−Γ(Xk+1)≥ c‖Xk+1−Xk‖2.

Proof. By the convexity of g(X), one has

g(Xk)−g(Xk+1)≥ 〈∂g(Xk+1),Xk−Xk+1〉. (4.2)

Note that
h(Xk+1)−h(Xk)≥ 〈∂h(Xk),Xk+1−Xk〉. (4.3)

Moreover, by the first-order optimality condition of (3.3), one sees that there exists pk+1 ∈
∂ (‖∇X‖1 +δQ(0,τ)(X)+δB(0,1)(X)) such that

0 = pk+1−∇
T qk + c(Xk+1−Xk) (4.4)

Combining (4.2), (4.3) and (4.4), one arrives at

Γ(uk)−Γ(uk+1)≥ c‖Xk+1−Xk‖2
2.

The assertion is proven. �

Theorem 4.1. Let {Xk} be the sequence generated by Algorithm 1. Then it converges to a
critical point of (4.1).

Proof. {Γ(Xk)} is bounded below (Γ(X)≥ 0) and decreased. Obviously,
∞

∑
k=0
‖Xk+1−Xk‖2 ≤ Γ(X0)/c.

Then, limk→∞(Xk+1−Xk) = 0. In view of 0 ≤ Xk ≤ 1, one sees that {Xk} is bounded. As-
sume that X∗ is any accumulation point of Xk. Then there exists a subsequence Xnk such that
limk→∞ Xnk = X∗. Since Xnk is generated by Algorithm 1, all of its entries are bounded by
PQ(0,τ); otherwise, the objective function would be at +∞. Hence, δQ(0,τ)(Xnk) = 0 and also
δQ(0,τ)(Xnk+1) = 0. It follows that

lim
nk→∞

δQ(0,τ)(Xnk) = δQ(0,τ)(X
∗),

and
lim

nk→∞
δB(0,1)(Xnk) = δB(0,1)(X

∗).

Since Ψ(X) is continuously differentiable and ∇ is continuous (linear operator), then

lim
nk→∞

∇
T qnk = ∇

T q∗ ∈ ∂Ψ(X∗).

By (4.4), one sees that

0 ∈ ∂ (‖∇Xnk+1‖1 +δQ(0,τ)(Xnk+1)+δB(0,1)(Xnk+1))−∇
T qnk + c(Xnk+1−Xnk).

It further follows the subgradient that
‖∇Xk‖1 +δQ(0,τ)(Xk)+δB(0,1)(Xk)≥ ‖∇Xnk+1‖1 +δQ(0,τ)(Xnk+1)+δB(0,1)(Xnk+1)

+ 〈∇T qnk− c(Xnk+1−Xnk),Xk−Xnk+1〉.
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In view of the continuity, one obtains
‖∇Xk‖1 +δQ(0,τ)(Xk)+δB(0,1)(Xk)

≥ lim
nk→∞

(‖∇Xnk+1‖1 +δQ(0,τ)(Xnk+1)+δB(0,1)(Xnk+1)

+ 〈∇T qnk− c(Xnk+1−Xnk),Xk−Xnk+1〉)
= ‖∇X∗‖1 +δQ(0,τ)(X

∗)+δB(0,1)(X
∗)+ 〈∇T q∗,Xk−X∗〉.

From the convexity, one has

∇
T q∗ ∈ ∂ (‖∇X∗‖1 +δQ(0,τ)(X

∗)+δB(0,1)(X
∗))

= ∂‖∇X∗‖1 +∂δQ(0,τ)(X
∗)+∂δB(0,1)(X

∗).

Thus
0 ∈ ∂‖∇X∗‖1 +∂δQ(0,τ)(X∗)+∂δB(0,1)(X∗)−∇T q∗

⊆ ∂Φ(X∗)+∂δQ(0,τ)(X∗)+∂δB(0,1)(X∗)−∂Ψ(X∗).
�

5. EXPERIMENTS

In this section, experimental results are reported to validate the effectiveness of model (2.2)
and Algorithm 1. We use the TV (2.1), L1− 0.5L2 [20], TTV [24], and ETV [23] models for
comparison. TV model (2.1) is solved by ADMM. L1− 0.5L2, TTV , and ETV models are
solved by the DCA and the corresponding subproblem is solved by ADMM. The suggested
parameter settings in compared methods are used according to the related references for fair
comparison. In Figure 1, we show the tested images including the Shepp-Logan image, shape
and Texmos3 (synthetic piecewise-constant images), House and Lena (natural images), and
Brain and Mr030 (medical images).

Two radial lines and random sampling strategies are considered. We conduct experiments on
a desktop with 8 GB RAM and i5-4690 Processor. The peak signal-to-noise ratio (PSNR) and
the structure similarity (SSIM) [30] are used to evaluate the restored quality. For algorithmic
parameters, we take for s = 200, c = 0.001, β = 0.00001, µ = 10, and λ = 100. In most cases,
it can achieve good performance. The starting points for all methods are set as zeros. We use
the stopping criterion ‖Xk−Xk−1‖ ≤ 10−10 for running the DCA, and the maximum outer and
inner iteration numbers are 15 and 200.

In the field of image reconstruction, one of the standard images is the Shepp-Logan phantom.
The experiments on this standard test image are split into two parts. The first focuses on recon-
structing the Shepp-Logan (256×256) from measurements with no noise. First,7 and 8 radial
lines are used for sampling and the corresponding sampling rates are 3.03% and 3.98%. More-
over, we also take random measurements with 1.90% and 1.50%. As demonstrated in Figure 2,
the proposed model can produce accurate reconstruction for the four sampling settings, and the
qualities are much better than the other models when the amounts of samples are limited.

Table 1 presents the PSNR and SSIM values. The superiority of the proposed model is evident
when the measurements are limited. Our model obtains the highest SSIM value (0.9197) when
the sampling rate is 1.5%. We also note that though the SSIM values are 1 for the proposed
model and ETV in three sampling settings, the PSNR values of the new model are higher than
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FIGURE 1. Test images.

TABLE 1. SSIM and PSNR of the five models on Shepp-Logan image.

Mask TV L1−0.5L2 TTV ETV LogTV
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

7 lines 18.4424 0.4528 21.2343 0.6616 23.3042 0.8461 66.4012 1.0000 84.0535 1.0000
8 lines 24.2292 0.7150 177.2076 1.000 57.2630 0.9396 79.1119 1.0000 94.3026 1.0000
1.50% 22.5254 0.8382 23.0122 0.8447 23.0737 0.8377 23.7606 0.8965 24.4769 0.9197
1.90% 27.9968 0.9439 39.0418 0.9827 50.7258 0.9982 64.6380 1.0000 89.0146 1.0000

TABLE 2. PSNR and SSIM values of the five models on Shepp-Logan image
with levels of noise σ=0.05, 0.1.

mask σ
TV L1−0.5L2 TTV ETV LogTV

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
15 lines 0.05 25.1430 0.6199 27.3036 0.5727 29.3038 0.6826 32.9900 0.9352 31.0499 0.9547

0.1 20.9155 0.4220 22.6635 0.3673 23.0592 0.4547 29.0121 0.7546 26.8304 0.9213
1.90% 0.05 22.8989 0.7358 23.5717 0.7315 24.6205 0.8330 21.3315 0.8743 22.4498 0.9039

0.1 20.8328 0.5488 21.3376 0.5690 21.5555 0.6960 20.9260 0.8237 22.1929 0.8931

TABLE 3. PSNR and SSIM of the five models on Shape and Texmos3 images.

Image Mask TV L1−0.5L2 TTV ETV LogTV
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Shape 3 lines 11.3273 0.5171 13.1152 0.5466 20.6603 0.8127 28.1186 0.9662 33.1541 0.9877
Texmos3 6 lines 25.8484 0.9586 28.3377 0.9629 35.9768 0.9819 42.4298 0.9992 65.2897 1.0000

the ETV model. It is well illustrated that our new model is stable with respect to the limited
measurements for reconstructing the Shepp-Logan image.

The second illustrates the robustness of the proposed model with respect to noise. We take
measurements along 15 lines (6.44%) and use a 1.9% sampling mask. Gaussian noises are
perturbed for the Fourier measurements with standard derivations σ of 0.05 and 0.1. The PSNR
and SSIM values are displayed in Table 2. In terms of tge SSIM value, the new method has
the highest reconstruction quality. Also, when the level of noise increases, the superiorities are
more apparent. Hence, the results demonstrate that the proposed approach is robust for noise.
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FIGURE 2. Shepp-Logan: comparison of TV, L1−0.5L2, TTV, ETV and LogTV
models with radial lines (first row: 7 lines, second row: 8 lines) and random
(third row: 1.5% sampling rates, fourth row: 1.9% sampling rates ) masks.

FIGURE 3. Shape and Texmos3: comparison of TV, L1−0.5L2, TTV, ETV and
LogTV models with radial lines masks (first row: 3 lines, second row: 6 lines).

Next, we focus on the radial line sampling and verify the superiority by conducting exper-
iments on two synthetic images: Shape and Texmos3. When we have a limited number of
measurements, for example, 3 or 6 lines, our model can also generate good reconstructions. In
Figure 3, we show the reconstruction results. In Table 3, the SSIM and PSNR values are listed.
From Table 3 and Figure 3, one sees that the results of the proposed model and algorithm are
significantly better than the other methods.
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TABLE 4. PSNR and SSIM of the five models on House and Lena images.

Image Mask TV L1−0.5L2 TTV ETV LogTV
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

House 10% 29.5784 0.8310 30.7095 0.8481 30.6767 0.8485 30.7715 0.8493 30.9273 0.8540
15% 30.5248 0.8428 30.7095 0.8481 32.0679 0.8485 32.2181 0.8667 32.7832 0.8750

Lena 10% 27.7920 0.8039 29.0749 0.8184 28.7771 0.8229 28.8094 0.8207 29.2737 0.8254
15% 28.8077 0.8228 30.3036 0.8452 30.1061 0.8498 30.1832 0.8477 30.9159 0.8567

FIGURE 4. House and Lena: comparison of TV, L1− 0.5L2, TTV, ETV and
LogTV models with random masks (first row: 10% sampling rates, second row:
15% sampling rates).

FIGURE 5. Brain and Mr030: comparison of TV, L1− 0.5L2, TTV, ETV and
LogTV models with random masks (first row: 10% sampling rates, second row:
15% sampling rates).

TABLE 5. PSNR and SSIM of the five models on Brain and Mr030 images.

Image Mask TV L1−0.5L2 TTV ETV LogTV
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Brain 10% 26.4954 0.8086 28.3430 0.8627 29.2273 0.8001 28.6943 0.8643 30.0639 0.8958
15% 27.0739 0.8279 29.5160 0.8889 30.5752 0.8217 30.1018 0.8932 30.9309 0.9231

Mr030 10% 27.5838 0.7689 29.0406 0.7849 28.8255 0.8747 28.7354 0.8208 30.0639 0.9128
15% 28.9121 0.8170 30.9751 0.8218 29.8584 0.9234 30.9548 0.8342 32.9545 0.9469
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FIGURE 6. Curves of error versus outer iteration numbers.

We further validate the superiority of the new method by conducting experiments on two
natural images: House and Lena. In Figure 4, the vision results of reconstruction are displayed.
We also report the PSNR and SSIM values for each reconstruction from the random sampling
rates of 10% and 15% in Table 4. Because the edges of natural images are more complicated, it
is worth noting that the performance of new method for the natural images may be not effective
enough as its performance for the synthetic images. Nonetheless, the proposed model and
algorithm get the highest PSNR and SSIM values in all methods.

We also apply the new approach to two medical images: Brain and Mr030. We use the
random sampling rates of 10% and 15% for the test. In Figure 5 and Table 5, the reconstructed
images and results are displayed. Compared with other methods, it is obvious that the new
method produces better reconstructions. We also observe that the superiority of the new method
is more apparent when the sampling rates are relatively low. Hence, our proposed model is
preferred when the measurements are limited.

At last, we verify the convergence of convergence of ADMM (inner iteration) and DCA (outer
interation). We choose House image with sampling rates 15% and Mr030 image with sampling
rates 10% as examples. Figure 6 presents the curves of convergence about the proposed DCA,
illustrating the error between Xk and Xk+1 over outer iteration numbers. We can see that the
curves of error values decrease as the outer iteration numbers increase and become flat after
a period of time. Hence, the proposed DCA is stable and has a good convergence property.
Figure 7 shows the error between X j and X j+1 of the inner iteration sequence generated by
ADMM when the numbers of outer iteration k are 1 and 15 with the number of inner iteration
jmax is 200. It can be seen that when the number of inner iteration is set to 200, ADMM has
obtained a good solution of DCA subproblem (3.3), which can be considered as the optimal
solution because the error curve has become flat and the error value is very small. Based on the
guidance provided in Figures 6 and 7, this is the reason that why we set the maximum outer and
inner iterations numbers are 15 and 200, and they can ensure the convergence of ADMM and
DCA with theoretically and numerically in our experiments.

6. CONCLUSION

This paper introduces a novel DC programming and algorithm for solving the nonconvex log
TV image reconstruction model. The experiments demonstrate that our proposed model and
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FIGURE 7. Curves of error versus inner iteration numbers.

algorithm are capable of achieving better solutions. In the future, with other data fidelity terms,
we may consider some different object functions to deal with noise, for example, impulsive or
Poisson noise. The new approach can be applied to higher dimensional images as well. Fur-
thermore, it seems promising to apply the new algorithm to image inpainting or segmentation,
phase retrieval, and super-resolution problems.
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