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Abstract. The Basis Pursuit (BP) problem refers to the task of finding a minimum `1-norm solution to
an underdetermined linear system, which is a fundamental problem in compressed sensing. It has been
demonstrate that the BP problem can be efficiently solved by using some state-of-the-art first-order op-
timization algorithms based on the Augmented Lagrangian method, which can successfully circumvent
the difficulty caused by the nondifferentiable objective. In this paper, we revisit the implementation of
the Alternating Direction Method of Multipliers (ADMM) to solve the BP problem. Notably, by refor-
mulating the BP problem as a naturally separable minimization problem, without relying on additional
auxiliary variables, we can obtain two more efficient BP solvers, which can save storage space to speed
up the process of solving the BP problem. Some numerical results demonstrate the reliability and ef-
ficiency of our approach. Furthermore, we conclude that ADMM would be more efficient when the
inherent separable structure of the problem is effectively exploited.
Keywords. Basis pursuit; compressed sensing; ADMM; first-order algorithm; nonsmooth optimization.
2020 Mathematics Subject Classification. 90C25, 90C30.

1. INTRODUCTION

Compressed sensing (see seminal papers [3, 5]) is a breakthrough theory for information ac-
quisition and has been widely applied in numerous areas of engineering, including magnetic
resonance imaging, communication networks, signal/image processing1. It is known that a fun-
damental problem in compressed sensing is the following combinatorial optimization problem:

min
uuu∈Rn
{‖uuu‖0 |Cuuu = b} , (1.1)

where C ∈ Rm×n is the so-called sensing (measurements) matrix, b ∈ Rm (m� n) is an ob-
servation vector, and ‖uuu‖0 refers to the number of nonzero elements of uuu (note that ‖ · ‖0 is
often called `0-norm, which is indeed a pseudo norm). Unfortunately, it has been proven that
directly solving (1.1) is an NP-hard problem. A celebrated result shows that the tightest convex
surrogate `1-norm, i.e., ‖uuu‖1 = |uuu1|+ |uuu2|+ · · ·+ |uuun| is able to approximate ‖uuu‖0 well, thereby
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leading to the well-known Basis Pursuit (BP, see [4]) problem:

min
uuu∈Rn
{‖uuu‖1 |Cuuu = b} , (BP)

which, under certain conditions, guarantees that its solution coincides with the solution of (1.1).
Consequently, researchers are motivated to design efficient algorithms for solving (BP), with
the goal of finding the sparsest solution to an underdetermined linear system under reasonable
circumstances. In this paper, we are concerned with the solution methods for (BP) and will not
pay attention to (1.1).

Utilizing the definition of `1-norm, it was documented in [4] that (BP) can be recast as a
linear program (LP):

min
xxx∈Rn,yyy∈Rn

{
111>xxx+111>yyy |Cxxx−Cyyy = b, xxx≥ 0, yyy≥ 0

}
. (LP)

As a consequence, all the algorithms tailored for LPs are also applicable to solving (BP). How-
ever, it can be easily seen that (LP) is twice the size of (BP) on variables. More importantly,
there is an augmented coefficient matrix in (LP) being the twice scale of the one in (BP). Con-
sequently, the LP formulation (LP) is not an ideal way to solve (BP), which was shown nu-
merically in [18], and also motivates the authors of [18] to design a more efficient Spectral
Gradient-Projection (SGP) method to solve the following three variants of (BP):

minuuu∈Rn {‖uuu‖1 | ‖Cuuu−b‖ ≤ δ} ,
minuuu∈Rn

{
‖uuu‖1 +

λ

2 ‖Cuuu−b‖2
}
,

minuuu∈Rn {‖Cuuu−b‖ | ‖uuu‖1 ≤ τ} ,
(1.2)

where ‖ · ‖ denotes the standard Euclidean `2-norm (i.e., ‖uuu‖ =
√

uuu>uuu), δ > 0, λ > 0, and
τ > 0 are appropriate tuning parameters. In the last decades, efficient solvers were developed
for (1.2), e.g., `1-HOMOTOPY [16, 17], LARS [7], `1-MAGIC2, GPSR [8], FISTA [1], FPC
[19], NESTA [2], YALL1 [21], to mention just a few. Here, we refer the reader to [14] for an
extensive numerical comparison among some of the above state-of-the-art `1-solvers.

Although the three variants in (1.2) have the extra ability to deal with more general cases
with Gaussian noise than (BP), choosing perfect tuning parameters δ , λ , and τ , which are
important for the efficiency of `1-solvers to seek the sparsest solution to an underdetermined
linear system, is usually not an easy task. Comparatively, (BP) is a parameter-free model so that
we do not worry about how to choose model parameters. In this paper, we aim to solve (BP)
directly by efficiently exploring its inherent favorable structure. Specifically, we first divide the
original decision variable and coefficient matrix into two blocks. Then, we reformulate (BP)
as a two-block optimization problem with a naturally separable structure. Unlike (LP), it is
remarkable that our reformulation does not increase the scale of (BP), which is of importance for
saving storage space when implementing algorithms to solve it. Due to the resulting separable
structure, we can gainfully employ the state-of-the-art ADMM to solve the resulting formulation
directly. When comparing with the existing application of ADMM to (BP) and its variants (see
[21] and [22]), our numerical results show that applying ADMM to the new formulation of
(BP) greatly reduces the number of iterations. We notice that, although our new application
of ADMM requires an inner loop for its subproblems, it usually runs faster than the earlier

2http://www.l1-magic.org/

https://jrom.ece.gatech.edu/index-8/examples/


SOLVING BASIS PURSUIT REVISITED 3

versions of ADMM in terms of computing time when their subproblems are inexactly solved.
To make the ADMM more implementable, we further introduce a new fully linearized ADMM,
which allows a larger stepsize for the second subproblem than the first one, to solve the resulting
formulation of (BP). It is promising from the reported results that the fully linearized ADMM
can further save much computing time to solve (BP). The computational results tell us how
to explore the favorable inherent structure of a problem under consideration. In other words,
we must prioritize exploring the inherent separable structure, rather than introducing additional
auxiliary variables to artificially construct a separable form, when implementing ADMM to find
a numerical solution for the problem under consideration.

The rest of this paper is organized as follows. In Section 2, we give a brief review on several
Augmented Lagrangian Method (ALM) based optimization algorithms for (BP). In Section 3,
we first give a two-block reformulation of (BP). Then, we show a direct application of ADMM
to the resulting formulation and accordingly propose a fully linearized ADMM for the resulting
two-block optimization model. In Section 4, we give an extensive numerical comparison of
some ALM-based `1-solvers. Finally, some conclusions are given in Section 5 to complete this
paper.

Notation. Throughout this paper, we let Rn be the n-dimensional Euclidean space endowed
with the standard inner product 〈·, ·〉. The superscript > represents the transpose of vectors and
matrices. For a given symmetric and positive (semi-) definite matrix H (denoted by H(�)� 0),
we let ‖xxx‖H =

√
〈xxx,Hxxx〉 ≡

√
xxx>Hxxx be the H-norm of xxx∈Rn. Moreover, we denote ‖·‖∞ as the

`∞-norm of vectors, i.e., ‖xxx‖∞ = max1≤i≤n |xxxi| for any xxx ∈ Rn. Besides, we use ρ(·) to denote
the spectral radius of a matrix.

2. REVIEW ON ALM-BASED METHODS FOR (BP)

In this section, we first briefly review the standard Augmented Lagrangian Method (ALM)
and its linearized version for (BP). Then, we review two versions of ADMM applied to (BP)
that had been discussed in the literature.

2.1. The ALM and its linearized version for (BP). It is well known that the ALM is a bench-
mark solver for equality constrained optimization problems [15, Ch. 17]. Therefore, we can
directly employ the ALM to solve (BP). Letting λλλ be Lagrange multiplier associated to the
linear constraint, the augmented Lagrangian function for (BP) reads as

L (uuu,λλλ ) = ‖uuu‖1−λλλ
> (Cuuu−b)+

β

2
‖Cuuu−b‖2,

where β > 0 serves as a penalty parameter. Accordingly, for given λλλ
k, the iterative scheme of

ALM is

(ALM)


uuuk+1 = argmin

uuu∈Rn

‖uuu‖1 +
β

2

∥∥∥∥∥Cuuu−b− λλλ
k

β

∥∥∥∥∥
2
 , (2.1a)

λλλ
k+1 = λλλ

k−β (Cuuuk+1−b). (2.1b)

We can easily observe that the uuu-subproblem (2.1a) has no closed-form solution due to the
appearance of matrix C. In this situation, we must employ another optimization solver to find
uuuk+1 exactly. However, even if possible, such a procedure usually takes a high computational
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cost for large-scale problems. More importantly, it is sensitive to the quality of the solution of
(2.1a) in accordance with our numerical experience on the datasets in Section 4. Therefore, we
consider linearizing the quadratic term in (2.1a) to simplify the uuu-subproblem. Specifically, we
approximate the quadratic term in (2.1a) at uuuk by

1
2

∥∥∥∥∥Cuuu−b− λλλ
k

β

∥∥∥∥∥
2

≈ 1
2

∥∥∥∥∥Cuuuk−b− λλλ
k

β

∥∥∥∥∥
2

+
(

uuu−uuuk
)>

C>
(

Cuuuk−b− λλλ
k

β

)
+

1
2γ
‖uuu−uuuk‖2,

where γ > 0 is a proximal (or linearization) parameter, which is required to be γ ∈
(
0,1/ρ(C>C)

]
.

As a consequence, the uuu-subproblem (2.1a) becomes

uuuk+1 = argmin
uuu∈Rn

‖uuu‖1 +
β

2γ

∥∥∥∥∥uuu−

(
uuuk− γC>

(
Cuuuk−b− λλλ

k

β

))∥∥∥∥∥
2
 . (2.2)

By invoking the proximal operator of ‖ · ‖1, the new uuu-subproblem (2.2) immediately enjoys a
closed-form solution. Therefore, we obtain the linearized ALM (L-ALM) for (BP), which reads
as

(L-ALM)

{
uuuk+1 = shrink

(
uuuk− γC>

(
Cuuuk−b− λλλ

k

β

)
, γ

β

)
,

λλλ
k+1 = λλλ

k +β (Cuuuk+1−b),
(2.3)

where shrink(·, ·) is the shrinkage operator defined by

shrink(xxx, t) = sign(xxx) ·max{|xxx|− t,0} ,

with sign(·) being the sign function and t > 0. As shown in [20], the L-ALM (2.3) is globally
convergent under mild conditions.

Theorem 2.1. Let uuu∗ be a solution of (BP), and let λλλ
∗ be the optimal multiplier. Denote

www =

(
uuu
λλλ

)
and HL =


β

γ
I−βC>C 0

0
1
β

I

 .

Suppose that γ ∈
(
0,1/ρ(C>C)

]
and β > 0. Then, the sequence

{
wwwk = (uuuk,λλλ k)

}
generated by

the L-ALM (2.3) satisfies
(i). ‖wwwk+1−www∗‖2

HL
≤ ‖wwwk−www∗‖2

HL
−‖wwwk−wwwk+1‖2

HL
;

(ii). ‖wwwk−wwwk+1‖2
HL
≤
‖www0−www∗‖2

HL
k+1 , which means that the L-ALM enjoys an O(1/k) conver-

gence rate.

2.2. ADMM for the primal form of (BP). As shown in Section 2.1, the direct application
of the ALM to (BP) yields a difficult subproblem (2.1a), which cannot efficiently exploit the
explicit solutions of the proximal mapping of ‖ · ‖1. Moreover, the L-ALM requires an extra
proximal (or linearization) parameters γ , which depends on the spectral of C>C, resulting in
a small step size for updating uuuk+1. Therefore, as suggested in [22], a natural way to address
the above issues is to separate the shared variable uuu from the objective function ‖uuu‖1 and linear
constraints Cuuu = b without identity coefficient matrix. Consequently, we can easily employ the
well-known ADMM [9, 10] tailored for separable minimization problems to solve the resulting
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model. Specifically, we introduce an auxiliary variable zzz to separate uuu from the objective func-
tion of (BP) and let uuu = zzz. Then, we construct the following separable optimization problem:

min
uuu,zzz
{‖uuu‖1 |Czzz = b,uuu = zzz} ,

or in a compact form of

min
uuu,zzz

{
‖uuu‖1 | Âuuu+ B̂zzz = b̂

}
(2.4)

with

Â =

(
000
I

)
, B̂ =

(
C
−I

)
, and b̂ =

(
b
0

)
.

Correspondingly, we let

L (uuu,zzz,λλλ ) = ‖uuu‖1−λλλ
>
(

Âuuu+ B̂zzz− b̂
)
+

β

2

∥∥∥Âuuu+ B̂zzz− b̂
∥∥∥2

,

be the augmented Lagrangian function with positive penalty parameter β and Lagrangian mul-
tiplier λλλ ∈ Rm+n. Then, the iterative scheme of ADMM for (2.4) reads as

uuuk+1 = argmin
uuu

L (uuu,zzzk,λλλ k), (2.5a)

zzzk+1 = argmin
zzz

L (uuuk+1,zzz,λλλ k), (2.5b)

λλλ
k+1 = λλλ

k−β

(
Âuuuk+1 + B̂zzzk+1− b̂

)
. (2.5c)

By exploiting the block structure of the linear constraint in (2.4), the Lagrangian multiplier λλλ

can also be decomposed into two blocks λλλ 1 ∈ Rm and λλλ 2 ∈ Rn, where the former corresponds
to Czzz = b and the latter is associated with uuu = zzz. Using the shrinkage operator and invoking the
first-order optimality of (2.5b), the iterative scheme (2.5) can be specified as

(P-ADMM)


uuuk+1 = shrink

(
zzzk + 1

β
λλλ

k
2,

1
β

)
,

zzzk+1 =
(
βC>C+β I

)−1
(

C>
(

βb+λλλ
k
1

)
+βuuuk+1−λλλ

k
2

)
,

λλλ
k+1
1 = λλλ

k
1−β

(
Czzzk+1−b

)
,

λλλ
k+1
2 = λλλ

k
2−β

(
uuuk+1− zzzk+1) .

(2.6)

Comparing with ALM (2.1), the application of ADMM to (2.4) yields a more implementable
scheme in the sense that all subproblems have closed-form solutions. Note that we usually
employ the Cholesky decomposition or Woodbury matrix identity for computing the inverse
of matrix (βC>C+β I) in practice. It follows from [13] that the P-ADMM) (2.6) is globally
convergent.

Theorem 2.2. Let (uuu∗,zzz∗) be a solution of (2.4), and let λλλ
∗ be the optimal multiplier. Denote

vvv =

uuu
zzz
λλλ

 and HP =


0 0 0
0 β B̂>B̂ 0

0 0
1
β

I

 . (2.7)

For given β > 0, the sequence
{

vvvk = (uuuk,zzzk,λλλ k)
}

generated by P-ADMM (2.6) has the follow-
ing properties
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(i). The sequence
{

vvvk} is strictly contractive, i.e.,

‖vvvk+1− vvv∗‖2
HP
≤ ‖vvvk− vvv∗‖2

HP
−‖vvvk− vvvk+1‖2

HP
.

(ii). The sequence
{
‖vvvk− vvvk+1‖2

HP

}
is monotonically nonincreasing, i.e.,

‖vvvk− vvvk+1‖2
HP
≤ ‖vvvk−1− vvvk‖2

HP
and ‖vvvk− vvvk+1‖2

HP
≤
‖vvv0− vvv∗‖2

HP

k+1
,

which implies that P-ADMM (2.6) also enjoys an O(1/k) convergence rate.

2.3. ADMM for the dual form of (BP). As shown in 2.2, applying the ADMM to primal
form of the constructed separable model (2.4) leads to an implementable iterative scheme. Usu-
ally, applying some solvers to the dual form of some convex optimization problems possibly
produces more efficient algorithms, e.g., the ADMM is essential a by-product of the Douglas-
Rachford splitting method applying to the dual form of a convex composite optimization prob-
lem [6]. Therefore, a natural question is that can we apply ADMM to the dual form of (BP)?
In this part, we review an efficient version developed in [21] that has been widely used in many
fields.

First, it is trivial to obtain the dual problem of (BP) as follows:

max
λλλ

{
b>λλλ |C>λλλ ∈ B∞ := {zzz ∈ Rn | ‖zzz‖∞ ≤ 1}

}
, (2.8)

where λλλ ∈Rm is called the dual variable. Note that the appearance C> in the constraint C>λλλ ∈
B∞ of (2.8) makes it a little complex. Therefore, we introduce an auxiliary variable zzz to extract
C>λλλ from B∞ and construct zzz = C>λλλ . Then, we immediately obtain a separable optimization
problem, which reads as

min
λλλ ,zzz

{
−b>λλλ | zzz−C>λλλ = 0, zzz ∈ B∞

}
. (2.9)

For notational simplicity, we let u ∈ Rn be the Lagrangian multipliers (which actually corre-
sponds to the primal variable of (BP)) of (2.9). Then, its augmented Lagrangian function reads
as

L (zzz,λλλ ,uuu) =−b>λλλ −uuu>(zzz−C>λλλ )+
β

2
‖zzz−C>λλλ‖2.

As a consequence, the application of ADMM to (2.9) yields
zzzk+1 = arg min

zzz∈B∞

L (zzz,λλλ k,uuuk), (2.10a)

λλλ
k+1 = arg min

λλλ∈Rm
L (zzzk+1,λλλ ,uuuk), (2.10b)

uuuk+1 = uuuk−β (zzzk+1−C>λλλ
k+1). (2.10c)

Notice that the λλλ -subproblem (2.10b) amounts to finding a solution of the following linear
system:

βC(C>λλλ − zzzk+1)+Cuuuk−b = 0. (2.11)

To reduce the computational cost of solving (2.11), Yang and Zhang [21] judiciously used
one-step steepest descent method to find an approximate solution of (2.10b). By using the
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closed-form solution of (2.10a), a simplified ADMM for dual problem (2.9) reads as

(D-ADMM)


zzzk+1 = ΠB∞

(
C>λλλ

k + 1
β

uuuk
)
,

λλλ
k+1 = λλλ

k−αkgk,

uuuk+1 = uuuk−β (zzzk+1−C>λλλ
k+1),

(2.12)

where ΠB∞
(·) represents the projection onto B∞, and αk and gk are respectively given by

αk =
(gk)>gk

(gk)>(βCC>)gk and gk =Cuuuk−b+βC(C>λλλ
k− zzzk+1).

Here we notice that the global convergence of D-ADMM (2.12) was not established in [21].
However, it performs better than P-ADMM (2.6) in practice, which will also be verified in
Section 4.

3. REFINED ADMM AND ITS LINEARIZED VERSION FOR (BP)

We can see from the discussions in Sections 2.2 and 2.3 that applying ADMM to the con-
structed separable formulation of (BP) produces implementable iterative schemes, which is able
to efficiently leverage the promising property of `1-norm minimization models. However, some
extra variables must be introduced to construct the separable structure, which will increase the
storage burden and possibly decrease the computational efficiency. In this section, we first intro-
duce a natural separable reformulation for (BP) without increasing the problem scale. Then, we
give a refined application of ADMM and its fully linearized version to the resulting separable
model.

3.1. Refined ADMM for (3.2). Revisiting the definition of `1-norm and the linear constraints,
it is not difficult to observe that both terms have a natural separable structure. Specifically, we
divide the variable uuu and coefficient matrix C into two blocks, i.e.,

uuu =

(
xxx
yyy

)
and C = (A,B) , (3.1)

where xxx ∈ Rn1 , yyy ∈ Rn2 , A ∈ Rm×n1 , B ∈ Rm×n2 , and n1 +n2 = n. Then, original problem (BP)
immediately becomes

min
xxx∈Rn1 ,yyy∈Rn2

{‖xxx‖1 +‖yyy‖1 | Axxx+Byyy = b} , (3.2)

which obviously appears a natural separable structure without any auxiliary variable. A promis-
ing result is that we do not require extra space to store auxiliary variables. Let

L (xxx,yyy,λλλ ) = ‖xxx‖1 +‖yyy‖1−λλλ
>(Axxx+Byyy−b)+

β

2
‖Axxx+Byyy−b‖2
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be the augmented Lagrangian function associated with (3.2). Consequently, applying ADMM
to (3.2) immediately leads to the Refined ADMM (R-ADMM) for (BP):

(R-ADMM)



xxxk+1 = argmin
xxx

‖xxx‖1 +
β

2

∥∥∥∥∥Axxx+Byyyk−b− λλλ
k

β

∥∥∥∥∥
2
 , (3.3a)

yyyk+1 = argmin
yyy

‖yyy‖1 +
β

2

∥∥∥∥∥Axxxk+1 +Byyy−b− λλλ
k

β

∥∥∥∥∥
2
 , (3.3b)

λλλ
k+1 = λλλ

k−β (Axxxk+1 +Byyyk+1−b). (3.3c)

Theoretically, it follows from [13] that the R-ADMM (3.3) has the similar convergence property
as shown in Theorem 2.2. For a better understanding, we state it completely by the following
theorem.

Theorem 3.1. Let (xxx∗,yyy∗) be a solution of (3.2), and let λλλ
∗ be the optimal multiplier. Denote

www =

xxx
yyy
λλλ

 and HR =


0 0 0
0 βB>B 0

0 0
1
β

I

 . (3.4)

For given β > 0, the sequence
{

wwwk = (xxxk,yyyk,λλλ k)
}

generated by R-ADMM (3.3) has the fol-
lowing properties

(i). The sequence
{

wwwk} is strictly contractive, i.e.,

‖wwwk+1−www∗‖2
HR
≤ ‖wwwk−www∗‖2

HR
−‖wwwk−wwwk+1‖2

HR
.

(ii). The sequence
{
‖wwwk−wwwk+1‖2

HR

}
is monotonically nonincreasing, i.e.,

‖wwwk−wwwk+1‖2
HR
≤ ‖wwwk−1−wwwk‖2

HR
and ‖wwwk−wwwk+1‖2

HR
≤
‖www0−www∗‖2

HR

k+1
,

which implies that R-ADMM (3.3) also enjoys an O(1/k) convergence rate.

Remark 3.1. It is easy to observe that P-ADMM (2.5), and R-ADMM (3.3) share the same
O(1/k) convergence rate, but with different upper bounds due to their matrices HP and HR given
in (2.7) and (3.4), respectively. We can verify that the spectral radius of HR is smaller than the
one of HP, which implies that R-ADMM (3.3) has a tighter upper bound than P-ADMM (2.5).
To some extent, it possibly explains why R-ADMM (3.3) takes much fewer iterations than
P-ADMM (2.5) (see results in Section 4).

3.2. Fully linearized R-ADMM for (3.2). It is clear that R-ADMM (3.3) has no closed-form
solutions for its xxx- and yyy-subproblems. Therefore, we employ the approximation strategy used
in L-ALM (2.3) to simplify R-ADMM (3.3). More concretely, we first linearize the quadratic
term of (3.3a) and arrive at

xxxk+1 = argmin
xxx

‖xxx‖1 +
β

2γ1

∥∥∥∥∥xxx−

(
xxxk− γ1A>

(
Axxxk +Byyyk−b− λλλ

k

β

))∥∥∥∥∥
2

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= shrink

(
xxxk− γ1A>

(
Axxxk +Byyyk−b− λλλ

k

β

)
,
γ1

β

)
, (3.5)

where γ1 ∈
(
0,1/ρ(A>A)

]
is a proximal (or linearization) parameter to ensure convergence. Un-

like the approximation on the xxx-subproblem, we follow the idea introduced in [11] to linearize
yyy-subproblem (3.3b) and obtain

yyyk+1 = argmin
yyy

‖yyy‖1 +
β

2τγ2

∥∥∥∥∥yyy−

(
yyyk− τγ2B>

(
Axxxk+1 +Byyyk−b− λλλ

k

β

))∥∥∥∥∥
2


= shrink

(
yyyk− τγ2B>

(
Axxxk+1 +Byyyk−b− λλλ

k

β

)
,
τγ2

β

)
, (3.6)

with convergence-guaranteeing parameters γ2 ∈
(
0,1/ρ(B>B)

]
and τ ∈ (1,4/3), where τ serves

the role of enlarging the step size for updating yyyk+1 to compensate for the approximation. As a
consequence, we obtain a fully linearized R-ADMM (LR-ADMM in short) for (3.2) by Algo-
rithm 1.

Algorithm 1 Fully Linearized R-ADMM for (3.2).

1: Select β > 0, γ1 ∈
(
0,1/ρ(A>A)

]
, γ2 ∈

(
0,1/ρ(B>B)

]
and τ ∈ (1,4/3).

2: for k = 0,1,2, · · · do
3: Update xxxk+1 via (3.5).
4: Update yyyk+1 via (3.6).
5: Update λλλ

k+1 via (3.3c).
6: end for

Below, with the notation uuu and www given in (3.1) and (3.4), respectively, we further introduce
the following notations to state the convergence results of Algorithm 1.

F(www) =

 −A>λλλ

−B>λλλ

Axxx+Byyy−b

 and HLR =


β

γ1
I−βA>A 0 0

0
β

τγ2
I 0

0 0
1
β

I

 . (3.7)

Theorem 3.2. Let (xxx∗,yyy∗) be a solution of (3.2), and let λλλ
∗ be the optimal multiplier. Suppose

that γ1 ∈
(
0,1/ρ(A>A)

]
, γ2 ∈

(
0,1/ρ(B>B)

]
, and τ ∈ (1,4/3). For any β > 0, the sequence

{wwwk = (xxxk,yyyk,λλλ k)} generated by Algorithm 1 satisfies

θ(ûuut)−θ(uuu)+(ŵwwt−www)>F(www)

≤ 1
2t

(∥∥www−www1∥∥2
HLR

+
1
2

(
τ
∥∥yyy0− yyy1∥∥2

+(1− τ)β
∥∥B(yyy0− yyy1)

∥∥2
))

,
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where θ(uuu)≡ θ(xxx,yyy) = ‖xxx‖1 +‖yyy‖1, ûuut =
1
t ∑

t
k=1 ûuuk, ŵwwt =

1
t ∑

t
k=1 ŵwwk with

ûuuk =

(
xxxk+1

yyyk+1

)
and ŵwwk =

 xxxk+1

yyyk+1

λλλ
k−β (Axxxk+1 +Byyyk−b)

 .

The result implies that Algorithm 1 has an O(1/t) convergence rate.

Proof. See the proof of Theorem A.3. �

4. NUMERICAL EXPERIMENTS

In this section, we conduct the numerical performance of the aforementioned five ALM-
based first-order algorithms on solving (BP) with synthetic datasets. Here, we aim to show that
some structured optimization problems would be solved efficiently if we could fully exploit its
inherent favorable structure.

Note that ALM (2.1) and R-ADMM (3.3) have subproblems that should be solved by the
employment of some optimization solvers. Here, we employ the famous FISTA [1] to solve
them and take the uuu-subproblem (2.1a) as an example to elaborate the implementation details.
Specifically, applying FISTA to (2.1a) yields the following iterative scheme:

z̄zz j = uuuk, j +
t j−1
t j+1

(
uuuk, j−uuuk, j−1

)
,

uuuk, j+1 = shrink

(
z̄zz j− β

ζ
C>
(

Cz̄zz j−b− λλλ
k

β

)
,

1
ζ

)
,

where ζ is a constant being larger than the Lipschitz constant of the quadratic term in (2.1a)
and t j+1 =

(
1+
√

1+4t2
j

)
/2 starts from t1 = 1, and k, and j are the outer and inner iteration

counters, respectively. Moreover, the FISTA will be terminated when ‖uuuk, j+1−uuuk, j‖≤ 10−3/k2

or the number of inner iterations exceed a preset number 10. Moreover, it is noticed that the
penalty parameter β is playing a great role in these five ALM-based algorithms. As shown in
[21], a dynamical β is of benefit for better numerical behaviors. Therefore, we show their
convergence results with a fixed constant for simplicity, while an increasing strategy (i.e.,
βk = min{10βk−1,βmax} such that 0 < β0 ≤ β1 ≤ ·· · ≤ βk ≤ ·· · ≤ βmax) will be employed
in algorithmic implementation for all of them. Certainly, we also show that such a dynamical
strategy still keeps the global convergence for the proposed LR-ADMM (3.3) (see our proof in
Appendix A).

All algorithms are implemented by MATLAB R2021a, and all experiments are conducted on
a Lenovo laptop with Windows 11 system and Intel(R) Core(TM) i5-12500 CPU processor with
16GB memory.

4.1. Sensitivity simulation on the block size of (3.2). As shown in Section 3, the variable
uuu ∈ Rn of (BP) is decomposed into two blocks xxx ∈ Rn1 and yyy ∈ Rn2 . Hence, we are here
concerned with the numerical sensitivity on the size of the two decomposed vectors. In other
words, whether the ratio of n1 and n2 (i.e., n1 : n2) will affect the numerical performance of
R-ADMM (3.3) and LR-ADMM (i.e., Algorithm 1)?
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In the experiment, we first state the data construction for (BP). Concretely, we generate C in
a random way, which is a standard Gaussian matrix. Then, we form a random sparse solution
uuu? ∈Rn, which has s nonzero components. Finally, we let b =Cuuu? be the observed vector. The
corresponding MATLAB scripts are:

C = randn(m,n); C = C/norm(C); p = randi(n,s,1);

u_star = zeros(n,1); us = randn(s,1); u_star(p) = us; b = C * u_star;

To implement our R-ADMM and LR-ADMM, we set β0 = ‖b‖1/n and βmax = 108 for both
algorithms. Then, we set γ1 = 1/ρ(A>A), γ2 = 1/ρ(B>B) and τ = 4/3 for LR-ADMM. More-
over, both algorithms start from the same random initial points uuu0 = (xxx0,yyy0) and λλλ

0 that all of
them are normally distributed random numbers (by MATLAB script ‘randn(n,1)’), and terminate
at

‖uuuk−uuu?‖
‖uuu?‖

≤ 10−8.

We consider three cases on the size of the problem, i.e., (m,n,s) = (512i,1024i,80i) with i =
4,5,6. For the decomposition of uuu and C, we consider uuu = (xxx>,yyy>)> with xxx ∈Rn1 and yyy ∈Rn2 ,
and C = (A,B) with A ∈ Rm×n1 and B ∈ Rm×n2 , where n1 : n2 will be conducted through three
scenarios, i.e., n1 : n2 = {2 : 1, 1 : 1, 1 : 2}. Here, we should notice that R-ADMM (3.3) is quite
sensitive to the block sizes of xxx and yyy when both of them are very unbalanced. Therefore, we do
not report these cases where n1 : n2 = 1 : 3 and 3 : 1. Considering the randomness of the data,
we conduct the average performance of R-ADMM and LR-ADMM on 10 groups of randomly
generated datasets for each case.

In Figure 1, we report the average iterations and computing time in seconds by bar charts,
where the line segments particularly represents the standard deviation of 10 trials. Clearly, a
longer line segment means that the algorithm performs less stably.

It is easy to see that R-ADMM runs faster for the case where the variable uuu is equally divided
into two blocks (i.e., n1 : n2 = 1 : 1) than the other unbalanced cases. Comparatively, LR-
ADMM works much more stably than R-ADMM, since the former is insensitive to the block
sizes of xxx and yyy. The results in Figure 1 tell us that the variable uuu should be decomposed into
two blocks with approximately equal size (i.e., n1 : n2 ≈ 1 : 1).

4.2. Numerical comparisons. The above experiments tell us how to decompose the original
variable uuu in (BP). In this section, we will aim to show that the BP can be solved in a faster
way than some existing ADMM-type solvers when its inherent separable structure could be
exploited efficiently. We compare R-ADMM (3.3) and LR-ADMM (Algorithm 1) with other
methods including ALM (2.1), L-ALM (2.3), P-ADMM (2.5), and D-ADMM (2.10).

In the following experiments, we generate the datasets by the same way described in Section
4.1, where we set n1 = n/2 and n2 = n− n1 for the lengths of xxx ∈ Rn1 and yyy ∈ Rn2 , respec-
tively. Note that the starting points often affect the numerical behaviors of numerical algo-
rithms. Therefore, we first conduct the numerical sensitivity of starting points to all compared
algorithms. Here, we consider two ways to start the algorithms: (i) the first way is to set xxx0, yyy0,
and λλλ

0 as zeros; (ii) the second way is starting iteration from random xxx0, yyy0, and λλλ
0, which are

normally distributed. All algorithms will terminate when

max
{
‖uuuk+1−uuuk‖, ‖Cuuuk+1−b‖

}
≤ ε,
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FIGURE 1. Numerical sensitivity of the block sizes of xxx and yyy in (3.2) to R-
ADMM and LR-ADMM.

where ε is a preset precision, which will be set as ε = {10−8,10−12}. In our experiments, we
set β0 = ‖b‖1/n for all algorithms. Then, we take γ = 1/ρ(C>C) for L-ALM, and set LR-
ADMM with the same settings used in Section 4.1. The code of D-ADMM (2.10) comes from
the original Matlab package YALL13 introduced in [21].

Now, we first set the stopping precision as ε = 10−8 and consider the case (m,n,s) = (2048,
8192,320). In Figure 2, we show the convergence curves with respect to iterations and com-
puting time for all algorithms starting from two different initial points. Clearly, we can see that
ALM and R-ADMM requires much less iterations to achieve a little better solution than the
other solvers that have closed-form solutions. Comparatively, R-ADMM runs a little faster than
ALM in terms of iterations and computing time. Moreover, LR-ADMM takes the least com-
puting time, which supports that the new reformulation (3.2) equipped with the LR-ADMM is
reliable way to improve the efficiency of solving (BP).

Considering the randomness of the datasets, we finally consider the problem (BP) with 10
different sizes, i.e., (m,n,s) = (512i,1024i,80i) with i = 1,2, · · · ,10. Moreover, we report the
results for the cases where the algorithms start from two different types of initial points and

3https://yall1.blogs.rice.edu/



SOLVING BASIS PURSUIT REVISITED 13

0 50 100 150 200 250 300

iterations

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

(m,n,s)=(2048,8192,320)

0 5 10 15

computing time

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

(m,n,s)=(2048,8192,320)

0 50 100 150 200 250 300

iterations

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

(m,n,s)=(2048,8192,320)

0 5 10 15

computing time

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

(m,n,s)=(2048,8192,320)

FIGURE 2. Convergence curves with respect to iterations and computing time
for numerical sensitivity of the algorithms starting from different initial points.
The top two plots correspond to the case where initial points are normally dis-
tributed. The bottom two plots correspond to the case where initial points are
zeros.

two different stopping precision ε = 10−8 and 10−12, respectively. In Tables 1-4, we report the
average iterations (iter.) and computing time in seconds (time) of 10 random trials.

We can see from the results in Tables 1-4 that R-ADMM always takes the least iterations.
When comparing with P-ADMM and D-ADMM, R-ADMM also takes less computing time
than the convergent P-ADMM, and runs a little faster than the D-ADMM without convergence
guarantee to achieve higher quality solutions. In particular, we can see that our LR-ADMM
always takes the least computing time to reach the same stopping tolerance, even though it
sometimes takes more iterations than P-ADMM and D-ADMM. Those results in Tables 1-4
only show the average performance of the six algorithms. So, we would like to see their best
and worst behaviors on these random datasets, which to some extent illustrate their stability. In
Figure 3, we use radar plots to report the best results (i.e., iter-min and time-min), the average
performance (i.e., iter-aver and time-aver), and the worst values (i.e., iter-max and time-max)
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TABLE 1. Numerical results of the six algorithms starting random points under
precision ε = 10−8.

i
ALM L-ALM P-ADMM D-ADMM R-ADMM LR-ADMM

iter. / time iter. / time iter. / time iter. / time iter. / time iter. / time

1 38.3 / 0.13 255.3 / 0.08 252.4 / 0.94 258.8 / 0.13 32.8 / 0.12 258.7 / 0.06

2 39.5 / 3.65 265.3 / 2.44 258.2 / 5.16 269.7 / 3.14 33.6 / 1.44 267.3 / 1.24

3 39.6 / 7.05 267.2 / 4.44 261.9 / 9.84 281.0 / 5.11 33.0 / 5.08 272.3 / 2.88

4 40.2 / 11.08 269.6 / 6.63 263.0 / 17.43 283.5 / 8.10 34.3 / 8.44 275.1 / 4.61

5 40.2 / 15.55 271.9 / 9.71 262.9 / 24.53 278.0 / 10.52 34.2 / 11.96 281.0 / 7.03

6 40.5 / 19.76 273.0 / 13.35 263.0 / 35.06 288.5 / 14.63 34.5 / 16.84 282.3 / 10.07

7 40.9 / 25.65 280.2 / 16.11 263.5 / 46.53 279.6 / 18.60 34.2 / 21.54 284.7 / 12.31

8 43.7 / 32.98 280.4 / 20.61 263.6 / 62.02 295.1 / 25.21 35.2 / 27.85 286.1 / 15.87

9 41.0 / 38.16 281.7 / 24.67 263.8 / 75.67 290.3 / 31.19 34.7 / 32.23 289.4 / 18.21

10 41.0 / 44.67 285.0 / 29.20 264.0 / 93.79 296.1 / 38.28 35.2 / 38.52 290.4 / 21.12

TABLE 2. Numerical results of the six algorithms starting random points under
precision ε = 10−12.

i
ALM L-ALM P-ADMM D-ADMM R-ADMM LR-ADMM

iter. / time iter. / time iter. / time iter. / time iter. / time iter. / time

1 249.0 / 0.25 574.7 / 0.19 356.7 / 1.32 444.5 / 0.22 82.8 / 0.16 482.2 / 0.11

2 240.5 / 6.31 600.2 / 5.01 359.5 / 6.61 442.5 / 4.53 97.7 / 2.07 493.4 / 2.09

3 222.6 / 11.69 609.0 / 9.25 364.7 / 13.03 459.7 / 7.28 49.6 / 5.99 505.6 / 5.04

4 205.4 / 16.82 625.9 / 13.63 366.8 / 23.12 459.8 / 11.96 57.5 / 9.29 511.6 / 8.01

5 190.4 / 25.03 629.6 / 19.48 367.0 / 32.98 462.6 / 16.27 57.3 / 14.62 518.6 / 12.06

6 186.5 / 31.55 632.6 / 26.46 367.1 / 47.73 471.2 / 22.95 57.3 / 19.52 519.2 / 16.54

7 176.4 / 41.00 641.1 / 34.92 367.3 / 64.13 480.3 / 31.25 59.6 / 25.69 522.5 / 21.65

8 171.3 / 50.30 641.4 / 43.74 367.7 / 85.30 476.4 / 39.73 59.0 / 33.08 523.8 / 26.88

9 166.8 / 61.24 644.0 / 52.96 368.0 / 103.67 466.7 / 49.30 63.5 / 39.63 527.9 / 31.72

10 159.5 / 72.78 646.4 / 63.74 368.0 / 128.00 484.8 / 61.57 66.4 / 48.20 526.2 / 37.94

for the case (m,n,s) = (2048,8192,320), where all algorithms start from two different initial
points.

We can see from Figure 3 that LR-ADMM is relatively more stable than the others. Those
results in Tables 1-4 and Figure 3 further validate that the new reformulation (3.2) exploiting
the inherent separable structure is beneficial for improving the efficiency of solving (BP). More
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TABLE 3. Numerical results of the six algorithms starting zero points under
precision ε = 10−8.

i
ALM L-ALM P-ADMM D-ADMM R-ADMM LR-ADMM

iter. / time iter. / time iter. / time iter. / time iter. / time iter. / time

1 37.9 / 0.13 255.3 / 0.09 252.4 / 0.90 248.6 / 0.12 32.4 / 0.11 257.7 / 0.06

2 38.7 / 3.61 264.5 / 2.29 256.6 / 5.10 264.3 / 3.20 34.2 / 1.49 267.6 / 1.23

3 39.2 / 7.13 268.1 / 4.94 261.0 / 9.88 271.4 / 5.07 33.0 / 4.89 270.4 / 2.95

4 40.2 / 10.95 268.1 / 7.15 262.9 / 17.34 276.3 / 8.20 33.3 / 7.95 277.9 / 5.14

5 40.6 / 14.89 273.4 / 9.36 263.0 / 24.12 278.9 / 10.47 34.1 / 11.70 280.4 / 7.05

6 40.7 / 20.27 274.2 / 12.53 263.1 / 34.36 282.6 / 14.37 33.8 / 15.41 281.4 / 10.60

7 40.8 / 26.75 279.4 / 16.66 263.6 / 46.08 283.3 / 19.13 34.5 / 21.10 284.6 / 12.94

8 41.0 / 33.38 281.1 / 21.15 263.2 / 60.98 280.2 / 23.91 34.7 / 26.45 285.4 / 16.02

9 41.0 / 37.91 283.3 / 24.65 263.8 / 74.68 291.0 / 31.27 35.0 / 32.35 287.7 / 17.89

10 41.0 / 44.10 285.6 / 29.30 264.0 / 92.34 288.1 / 36.81 36.5 / 40.13 291.6 / 21.34

TABLE 4. Numerical results of the six algorithms starting zero points under
precision ε = 10−12.

i
ALM L-ALM P-ADMM D-ADMM R-ADMM LR-ADMM

iter. / time iter. / time iter. / time iter. / time iter. / time iter. / time

1 237.6 / 0.23 575.6 / 0.18 356.2 / 1.27 429.3 / 0.19 75.7 / 0.14 472.5 / 0.11

2 243.9 / 6.39 609.1 / 5.04 360.0 / 6.63 449.0 / 4.44 79.8 / 2.04 495.8 / 2.13

3 216.4 / 11.81 609.6 / 9.22 366.4 / 12.90 445.0 / 7.21 56.1 / 5.65 512.4 / 5.41

4 205.1 / 19.09 621.7 / 14.58 366.8 / 22.93 458.9 / 12.16 75.3 / 10.23 512.7 / 8.71

5 195.1 / 23.91 625.1 / 19.87 367.0 / 32.89 467.2 / 16.70 47.1 / 14.15 517.6 / 13.50

6 187.4 / 31.92 630.1 / 26.33 367.0 / 47.13 465.3 / 22.58 62.5 / 20.10 518.7 / 16.85

7 177.4 / 40.85 635.3 / 34.46 367.1 / 63.23 473.6 / 30.93 59.9 / 26.21 521.6 / 21.62

8 174.9 / 50.53 636.5 / 44.04 367.7 / 84.39 450.7 / 37.96 62.8 / 32.61 524.3 / 26.45

9 166.6 / 61.92 643.3 / 53.27 368.0 / 103.63 466.8 / 49.60 82.9 / 42.75 525.6 / 31.47

10 162.4 / 73.15 647.2 / 64.29 368.0 / 127.93 469.2 / 60.46 79.1 / 50.94 527.9 / 37.51

importantly, it tells us that, when implementing ADMM to solve a real-world problem, exploit-
ing the inherent separable structure is more efficient than the way of introducing extra auxiliary
variable to construct a separable structure.

5. CONCLUSION

In this paper, we revisited the solution methods for Basis Pursuit (BP) problems, which can be
solved by many efficient optimization solvers. Observing that some state-of-the-art first-order
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FIGURE 3. Radar plots with respect to iterations and computing time of the
algorithms starting from different initial points. The left plot corresponds to the
case where initial points are normally distributed random numbers. The right
plot corresponds to the case where initial points are zeros.

algorithms, especially ALM-based methods for BP did not efficiently explore the inherent sep-
arable structure, we accordingly reformulated BP as a natural separable minimization problem
without increasing the size of the problem under consideration. Then, we showed two refined
application of ADMM to the resulting problem. One of the algorithms is newly introduced
here, which has two simple subproblems with closed-form solutions and enjoys an O(1/t)
convergence rate. A series of computational results shows that BP can be solved faster than
some existing first-order algorithms when its inherent separable structure has been efficiently
exploited.

APPENDIX A. CONVERGENCE OF ALGORITHM 1

In this appendix, we establish the convergence of the newly introduced fully linearized
ADMM (i.e., Algorithm 1) for (BP). Actually, we can extend such an algorithm to handle a
more general problem of (3.2), i.e.,

min
xxx∈Rn1 ,yyy∈Rn2

{θ(xxx,yyy) := θ1(xxx)+θ2(yyy) | Axxx+Byyy = b, xxx ∈X , yyy ∈ Y } , (A.1)

where θ1 and θ2 are assumed to be convex functions, and X ⊆ Rn1 and Y ⊆ Rn2 are two
nonempty convex sets. Here, the solution set of (A.1) is also supposed to be nonempty. Ap-
parently, (A.1) immediately falls into (3.2) when θ1(xxx) := ‖xxx‖1, θ2(yyy) := ‖yyy‖1, X = Rn1 and
Y = Rn2 . Accordingly, the fully linearized ADMM (LR-ADMM in short) for (A.1) reads as

(LR-ADMM)



xxxk+1 = argmin
xxx∈X

{
θ1(xxx)+

βk

2γ1

∥∥∥xxx−ξξξ
k
1

∥∥∥2
}
, (A.2a)

yyyk+1 = argmin
yyy∈Y

{
θ2(yyy)+

βk

2τγ2

∥∥∥yyy−ξξξ
k
2

∥∥∥2
}
, (A.2b)

λλλ
k+1 = λλλ

k−βk(Axxxk+1 +Byyyk+1−b), (A.2c)
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where 
ξξξ

k
1 = xxxk− γ1A>

(
Axxxk +Byyyk−b− λλλ

k

βk

)
,

ξξξ
k
2 = yyyk− τγ2B>

(
Axxxk+1 +Byyyk−b− λλλ

k

βk

)
.

Note that the involved parameters satisfy 0< β0≤ β1≤ ·· ·≤ βk≤ ·· ·≤ βmax, γ1 ∈
(
0,1/ρ(A>A)

]
,

γ2 ∈
(
0,1/ρ(B>B)

]
and τ ∈ (1,4/3). Below, we consider the convergence of (A.2) for (A.1).

As a preparation for proving the convergence of (A.2), we follow the way introduced in [11]
to recall the Variational Inequalities (VI) characterization of (A.1). Specifically, solving (A.1)
amounts to finding a triple www∗ = (xxx∗,yyy∗,λλλ ∗) ∈W such that

θ1(xxx)−θ1(xxx∗)+(xxx− xxx∗)>(−A>λλλ
∗)≥ 0, ∀xxx ∈X ,

θ2(yyy)−θ2(yyy∗)+(yyy− yyy∗)>(−B>λλλ
∗)≥ 0, ∀yyy ∈ Y ,

(λλλ −λλλ
∗)>(Axxx∗+Byyy∗−b)≥ 0, ∀λλλ ∈ Rm,

which can be rewritten as a compact form

θ(uuu)−θ(uuu∗)+(www−www∗)>F(www∗)≥ 0, ∀www ∈W , (A.5)

where uuu, www and F(www) are given in (3.1), (3.4), and (3.7), respectively, and W := X ×Y ×Rm.
In what follows, we denote (A.5) by VI(W ,F,θ ) for simplicity. It is easy to verify that

(www′−www)>(F(www′)−F(www)) = 0, ∀www′,www ∈W . (A.6)

Hence, VI(W ,F,θ ) is a monotone VI problem. Moreover, under the problem setting, the solu-
tion set of VI(W ,F,θ ), denoted by W ∗, is also nonempty and convex.

To facilitate the convergence proof, we can follow the way used in [11] to reformulate the
fully linearized ADMM (A.2) as a two-step (prediction-correction) method, which can be stated
as the following proposition.

Proposition A.1. Under the notations defined in (A.5), the iterative scheme LR-ADMM (A.2)
can be regarded as a prediction-correction method, i.e.,

(prediction step) Find a prediction ŵwwk ∈W such that

θ(uuu)−θ(ûuuk)+(www− ŵwwk)>F(ŵwwk)≥ (www− ŵwwk)>Qk(wwwk− ŵwwk), ∀www ∈W , (A.7)

(correction step) Compute a correction via

wwwk+1 = wwwk−Mk(wwwk− ŵwwk), (A.8)

where

ûuuk =

(
x̂xxk

ŷyyk

)
=

(
xxxk+1

yyyk+1

)
, ŵwwk =

 x̂xxk

ŷyyk

λ̂λλ
k

=

 xxxk+1

yyyk+1

λλλ
k−βk

(
Axxxk+1 +Byyyk−b

)
 , (A.9)

Qk =


βk
γ1

I−βkA>A 0 0

0 βk
τγ2

I 0
0 −B 1

βk
I

 and Mk =

I 0 0
0 I 0
0 −βkB I

 . (A.10)
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Proof. By invoking the first-order optimality conditions of (A.2a) and (A.2b), it follows from
the notation ξξξ

k
1 and ξξξ

k
2 that

θ1(xxx)−θ1(xxxk+1)+(xxx− xxxk+1)>
[
−A>λλλ

k +βkA>(Axxxk +Byyyk−b)+
βk

γ1
(xxxk+1− xxxk)

]
≥ 0

(A.11)

and

θ2(yyy)−θ2(yyyk+1)+(yyy− yyyk+1)>
[
−B>λλλ

k +βkB>(Axxxk+1 +Byyyk−b)+
βk

τγ2
(yyyk+1− yyyk)

]
≥ 0

(A.12)

holds for all xxx ∈X and yyy ∈ Y . According to the definition of ŵwwk in (A.9), we can further
rewrite (A.11) and (A.12) as

θ1(xxx)−θ1(x̂xx
k)+(xxx− x̂xxk)>

[
−A>λ̂λλ

k
+

(
βk

γ1
I−βkA>A

)
(x̂xxk− xxxk)

]
≥ 0, (A.13)

θ2(yyy)−θ2(ŷyy
k)+(yyy− ŷyyk)>

[
−B>λ̂λλ

k
+

βk

τγ2
(ŷyyk− yyyk)

]
≥ 0, (A.14)

which holds for all xxx ∈X and yyy ∈ Y . Similarly, (A.2c) can be recast as

(λλλ − λ̂λλ
k
)>
[
(Ax̂xxk +Bŷyyk−b)−B(ŷyyk− yk)+

1
βk

(λ̂λλ
k
−λλλ

k)

]
≥ 0, ∀λλλ ∈ Rm. (A.15)

With the help of notation Qk given in (A.10), we can rewrite (A.13), (A.14), and (A.15) into a
compact form as follows:

θ(uuu)−θ(ûuuk)+(www− ŵwwk)>F(ŵwwk)≥ (www− ŵwwk)>Qk(wwwk− ŵwwk), ∀www ∈W ,

which corresponds to the prediction step (A.7).

Recalling the definition λ̂λλ
k

in (A.9), we have

λλλ
k+1 = λλλ

k−
[
−βkB(yyyk− ŷyyk)+(λλλ k− λ̂λλ

k
)

]
,

which, together with ŵwwk given in (A.9) and Mk defined by (A.10), implies the correction step:

wwwk+1 = wwwk−Mk(wwwk− ŵwwk).

The proof is complete. �

Before starting the convergence analysis of (A.2), we first introduce some more notations:

Ãk =
βk

γ1
I−βkA>A, Dk =

βk

γ2
I−βkB>B, Ek =

βk

τγ2
I−βkB>B, (A.16)

Hk =

 Ãk 0 0
0 βk

τγ2
I 0

0 0 1
βk

I

 and Gk =

 Ãk 0 0
0 Ek 0
0 0 1

βk
I

 . (A.17)

Clearly, γ1 ∈
(
0,1/ρ(A>A)

]
can ensure that Ãk is a positive definite matrix, so Hk is also positive

definite. Similarly, γ2 ∈
(
0,1/ρ(B>B)

]
can ensure that Dk is a positive definite matrix, while
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it cannot guarantee the positive definiteness of Ek and Gk due to the appearance of τ in Ek.
Recalling the definitions of Qk and Mk in (A.10), we have

Hk = QkMk
−1 and Gk = Qk

>+Qk−Mk
>HkMk. (A.18)

Below, we establish an inequality for the prediction point.

Lemma A.1. Let {wwwk} be the sequence generated by LR-ADMM (A.2) and ŵwwk be a prediction
point defined in (A.9). Then, for all www ∈W ,

θ(uuu)−θ(ûuuk)+(www− ŵwwk)>F(www)

≥ 1
2

(∥∥∥www−wwwk+1
∥∥∥2

Hk
−
∥∥∥www−wwwk

∥∥∥2

Hk

)
+

1
2
(wwwk− ŵwwk)>Gk(wwwk− ŵwwk), (A.19)

where Hk and Gk are defined in (A.17).

Proof. Combining Hk = QkMk
−1 with (A.8), we have

(www− ŵwwk)>Qk(wwwk− ŵwwk) = (www− ŵwwk)>Hk(wwwk−wwwk+1),

which, together with (A.7), leads to

θ(uuu)−θ(ûuuk)+(www− ŵwwk)>F(ŵwwk)≥ (www− ŵwwk)>Hk(wwwk−wwwk+1), ∀www ∈W . (A.20)

We now recall the identity that holds for all a,b,c,d ∈ Rn and a given positive semi-definite
matrix H that

(a−b)>H(c−d) =
1
2
(
‖a−d‖2

H−‖a− c‖2
H
)
+

1
2
(
‖c−b‖2

H−‖d−b‖2
H
)
.

As a consequence, applying the above identity to the right-hand side of (A.20) with settings
a = www, b = ŵwwk, c = wwwk, d = wwwk+1, and H = Hk produces

(www− ŵwwk)>Hk(wwwk−wwwk+1)− 1
2

(∥∥∥www−wwwk+1
∥∥∥2

Hk
−
∥∥∥www−wwwk

∥∥∥2

Hk

)
=

1
2

(∥∥∥wwwk− ŵwwk
∥∥∥2

Hk
−
∥∥∥wwwk+1− ŵwwk

∥∥∥2

Hk

)
=

1
2

(∥∥∥wwwk− ŵwwk
∥∥∥2

Hk
−
∥∥∥(wwwk− ŵwwk)−Mk(wwwk− ŵwwk)

∥∥∥2

Hk

)
= (wwwk− ŵwwk)>HkMk(wwwk− ŵwwk)− 1

2
(wwwk− ŵwwk)>Mk

>HkMk(wwwk− ŵwwk)

=
1
2
(wwwk− ŵwwk)>(Qk

>+Qk−Mk
>HkMk)(wwwk− ŵwwk)

=
1
2
(wwwk− ŵwwk)>Gk(wwwk− ŵwwk), (A.21)

where the second equality follows from (A.8), and the last two equalities come from (A.18).
On the other hand, it follows from (A.6) that

(www− ŵwwk)>F(ŵwwk) = (www− ŵwwk)>F(www). (A.22)

Consequently, substituting (A.21) and (A.22) into (A.20) arrives at the assertion of this lemma.
We complete its proof. �
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Lemma A.2. Let {wwwk} be the sequence generated by LR-ADMM (A.2) and ŵwwk be a prediction
point defined in (A.9). Then,

(wwwk− ŵwwk)>Gk(wwwk− ŵwwk) =
∥∥∥xxxk− xxxk+1

∥∥∥2

Ãk
+

1
τ

∥∥∥yyyk− yyyk+1
∥∥∥2

Dk
+

βk

τ

∥∥∥B(yyyk− yyyk+1)
∥∥∥2

+
1
βk

∥∥∥λλλ
k−λλλ

k+1
∥∥∥2

+2(λλλ k−λλλ
k+1)>B(yyyk− yyyk+1). (A.23)

Proof. It follows from the definitions of Gk in (A.17) and ŵwwk in (A.9) that

(wwwk− ŵwwk)>Gk(wwwk− ŵwwk)

=
∥∥∥xxxk− x̂xxk

∥∥∥2

Ãk
+

βk

τγ2

∥∥∥yyyk− ŷyyk
∥∥∥2
−βk

∥∥∥B(yyyk− ŷyyk)
∥∥∥2

+
1
βk

∥∥∥∥λλλ
k− λ̂λλ

k
∥∥∥∥2

=
∥∥∥xxxk− xxxk+1

∥∥∥2

Ãk
+

βk

τγ2

∥∥∥yyyk− yyyk+1
∥∥∥2
−βk

∥∥∥B(yyyk− yyyk+1)
∥∥∥2

+
1
βk

∥∥∥∥λλλ
k− λ̂λλ

k
∥∥∥∥2

,

where the last term, based on the definition of λ̂λλ
k

in (A.9), can be further rewritten as

1
βk

∥∥∥∥λλλ
k− λ̂λλ

k
∥∥∥∥2

= βk

∥∥∥(Axxxk+1 +Byyyk+1−b)+B(yyyk− yyyk+1)
∥∥∥2

= βk

∥∥∥∥ 1
βk

(λλλ k−λλλ
k+1)+B(yyyk− yyyk+1)

∥∥∥∥2

=
1
βk

∥∥∥λλλ
k−λλλ

k+1
∥∥∥2

+2(λλλ k−λλλ
k+1)>B(yyyk− yyyk+1)+βk

∥∥∥B(yyyk− yyyk+1)
∥∥∥2

.

Hence, combining the above two equalities, we arrive at

(wwwk− ŵwwk)>Gk(wwwk− ŵwwk) =
∥∥∥xxxk− xxxk+1

∥∥∥2

Ãk
+

βk

τγ2

∥∥∥yyyk− yyyk+1
∥∥∥2

+
1
βk

∥∥∥λλλ
k−λλλ

k+1
∥∥∥2

+2(λλλ k−λλλ
k+1)>B(yyyk− yyyk+1). (A.24)

On the other hand, from the definition of Dk in (A.16) and the positive definiteness of Dk
under the condition γ2 ∈

(
0,1/ρ(B>B)

]
, we have

βk

τγ2

∥∥∥yyyk− yyyk+1
∥∥∥2

=
1
τ

∥∥∥yyyk− yyyk+1
∥∥∥2

Dk
+

βk

τ

∥∥∥B(yyyk− yyyk+1)
∥∥∥2

,

which immediately leads to the assertion of this lemma by plugging it into (A.24). �

Lemma A.3. Let {wwwk} be the sequence generated by LR-ADMM (A.2) and ŵwwk be a prediction
point defined in (A.9). Then,

(λλλ k−λλλ
k+1)>B(yyyk− yyyk+1)

≥ 1
2τ

∥∥∥yyyk− yyyk+1
∥∥∥2

Dk
− 3(τ−1)

2τ
βk

∥∥∥B(yyyk− yyyk+1)
∥∥∥2
− 1

2τ

∥∥∥yyyk−1− yyyk
∥∥∥2

Dk−1

− τ−1
2τ

βk−1

∥∥∥B(yyyk−1− yyyk)
∥∥∥2

. (A.25)
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Proof. It follows from (A.2c), (A.12), and the definition of Ek in (A.16) that

θ2(yyy)−θ2(yyyk+1)+(yyy− yyyk+1)>
[
−B>λλλ

k+1 +Ek(yyyk+1− yyyk)
]
≥ 0 (A.26)

holds for any yyy ∈ Y . Similarly, we also have

θ2(yyy)−θ2(yyyk)+(yyy− yyyk)>
[
−B>λλλ

k +Ek−1(yyyk− yyyk−1)
]
≥ 0, ∀yyy ∈ Y . (A.27)

Consequently, setting yyy = yyyk and yyy = yyyk+1 in (A.26) and (A.27), respectively, and adding both
of them immediately yield

(yyyk− yyyk+1)>
[
B>(λλλ k−λλλ

k+1)+Ek(yyyk+1− yyyk)−Ek−1(yyyk− yyyk−1)
]
≥ 0,

which implies

(yyyk− yyyk+1)>B>(λλλ k−λλλ
k+1)

≥ (yyyk− yyyk+1)>Ek(yyyk− yyyk+1)− (yyyk− yyyk+1)>Ek−1(yyyk−1− yyyk)

(A.16)
= (yyyk− yyyk+1)>

(
1
τ

Dk−
τ−1

τ
βkB>B

)
(yyyk− yyyk+1)

− (yyyk− yyyk+1)>
(

1
τ

Dk−1−
τ−1

τ
βk−1B>B

)
(yyyk−1− yyyk)

=
1
τ

∥∥∥yyyk− yyyk+1
∥∥∥2

Dk
− 1

τ
(yyyk− yyyk+1)>Dk−1(yyyk−1− yyyk)

− τ−1
τ

βk

∥∥∥B(yyyk− yyyk+1)
∥∥∥2

+
τ−1

τ
βk−1(yyyk− yyyk+1)>B>B(yyyk−1− yyyk)

≥ 1
τ

∥∥∥yyyk− yyyk+1
∥∥∥2

Dk
− 1

2τ

∥∥∥yyyk− yyyk+1
∥∥∥2

Dk−1
− 1

2τ

∥∥∥yyyk−1− yyyk
∥∥∥2

Dk−1

−
(

τ−1
τ

βk +
τ−1

2τ
βk−1

)∥∥∥B(yyyk− yyyk+1)
∥∥∥2
− τ−1

2τ
βk−1

∥∥∥B(yyyk−1− yyyk)
∥∥∥2

,

where the last inequality follows from the application of 2a>b ≥ −‖a‖2−‖b‖2 for any a,b ∈
Rn. Thanks to the assumption βk−1 ≤ βk, we know from the definition of Dk in (A.16) that
Dk � Dk−1, and then the above inequality turns out

(yyyk− yyyk+1)>B>(λλλ k−λλλ
k+1)≥ 1

2τ

∥∥∥yyyk− yyyk+1
∥∥∥2

Dk
− 1

2τ

∥∥∥yyyk−1− yyyk
∥∥∥2

Dk−1

− 3(τ−1)
2τ

βk

∥∥∥B(yyyk− yyyk+1)
∥∥∥2
− τ−1

2τ
βk−1

∥∥∥B(yyyk−1− yyyk)
∥∥∥2

,

which arrives at the assertion of this lemma. �

Lemma A.4. Let {wwwk} be the sequence generated by LR-ADMM (A.2) and ŵwwk be a prediction
point defined in (A.9). Then, there exists a constant δ ∈ (0,1/2) such that

(λλλ k−λλλ
k+1)>B(yyyk− yyyk+1)≥−

(
1
4
+

1
2

δ

)
βk

∥∥∥B(yyyk− yyyk+1)
∥∥∥2
− 1−δ

βk

∥∥∥λλλ
k−λλλ

k+1
∥∥∥2

.

(A.28)
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Proof. It follows from the Young’s inequality that

(λλλ k−λλλ
k+1)>B(yyyk− yyyk+1)≥− βk

4(1−δ )

∥∥∥B(yyyk− yyyk+1)
∥∥∥2
− 1−δ

βk

∥∥∥λλλ
k−λλλ

k+1
∥∥∥2

(A.29)

always holds for any δ ∈ (0,1). Consequently, it is clear that δ (1−2δ )> 0 for any δ ∈ (0,1/2),
and then

1
4(1−δ )

<
1
4
+

δ

2
,

which together with (A.29) immediately implies (A.28). �

With the preparations of Lemmas A.1-A.4, we can obtain the following inequality.

Lemma A.5. Suppose that γ1 ∈
(
0,1/ρ(A>A)

]
, γ2 ∈

(
0,1/ρ(B>B)

]
, τ ∈ (1,4/3), and δ =

2
(1

τ
− 3

4

)
. Let {wwwk} be the sequence generated by LR-ADMM (A.2) and ŵwwk be a prediction

point defined in (A.9). Then,

θ(uuu)−θ(ûuuk)+(www− ŵwwk)>F(www)

≥
(

1
2

∥∥∥www−wwwk+1
∥∥∥2

Hk
+

1
4

(
1
τ

∥∥∥yyyk− yyyk+1
∥∥∥2

Dk
+

τ−1
τ

βk

∥∥∥B(yyyk− yyyk+1)
∥∥∥2
))

−
(

1
2

∥∥∥www−wwwk
∥∥∥2

Hk
+

1
4

(
1
τ

∥∥∥yyyk−1− yyyk
∥∥∥2

Dk−1
+

τ−1
τ

βk−1

∥∥∥B(yyyk−1− yyyk)
∥∥∥2
))

+
1
2

∥∥∥xxxk− xxxk+1
∥∥∥2

Ãk
+

1
2τ

∥∥∥yyyk− yyyk+1
∥∥∥2

Dk

+

(
1
τ
− 3

4

)(
βk

∥∥∥B(yyyk− yyyk+1)
∥∥∥2

+
1
βk

∥∥∥λλλ
k−λλλ

k+1
∥∥∥2
)
. (A.30)

Proof. It is clear from τ ∈ (1,4/3) and δ = 2
(1

τ
− 3

4

)
that δ ∈ (0,1/2) holds. Thus, Lemma

A.4 holds by setting δ = 2
(1

τ
− 3

4

)
. Consequently, adding (A.25) and (A.28) leads to

2(λλλ k−λλλ
k+1)>B(yyyk− yyyk+1)

≥
(

1
2τ

∥∥∥yyyk− yyyk+1
∥∥∥2

Dk
+

τ−1
2τ

βk

∥∥∥B(yyyk− yyyk+1)
∥∥∥2
)

−
(

1
2τ

∥∥∥yyyk−1− yyyk
∥∥∥2

Dk−1
+

τ−1
2τ

βk−1

∥∥∥B(yyyk−1− yyyk)
∥∥∥2
)

− 2βk(τ−1)
τ

∥∥∥B(yyyk− yyyk+1)
∥∥∥2
−
(

1
4
+

1
2

δ

)
βk

∥∥∥B(yyyk− yyyk+1)
∥∥∥2
− 1−δ

βk

∥∥∥λλλ
k−λλλ

k+1
∥∥∥2

=

(
1

2τ

∥∥∥yyyk− yyyk+1
∥∥∥2

Dk
+

τ−1
2τ

βk

∥∥∥B(yyyk− yyyk+1)
∥∥∥2
)

−
(

1
2τ

∥∥∥yyyk−1− yyyk
∥∥∥2

Dk−1
+

τ−1
2τ

βk−1

∥∥∥B(yyyk−1− yyyk)
∥∥∥2
)

+

(
1
τ
− 3

2

)
βk

∥∥∥B(yyyk− yyyk+1)
∥∥∥2

+

(
2
τ
− 5

2

)
1
βk

∥∥∥λλλ
k−λλλ

k+1
∥∥∥2

.

Substituting it into (A.23) produces

(wwwk− ŵwwk)>Gk(wwwk− ŵwwk)
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≥
(

1
2τ

∥∥∥yyyk− yyyk+1
∥∥∥2

Dk
+

τ−1
2τ

βk

∥∥∥B(yyyk− yyyk+1)
∥∥∥2
)

−
(

1
2τ

∥∥∥yyyk−1− yyyk
∥∥∥2

Dk−1
+

τ−1
2τ

βk−1

∥∥∥B(yyyk−1− yyyk)
∥∥∥2
)
+
∥∥∥xxxk− xxxk+1

∥∥∥2

Ãk

+
1
τ

∥∥∥yyyk− yyyk+1
∥∥∥2

Dk
+2
(

1
τ
− 3

4

)(
βk

∥∥∥B(yyyk− yyyk+1)
∥∥∥2

+
1
βk

∥∥∥λλλ
k−λλλ

k+1
∥∥∥2
)
,

which together with (A.19) implies the assertion of this lemma. �

Lemma A.6. Suppose that γ1 ∈
(
0,1/ρ(A>A)

]
, γ2 ∈

(
0,1/ρ(B>B)

]
, τ ∈ (1,4/3), and δ =

2
(1

τ
− 3

4

)
. Let {wwwk} be the sequence generated by LR-ADMM (A.2). Then,∥∥∥xxxk− xxxk+1

∥∥∥2

Ãk
+

1
τ

∥∥∥yyyk− yyyk+1
∥∥∥2

Dk

+2
(

1
τ
− 3

4

)(
βk

∥∥∥B(yyyk− yyyk+1)
∥∥∥2

+
1
βk

∥∥∥λλλ
k−λλλ

k+1
∥∥∥2
)

≤
(∥∥∥wwwk−www∗

∥∥∥2

Hk
+

1
2

(
1
τ

∥∥∥yyyk−1− yyyk
∥∥∥2

Dk−1
+

τ−1
τ

βk−1

∥∥∥B(yyyk−1− yyyk)
∥∥∥2
))

−
(∥∥∥wwwk+1−www∗

∥∥∥2

Hk
+

1
2

(
1
τ

∥∥∥yyyk− yyyk+1
∥∥∥2

Dk
+

τ−1
τ

βk

∥∥∥B(yyyk− yyyk+1)
∥∥∥2
))

. (A.31)

Proof. Due to arbitrariness of www in (A.30), we set www = www∗ and obtain(
1
2

∥∥∥wwwk−www∗
∥∥∥2

Hk
+

1
4

(
1
τ

∥∥∥yyyk−1− yyyk
∥∥∥2

Dk−1
+

τ−1
τ

βk−1

∥∥∥B(yyyk−1− yyyk)
∥∥∥2
))

−
(

1
2

∥∥∥wwwk+1−www∗
∥∥∥2

Hk
+

1
4

(
1
τ

∥∥∥yyyk− yyyk+1
∥∥∥2

Dk
+

τ−1
τ

βk

∥∥∥B(yyyk− yyyk+1)
∥∥∥2
))

≥ 1
2

∥∥∥xxxk− xxxk+1
∥∥∥2

Ãk
+

1
2τ

∥∥∥yyyk− yyyk+1
∥∥∥2

Dk

+

(
1
τ
− 3

4

)(
βk

∥∥∥B(yyyk− yyyk+1)
∥∥∥2

+
1
βk

∥∥∥λλλ
k−λλλ

k+1
∥∥∥2
)

+(θ(ûuuk)−θ(uuu∗))+(ŵwwk−www∗)>F(www∗). (A.32)

Similarly, thanks to the arbitrariness of uuu and www, we take uuu = ûuuk and www = ŵwwk in (A.5), then
obtain

θ(ûuuk)−θ(uuu∗)+(ŵwwk−www∗)>F(www∗)≥ 0,

which, together with (A.32), yields the conclusion of this lemma. �

Theorem A.1. Suppose that γ1 ∈
(
0,1/ρ(A>A)

]
, γ2 ∈

(
0,1/ρ(B>B)

]
, τ ∈ (1,4/3), and δ =

2
(1

τ
− 3

4

)
. Let {wwwk} be the sequence generated by LR-ADMM (A.2). Then, LR-ADMM (A.2) is

convergent.

Proof. For notational simplicity, we first denote

ηk =
βk

βk−1
−1, C̃s =

∞

∑
k=1

ηk, and C̃p =
∞

∏
k=1

(ηk +1).
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Due to the monotone increasing property and upper boundedness of {βk}, we can easily check
that ηk ≥ 0, C̃s <+∞, and C̃p <+∞. Additionally, we let

φ(wwwk,wwwk+1) =
∥∥∥xxxk− xxxk+1

∥∥∥2

Ãk
+

1
τ

∥∥∥yyyk− yyyk+1
∥∥∥2

Dk

+2
(

1
τ
− 3

4

)(
βk

∥∥∥B(yyyk− yyyk+1)
∥∥∥2

+
1
βk

∥∥∥λλλ
k−λλλ

k+1
∥∥∥2
)

and

ψ(wwwk−1,wwwk) =
1
2

(
1
τ

∥∥∥yyyk−1− yyyk
∥∥∥2

Dk−1
+

τ−1
τ

βk−1

∥∥∥B(yyyk−1− yyyk)
∥∥∥2
)
.

Consequently,inequality (A.31) can be simplified as follows

φ(wwwk,wwwk+1)≤
(∥∥∥wwwk−www∗

∥∥∥2

Hk
+ψ(wwwk−1,wwwk)

)
−
(∥∥∥wwwk+1−www∗

∥∥∥2

Hk
+ψ(wwwk,wwwk+1)

)
,

which, by rearranging terms and invoking the definition of Hk in (A.17), implies∥∥∥wwwk+1−www∗
∥∥∥2

Hk
+ψ(wwwk,wwwk+1)

≤
∥∥∥wwwk−www∗

∥∥∥2

Hk
+ψ(wwwk−1,wwwk)−φ(wwwk,wwwk+1)

=
∥∥∥xxxk− xxx∗

∥∥∥2

Ãk
+

βk

τγ2

∥∥∥yyyk− yyy∗
∥∥∥2

+
1
βk

∥∥∥λλλ
k−λλλ

∗
∥∥∥2

+ψ(wwwk−1,wwwk)−φ(wwwk,wwwk+1)

≤ βk

βk−1

[∥∥∥xxxk− xxx∗
∥∥∥2

Ãk−1
+

βk−1

τγ2

∥∥∥yyyk− yyy∗
∥∥∥2

+
βk−1

β 2
k

∥∥∥λλλ
k−λλλ

∗
∥∥∥2
]

+ψ(wwwk−1,wwwk)−φ(wwwk,wwwk+1)

≤ (ηk +1)
[∥∥∥xxxk− xxx∗

∥∥∥2

Ãk−1
+

βk−1

τγ2

∥∥∥yyyk− yyy∗
∥∥∥2

+
1

βk−1

∥∥∥λλλ
k−λλλ

∗
∥∥∥2
]

+ψ(wwwk−1,wwwk)−φ(wwwk,wwwk+1)

≤ (ηk +1)
(∥∥∥wwwk−www∗

∥∥∥2

Hk−1
+ψ(wwwk−1,wwwk)

)
−φ(wwwk,wwwk+1). (A.33)

By invoking the conditions γ1 ∈
(
0,1/ρ(A>A)

]
and τ ∈ (1,4/3), it is easy to see that φ(wwwk,wwwk+1)≥

0. Hence, it follows from (A.33) that∥∥∥wwwk+1−www∗
∥∥∥2

Hk
+ψ(wwwk,wwwk+1)≤ (ηk +1)

(∥∥∥wwwk−www∗
∥∥∥2

Hk−1
+ψ(wwwk−1,wwwk)

)
≤ C̃p

(∥∥www1−www∗
∥∥2

H0
+ψ(www0,www1)

)
,

which immediately implies that there exists a constant C̃ > 0 such that∥∥∥wwwk+1−www∗
∥∥∥2

Hk
+ψ(wwwk,wwwk+1)≤ C̃, ∀k ≥ 0.

As a consequence, it follows from (A.33) that
∞

∑
k=0

φ(wwwk,wwwk+1)
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≤
∞

∑
k=0

[
(ηk +1)

(∥∥∥wwwk−www∗
∥∥∥2

Hk−1
+ψ(wwwk−1,wwwk)

)
−
(∥∥∥wwwk+1−www∗

∥∥∥2

Hk
+ψ(wwwk,wwwk+1)

)]
≤

∞

∑
k=0

ηk

(∥∥∥wwwk−www∗
∥∥∥2

Hk−1
+ψ(wwwk−1,wwwk)

)
+
(∥∥www1−www∗

∥∥2
H0

+ψ(www0,www1)
)

≤ (C̃s +1)C̃.

which, together with the nonnegativity of φ(wwwk,wwwk+1), implies that

lim
k→∞

φ(wwwk,wwwk+1) = 0 and lim
k→∞
‖wwwk−wwwk+1‖= 0. (A.34)

Therefore, we conclude that LR-ADMM (A.2) is convergent. �

Notice that the dynamical strategy on β has a preset upper bound. In other words, after finite
iterations, βk must be a constant. Therefore, to simplify the convergence, we below consider
the case of βk ≡ β (we correspondingly let D = Dk and H = Hk) and show that the sequence
{wwwk} generated by LR-ADMM (A.2) globally converges to a solution of (A.1).

Theorem A.2. Suppose that γ1 ∈
(
0,1/ρ(A>A)

]
, γ2 ∈

(
0,1/ρ(B>B)

]
, τ ∈ (1,4/3), and δ =

2
(1

τ
− 3

4

)
. Then, the sequence {wwwk} generated by LR-ADMM (A.2) globally converges to a

point of the solution set W ∗.

Proof. Under the setting βk = β , it follows from (A.33) that∥∥∥wwwk+1−www∗
∥∥∥2

H
≤
∥∥∥wwwk+1−www∗

∥∥∥2

H
+

1
2

(
1
τ

∥∥∥yyyk− yyyk+1
∥∥∥2

D
+

τ−1
τ

β

∥∥∥B(yyyk− yyyk+1)
∥∥∥2
)

≤
∥∥∥wwwk−www∗

∥∥∥2

H
+

1
2

(
1
τ

∥∥∥yyyk−1− yyyk
∥∥∥2

D
+

τ−1
τ

β

∥∥∥B(yyyk−1− yyyk)
∥∥∥2
)

≤
∥∥www1−www∗

∥∥2
H +

1
2

(
1
τ

∥∥yyy0− yyy1∥∥2
D +

τ−1
τ

β
∥∥B(yyy0− yyy1)

∥∥2
)
,

which implies that the sequence {wwwk} is bounded. Due to the nonsingularity of Mk, we conclude
from (A.8) that the sequence {ŵwwk} is also bounded. Let www∞ be a cluster point of {ŵwwk}, and let
{ŵwwk j} be the subsequence converging to www∞. Then, taking k j → ∞ in (A.20), together with
(A.34), we have

θ(uuu)−θ(uuu∞)+(www−www∞)>F(www∞)≥ 0, ∀www ∈W , (A.35)

which shows that www∞ is a solution point of (A.5), i.e., www∞ ∈W ∗. It follows from (A.35) that

‖wwwk+1−www∞‖2
H ≤ ‖www1−www∞‖2

H +
1
2

(
1
τ
‖yyy0− yyy1‖2

D +
τ−1

τ
β‖B(yyy0− yyy1)‖2

)
.

Note that www∞ is the limit point of {wwwk j}. Together with (A.34), this fact means that the sequence
{wwwk} has at most one cluster point. Hence, the sequence {wwwk} converges to www∞ and the proof is
complete. �

Hereafter, we aim to show that LR-ADMM has the worst-case O(1/t) convergence rate mea-
sured by the iteration complexity, where t is the iteration counter. We first recall an equivalent
characterization of the solution set W ∗ of (A.5).
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Proposition A.2 ([12, Theorem 2.1]). The solution set W ∗ of (A.5) can be characterized as

W ∗ =
⋂

www∈W

{
ŵww ∈W : θ(uuu)−θ(ûuu)+(www− ŵww)>F(www)≥ 0

}
.

As a preparation, we below elaborate the definition of ε-approximate solution of VI(W ,F,θ).
Concretely, we say that ŵww ∈W is an ε-approximate solution of (A.5) if it satisfies

θ(ûuu)−θ(uuu)+(ŵww−www)>F(www)≤ ε, ∀www ∈D(ŵww),

where D(ŵww) = {www ∈W : ‖www− ŵww‖ ≤ 1}. The following theorem shows that LR-ADMM (A.2)
has an O(1/t) convergence rate.

Theorem A.3. Suppose that γ1 ∈
(
0,1/ρ(A>A)

]
, γ2 ∈

(
0,1/ρ(B>B)

]
, τ ∈ (1,4/3), and δ =

2
(1

τ
− 3

4

)
. Let {wwwk} be the sequence generated by LR-ADMM (A.2). Then,

θ(ûuut)−θ(uuu)+(ŵwwt−www)>F(www)

≤ 1
2t

(∥∥www−www1∥∥2
H +

1
2

(
1
τ

∥∥yyy0− yyy1∥∥2
+

τ−1
τ

β
∥∥B(yyy0− yyy1)

∥∥2
))

, (A.36)

where

ûuut =
1
t

t

∑
k=1

ûuuk and ŵwwt =
1
t

t

∑
k=1

ŵwwk. (A.37)

Proof. It first follows from (A.30) that

θ(ûuuk)−θ(uuu)+(ŵwwk−www)>F(www)

≤
(

1
2

∥∥∥www−wwwk
∥∥∥2

H
+

1
4

(
1
τ

∥∥∥yyyk−1− yyyk
∥∥∥2

D
+

τ−1
τ

β

∥∥∥B(yyyk−1− yyyk)
∥∥∥2
))

−
(

1
2

∥∥∥www−wwwk+1
∥∥∥2

H
+

1
4

(
1
τ

∥∥∥yyyk− yyyk+1
∥∥∥2

D
+

τ−1
τ

β

∥∥∥B(yyyk− yyyk+1)
∥∥∥2
))

.

Summing the above inequality over k = 1,2, ..., t leads to

t

∑
k=1

θ(ûuuk)− tθ(uuu)+

(
t

∑
k=1

ŵwwk− twww

)>
F(www)

≤
(

1
2

∥∥www−www1∥∥2
H +

1
4

(
1
τ

∥∥yyy0− yyy1∥∥2
D +

τ−1
τ

β‖B(yyy0− yyy1)‖2
))

. (A.38)

Note that θ(uuu) is convex. Consequently, it follows from the definitions of ûuut and ŵwwt in (A.37)
that

tθ(ûuut)≤
t

∑
k=1

θ(ûuuk) and tŵwwt =
t

∑
k=1

ŵwwk.

By substituting the above two inequalities into (A.38), we obtain the inequality (A.36). Then
for a given compact set D(ŵww) ⊂W , after t iterations of LR-ADMM (A.2), the point ŵwwt defined
in (A.37) satisfies

sup
w∈D(ŵww)

{
θ(ûuut)−θ(uuu)+(ŵwwt−www)>F(www)

}
≤ κ

2t
= O(1/t),
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where

κ := sup
{∥∥www−www1∥∥2

H ++
1
2

(
τ
∥∥yyy0− yyy1∥∥2

+(1− τ)β
∥∥B(yyy0− yyy1)

∥∥2
)
|www ∈D(ŵww)

}
.

Therefore, ŵwwt is an approximate solution of (A.5) with an accuracy of O(1/t), which means
that LR-ADMM (A.2) has the worst-case O(1/t) convergence rate in the ergodic sense. �
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