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Abstract. In this paper, we exploit necessary/sufficient optimality conditions for ε-quasi positively prop-
erly efficient solutions of the semi-infinite multiobjective optimization problems with data uncertainty.
We also consider Wolfe type dual problems/Mond–Weir type dual problems under the assumptions of
generalized convexity. Finally, several illustrative examples are also provided.
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1. INTRODUCTION

Semi-infinite multiobjective optimization problems find numerous applications in various
fields, such as in engineering design, mathematical physics, robotics, optimal control, trans-
portation problems, fuzzy sets, and cooperative games. Recently, optimality conditions and
duality for semi-infinite multiobjective optimization problems have been considered by numer-
ous researchers; see, e.g., [1, 2, 3, 4, 5, 6, 7] and the references therein. For semi-infinite
multiobjective optimization problems with data uncertainty; we refer to, for example, [8, 9,
10, 11, 12] and the references therein. For isolated efficient solutions and properly efficient
solutions for multiobjective optimization problems, we refer to [13, 14, 15, 16, 17, 18] and
the references therein. In addition, optimality conditions and duality for isolated efficient so-
lutions/properly efficient solutions of semi-infinite multiobjective optimization problems were
studied in [19, 20, 21, 22, 23, 24, 25]. However, there are few results on isolated efficient so-
lutions/properly efficient solutions for the semi-infinite multiobjective optimization problems
with uncertainty data [26]. In addition, since sometimes exact solutions do not exist while the
approximate ones do, even in the convex case (see [27, 28]), the study of approximate solutions
becomes significant from both the theoretical aspect and computational applications. Optimal-
ity conditions and duality theorems for approximate solutions of a multiobjective optimization
problems were studied in [29, 30, 31] and optimality conditions/duality theorems/saddle point
theorems for approximate solutions of optimization problems with infinite constraints were
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given in [32, 33, 34, 35, 36, 37, 38, 39]. On the other hand, optimality conditions/duality
theorems for approximate solutions of robust optimization problems with infinite constraints
were obtained in [40, 41, 42]. However, to the best of our knowledge, up to now, there is no
paper devoted to ε-quasi positively properly efficient solutions of semi-infinite multiobjective
optimization problems with data uncertainty.

Inspired by the above observations, we provide some new results for optimality conditions
and duality theorems for ε-quasi positively properly efficient solutions of semi-infinite multi-
objective optimization problems with uncertainty data via the Mordukhovich subdifferential.
Since the Mordukhovich subdifferential and the Mordukhovich normal cone might be noncon-
vex, the Mordukhovich subdifferential seems to be useful for deriving optimality conditions
and duality for semi-infinite multiobjective optimization problems with uncertainty data. The
rest of the paper is organized as follows. Section 2 presents essential mathematical tools, such
as notations, definitions, and lemmas. In Section 3, we investigate optimality conditions for
robust ε-quasi positively properly efficient solutions of semi-infinite multiobjective optimiza-
tion problems. In Section 4, the last section, we study approximate Wolfe type dual prob-
lems/approximate Mond-Weir type dual problems with uncertain data.

2. PRELIMINARIES

From now on, we use the standard notation of variational analysis in [43, 44] and all spaces
under consideration are assumed to be Euclidean spaces Rn with n ∈N := {1,2, · · ·}. The inner
product and the norm in Rn are denoted by by 〈·, ·〉 and || · ||, respectively. The closed unit ball
in the dual space Rn is denoted by BRn . In addition, the topological closure and the topological
interior of a set D⊂ Rn are denoted by clD and intD. As usual, the polar cone of D is the set

D◦ := {x∗ ∈ Rn | 〈x∗,x〉 ≤ 0,∀x ∈ D} . (2.1)

Besides, the nonnegative (resp., nonpositive) orthant cone of Euclidean space Rn is denoted
by Rn

+ = {(x1, · · · ,xn) | xi ≥ 0, i = 1, · · · ,n} (resp., Rn
−) for n ∈ N := {1,2, · · ·}, while intRn

+ is
borrowed to indicate the topological interior of Rn

+.
Given a set-valued map G : Rn⇒ Rn, we denote by

Limsup
x→x

G(x) := {y ∈ Rn | ∃ sequence xk→ x̄ and yk→ y with yk ∈ G(xk),∀k ∈ N}

the sequential Painlevé-Kuratowski upper/outer limit of G as x→ x̄.
Recall that a set S⊂ Rn is said to be closed around x̄ ∈ S if there exists a neighborhood U of

x̄ such that S∩ clU is closed. One says that S is locally closed if S is closed around x for every
x ∈ S. Let S ⊂ Rn be closed around x̄ ∈ S. The Fréchet/regular normal cone to S at x̄ ∈ S is
defined by

N̂(x̄;S) :=

x∗ ∈ Rn | limsup
x

S−→x̄

〈x∗,x− x̄〉
‖ x− x̄ ‖

≤ 0

 ,

where x S−→ x̄ means that x→ x̄ with x ∈ S. If x̄ /∈ S, we put N̂(x̄;S) := /0.
The Mordukhovich/limiting normal cone N(x̄;S) to S at x̄∈ S⊂Rn is obtained from Fréchet/regular

normal cones by taking the sequential Painlevé Kuratowski upper limit as

N(x̄;S) := Limsup
x

S−→x̄

N̂(x;S).
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If x̄ /∈ S, we put N(x̄;S) := /0. Specially, if S is convex, then N(x̄;S) = {x∗ ∈ Rn | 〈x∗,x− x̄〉 ≤
0,∀x ∈ S}. Let f : Rn → R̄ := [−∞,+∞] be an extended real-valued function. The domain,
graph, and epigraph of f are given by dom f := {x ∈ Rn | | f (x)| < +∞}, gph f := {(x,µ) ∈
Rn×R | µ = f (x)}, and epi f := {(x,µ) ∈Rn×R | µ ≥ f (x)}, respectively. Let f : Rn→ R̄ be
finite at x̄ ∈ dom f , then the Mordukhovich/limiting subdifferential of f at x̄ is defined by

∂ f (x) := {x∗ ∈ Rn | (x∗,−1) ∈ N ((x̄, f (x̄)); epi f )} .
If | f (x̄)|=+∞, then one puts ∂ f (x̄) := /0. Let f : Rn→ R̄ be finite at x̄ ∈ dom f , then f is lower
semi-continuous at x̄ if lim inf

x→x̄
f (x) ≥ f (x̄). Given S ⊂ Rn, consider the indicator function

δ (·;S) defined by

δ (x;S) :=
{

0, if x ∈ S,
+∞, otherwise.

Furthermore, we have a relation between the Mordukhovich/limiting normal cone and the Mor-
dukhovich/limiting subdifferential of the indicator function as N(x̄;S) = ∂δ (x̄;S) for all x̄ ∈ S.
Let f : Rn→ R. We say that f is locally Lipschitz at x̄ ∈ Rn if there exist a positive constant
L > 0 and a neighborhood U of x̄ such that | f (x1)− f (x2)| ≤ L||x1− x2|| for all x1,x2 ∈ U.
For a function f is locally Lipschitz at x̄ with L > 0, it implies that (see [43, Corollary 1.81]
||x∗|| ≤ L,∀x∗ ∈ ∂ f (x̄).

Lemma 2.1. [43, Proposition 1.114] Let f : Rn→ R̄ be finite at x̄∈Rn. If x̄ is a local minimizer
of f , then 0 ∈ ∂ f (x̄).

Lemma 2.2. [44, Corollary 2.21] Let fk : Rn → R̄,k = 1, · · · ,m (with m ≥ 2) be lower semi-
continuous around x̄ ∈Rn, and let all but one of these functions be Lipschitz continuous around
x̄. Then ∂ ( f1 + · · ·+ fm)(x̄)⊂ ∂ f1(x̄)+ · · ·+∂ fm(x̄).

Let T be a nonempty infinite index set, and let R(T ) be the linear space given below

R(T ) := {λ = (λt)t∈T | λt = 0 for all t ∈ T but only finitely many λt 6= 0}.

Let R(T )
+ be the positive cone in R(T ) defined by

R(T )
+ := {λ = (λt)t∈T ∈ R(T ) | λt ≥ 0 for all t ∈ T}.

With λ ∈ R(T ), its supporting set, T (λ ) := {t ∈ T | λt 6= 0}, is a finite subset of T . Give
z = (zt)t∈T ⊂ Z, where Z is a real linear space. Letting λ = (λt)t∈T , we see that

〈λ ,z〉= ∑
t∈T

λtzt =

 ∑
t∈T (λ )

λtzt , if T (λ ) 6= /0,

0, if T (λ ) = /0.

In this paper, we consider the following multiobjective semi-infinite programming problems
with uncertain data:

(USIMP)s
min f (x) := (p1(x)− s1q1(x), · · · , pm(x)− smqm(x))
s.t. x ∈C := {x ∈Ω | gt(x,vt)≤ 0,∀t ∈ T},

where T is a nonempty infinite index set, Ω is a nonempty and locally closed subset of Rn, Vt ⊆
Rq, t ∈ T are uncertain convex compact sets, and the functions pk,qk : Rn→R,k = 1, · · · ,m,gt :
Rn×Vt→R, t ∈ T are locally Lipschitz functions. Let p := (p1, · · · , pm) and q := (q1, · · · ,qm),
s := (s1, · · · ,sm) ∈ Rm, f := ( f1, · · · , fm) with fk := pk− skqk,k = 1, · · · ,m.
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We introduce the robust counterpart of the problem (USIMP)s, namely

(RUSIMP)s
min f (x) := (p1(x)− s1q1(x), · · · , pm(x)− smqm(x))
s.t. x ∈C := {x ∈Ω | gt(x,vt)≤ 0,∀vt ∈ Vt , t ∈ T}.

Now, we consider the following relation ?, which plays a key role in this paper

d = a?b⇔ d = (a1b1, · · · ,ambm)

for every a=(a1, · · · ,am)∈Rm and b=(b1, · · · ,bm)∈Rm. We can rewrite problem (RUSIMP)s
as follows:

(RUSIMP)s
min f (x) := p(x)− s?q(x)
s.t. x ∈C := {x ∈Ω | gt(x,vt)≤ 0,∀vt ∈ Vt , t ∈ T}.

3. OPTIMALITY CONDITIONS

First, we introduce the concept of the robust ε-quasi positively properly efficient solution for
problem (USIMP)s as follows.

Definition 3.1. Let ε := (ε1, · · · ,εm) ∈ Rm
+\{0}. A point x̄ ∈C is said to be

(i) a robust ε-quasi efficient solution to problem (USIMP)s if

(p(x)− s? p(x))− (p(x̄)− s?q(x̄))+ ε||x− x̄|| /∈ −Rm
+\{0},∀x ∈C.

(ii) a robust ε-quasi positively properly efficient solution to problem (USIMP)s if there ex-
ists β := (β1, · · · ,βm) ∈ intRm

+ such that

〈β ,(p(x)− s? p(x))+ ε||x− x̄||〉 ≥ 〈β ,(p(x̄)− s? p(x̄))〉 ,∀x ∈C.

Now, we propose a constraint qualification as follows.

Definition 3.2. Let x̄ ∈ C. We say that the following robust constraint qualification (RCQ) is
satisfied at x̄ if

N (x̄;C)⊆
⋃

λ∈A(x̄)
vt∈Vt

[
∑
t∈T

λt∂xgt(x̄,vt)

]
+N(x̄;Ω),

where
A(x̄) := {λ ∈ R(T )

+ | λtgt(x̄,vt) = 0,∀vt ∈ Vt , t ∈ T} (3.1)

is set of active constraint multipliers at x̄ ∈Ω.

Remark 3.1. It is worth to observe here that the condition (RCQ) in Definition 3.2 is an exten-
sion of the Definition 3.2 in [1, 19].

Now, we propose a necessary optimality condition for a robust ε-quasi positively properly
efficient solution to the problem (USIMP)s under the condition (RCQ).

Theorem 3.1. Let x̄ ∈ C be a robust ε-quasi positively properly efficient solution to problem
(USIMP)s. Suppose that the condition (RCQ) at x̄ holds. Then, there exist β ∈ intRm

+,vt ∈
Vt , t ∈ T and λ ∈ A(x̄) defined in (3.1) such that

0 ∈
m

∑
k=1

βk [∂ pk(x̄)− sk∂qk(x̄)]+ ∑
t∈T

λt∂xgt(x̄,vt)+
m

∑
k=1

βkεkBRn +N(x̄;Ω).
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Proof. Let x̄∈C be a robust ε-quasi positively properly efficient solution to problem (USIMP)s.
Then there exists β := (β1, · · · ,βm) ∈ intRm

+ such that

〈β , p(x)− s?q(x)+ ε||x− x̄||〉 ≥ 〈β , p(x̄)− s?q(x̄)〉 ,∀x ∈C.

Then, for all x ∈C,
m

∑
k=1

βk [pk(x)− skqk(x)]+
m

∑
k=1

βkεk||x− x̄|| ≥
m

∑
k=1

βk [pk(x̄)− skqk(x̄)] . (3.2)

For any x ∈ Rn, set

Φ(x) :=
m

∑
k=1

βk [pk(x)− skqk(x)]+
m

∑
k=1

βkεk||x− x̄||.

From (3.2), we deduce that x̄ is a robust minimizer of the following scalar optimization problem

min
x∈C

Φ(x).

It follows that x̄ is a robust minimizer of the following unconstrained optimization problem

min
x∈Rn
{Φ(x)+δ (x;C)}.

We deduce from Lemma 2.1 that

0 ∈ ∂ (Φ+δ (·;C))(x̄.) (3.3)

Since function Φ is Lipschitz continuous around x̄ and the function δ (·;C) is lower semi-
continuous around x̄, we deduce from ∂δ (x̄;C) = N(x̄;C), (3.3) and Lemma 2.2 that

0 ∈ ∂Φ(x̄)+∂δ (x̄;C) = ∂Φ(x̄)+N(x̄;C). (3.4)

Then we have

∂Φ(x̄) = ∂

[
m

∑
k=1

βk (pk(·)− skqk(·))

]
(x̄) =

m

∑
k=1

βk [∂ pk(x̄)− sk∂qk(x̄)] . (3.5)

Note further that we have ∂ (|| · −x̄||)(x̄) = BRn . Because condition (RCQ) holds at x̄ ∈ C, so
one has

N (x̄;C)⊆
⋃

λ∈A(x̄)
vt∈Vt

[
∑
t∈T

λt∂xgt(x̄,vt)

]
+N(x̄;Ω), (3.6)

where
A(x̄) := {λ ∈ R(T )

+ | λtgt(x̄,vt) = 0,∀vt ∈ Vt , t ∈ T}.
It yields from (3.4)-(3.6) that

0 ∈
m

∑
k=1

βk [∂ pk(x̄)− sk∂qk(x̄)]+
⋃

λ∈A(x̄)
vt∈Vt

[
∑
t∈T

λt∂xgt(x̄,vt)

]
+

m

∑
k=1

βkεkBRn +N(x̄;Ω).

Therefore, it is clear that there exist β := (β1, · · · ,βm) ∈ intRm
+,vt ∈ Vt , t ∈ T and λ ∈ A(x̄)

defined in (3.1) such that

0 ∈
m

∑
k=1

βk [∂ pk(x̄)− sk∂qk(x̄)]+ ∑
t∈T

λt∂xgt(x̄,vt)+
m

∑
k=1

βkεkBRn +N(x̄;Ω).

The proof is complete. �
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The following simple example shows that condition (RCQ) is essential in Theorem 3.1.

Example 3.1. Let f : R→ R2 be defined by f (x) = (p1(x)− s1q1(x), p2(x)− s2q2(x)) with
p1(x) = p2(x) = x+1 and q1(x) = q2(x) = x2+1, x∈R. Take T = [0,1],Vt = [2−t,2+t], t ∈ T
and let gt : R×Vt → R be given by gt(x,vt) = −vtx,x ∈ R, vt ∈ Vt , t ∈ T. We consider the
problem (USIMP)s with m = 2 and Ω = (−∞,0]⊂R. By simple computation, one has C = {0}.
Now, take x̄ = 0 ∈C and s1 = s2 = 0,(β1,β2)∈ intR2

+,β1+β2 = 1,ε1 = ε2 =
1
2 . Then, it is easy

to see that x̄ is a robust ε-quasi positively properly efficient solution to problem (USIMP)s.
Indeed, we have, for all x ∈C,

2

∑
k=1

βk (pk(x)− skqk(x))+
2

∑
k=1

βkεk||x− x̄||= x+1+
1
2
|x| ≥ 1 =

2

∑
k=1

βk (pk(x̄)− skqk(x̄)) .

On the other hand, taking x̄ = 0,s1 = s2 = 0,(β1,β2) ∈ intR2
+,β1 +β2 = 1,ε1 = ε2 =

1
2 , BR =

[−1,1],λt = 0, t ∈ T , we have N(x̄;Ω) = N(x̄;(−∞,0]) = [0,+∞) and ∂ pk(x̄) = {0},∂qk(x̄) =
{0},k = 1,2,∂xgt(x̄,vt) = {−vt},vt ∈ Vt , t ∈ T . It is easy to see that

0 /∈ {1}+
[
−1

2 ,
1
2

]
+[0,+∞)

=
2

∑
k=1

βk [∂ pk(x̄)− sk∂qk(x̄)]+ ∑
t∈T

λt∂xgt(x̄,vt)+
2

∑
k=1

βkεkBR+N(x̄;Ω),

λtgt(x̄,vt)= 0,vt ∈Vt , t ∈ T . The reason is that condition (RCQ) is not satisfied at x̄= 0. Indeed,
one has ⋃

λ∈A(x̄)
vt∈Vt

[
∑
t∈T

λt∂xgt(x̄,vt)

]
+N(x̄;Ω) = [0,+∞)

and N(x̄;C) = N(x̄;{0}) = R. Hence condition (RCQ) is not satisfied at x̄ = 0.

Remark 3.2. Theorem 3.1 improves [13, Theorem 3.9], [19, Theorem 3.3], and [26, Theorem
2].

Now, we introduce a concept of the robust ε-quasi (KKT) condition for problem (USIMP)s.

Definition 3.3. A point x̄ ∈C is said to satisfy the robust ε-quasi (KKT) condition with respect
to problem (USIMP)s if there exist β ∈ intRm

+,vt ∈ Vt , t ∈ T and λ ∈ A(x̄) defined in (3.1) such
that

0 ∈
m

∑
k=1

βk [∂ pk(x̄)− sk∂qk(x̄)]+ ∑
t∈T

λt∂xgt(x̄,vt)+
m

∑
k=1

βkεkBRn +N(x̄;Ω).

The following simple example proves that a point satisfying the robust ε-quasi (KKT) condi-
tion is not necessarily a robust ε-quasi positively properly efficient solution to problem (USIMP)s
even in the smooth case.

Example 3.2. Let f : R→ R2 be defined by f (x) = (p1(x)− s1q1(x), p2(x)− s2q2(x)) with
p1(x) = p2(x) = x3 and q1(x) = q2(x) = x2 +1, x ∈ R. Take T = [0,1],Vt = [2− t,2+ t], t ∈ T
and let gt : R×Vt → R be given by gt(x,vt) = tx2 + 2vtx,x ∈ R, vt ∈ Vt , t ∈ T. We consider
the problem (USIMP)s with m = 2 and Ω = (−∞,0] ⊂ R. By simple computation, one has
C = [−2,0]. By choosing x̄ = 0 ∈C, we have N(x̄;Ω) = N(x̄;(−∞,0]) = [0,+∞) and ∂ pk(x̄) =
{0},∂qk(x̄) = {0},k = 1,2, ∂xgt(x̄,vt) = {2vt},vt ∈ Vt , t ∈ T . On the other hand, taking s1 =
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s2 = 0,β = (β1,β2) ∈ intR2
+,β1 +β2 = 1,ε1 = ε2 =

1
2 ,λt = 0, t ∈ T,BR = [−1,1], it is easy to

see that

0 ∈
[
−1

2 ,
1
2

]
+[0,+∞)

=
2

∑
k=1

βk [∂ pk(x̄)− sk∂qk(x̄)]+ ∑
t∈T

λt∂xgt(x̄,vt)+
2

∑
k=1

βkεkBR+N(x̄;Ω),

λtgt(x̄,vt) = 0,vt ∈ Vt , t ∈ T . Thus, the robust ε-quasi (KKT) condition is satisfied at x̄ = 0.
However, x̄ = 0 ∈ C is not a robust ε-quasi positively properly efficient solution to problem
(USIMP)s. To see this, we can choose x =−2 ∈C and β = (β1,β2) ∈ intR2

+,β1 +β2 = 1,ε1 =

ε2 =
1
2 ,s1 = s2 = 0. Then, it is easy to see that

2

∑
k=1

βk [pk(x)− skqk(x)]+
2

∑
k=1

βkεk||x− x̄||=−7 < 0 =
2

∑
k=1

βk [pk(x̄)− skqk(x̄)] .

Before we discuss sufficient condition for a robust ε-quasi positively properly efficient so-
lution of problem (USIMP)s, we introduce the concepts of convexity, which are inspired by
[26].

Definition 3.4. The locally Lipschitz functions gt : Rn×Vt → R, t ∈ T are said to be quasi-
convex on Ω at x̄ ∈ Ω if, for all x ∈ Ω, gt(x,vt) ≤ gt(x̄,vt) ⇒ 〈x∗t ,x− x̄〉 ≤ 0 for all x∗t ∈
∂xgt(x̄,vt),vt ∈ Vt , t ∈ T.

Definition 3.5. We say that p− s?q is ε-quasi pseudo-convex on Ω at x̄ ∈ Ω if, for all x ∈ Ω,
there exist x∗k ∈ ∂ pk(x̄),z∗k ∈ ∂qk(x̄),k = 1, · · · ,m such that〈

x∗k− skz∗k ,x− x̄
〉
+ εk||x− x̄|| ≥ 0

⇒ pk(x)− skqk(x)+ εk||x− x̄|| ≥ pk(x̄)− skqk(x̄),k = 1, · · · ,m.

Now, we give a sufficient condition for a robust ε-quasi positively properly efficient solution
of problem (USIMP)s.

Theorem 3.2. Assume that Ω is a convex set and x̄∈C satisfies ε-quasi robust (KKT) condition.
If p− s ? q is ε-quasi pseudo-convex on Ω at x̄, and gt , t ∈ T are quasi-convex on Ω at x̄, then
x̄ ∈C is a robust ε-quasi positively properly efficient solution to problem (USIMP)s.

Proof. Since x̄∈C satisfies robust ε-quasi (KKT) condition, then there exist β :=(β1, · · · ,βm)∈
intRm

+,λ ∈R(T )
+ , x∗k ∈ ∂ pk(x̄),z∗k ∈ ∂qk(x̄),k = 1, · · · ,m,x∗t ∈ ∂xgt(x̄,vt),vt ∈ Vt , t ∈ T , and b∗ ∈

BRn,w∗ ∈ N(x̄;Ω) such that
m

∑
k=1

βk (x∗k− skz∗k)+ ∑
t∈T

λtx∗t +
m

∑
k=1

βkεkb∗+w∗ = 0 (3.7)

and
λtgt(x̄,vt) = 0,∀t ∈ T. (3.8)

It follows from (3.7) that (for such x ∈C)〈
m

∑
k=1

βk (x∗k− skz∗k) ,x− x̄

〉
+

〈
∑
t∈T

λtx∗t ,x− x̄

〉
+

〈
m

∑
k=1

βkεkb∗,x− x̄

〉
+〈w∗,x− x̄〉= 0.

(3.9)
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Since Ω is a convex set and w∗ ∈ N(x̄;Ω), it follows that, for any x ∈ Ω, 〈w∗,x− x̄〉 ≤ 0. Now,
taking arbitrarily x ∈C, we see that there exists b∗ ∈ RRn such that ||x− x̄||= 〈b∗,x− x̄〉 . From
(3.9), it follows that〈

m

∑
k=1

βk (x∗k− skz∗k) ,x− x̄

〉
+

〈
∑
t∈T

λtx∗t ,x− x̄

〉
+

m

∑
k=1

βkεk||x− x̄|| ≥ 0,

which means that〈
m

∑
k=1

βk (x∗k− skz∗k) ,x− x̄

〉
+

m

∑
k=1

βkεk||x− x̄|| ≥ −

〈
∑
t∈T

λtx∗t ,x− x̄

〉
. (3.10)

Note that, for any x ∈ C, λtgt(x,vt) ≤ 0 for any vt ∈ Vt , t ∈ T . It follows from (3.8) that
λtgt(x,vt)≤ 0 = λtgt(x̄,vt). By gt is quasi-convex on Ω at x̄ and x∗t ∈ ∂xgt(x̄,vt),vt ∈ Vt , t ∈ T ,
we obtain 〈λtx∗t ,x− x̄〉 ≤ 0 for all t ∈ T. Thus it is easy to yield that 〈∑t∈T λtx∗t ,x− x̄〉 ≤ 0, which
together with (3.10) yileds that〈

m

∑
k=1

βk(x∗k− skz∗k),x− x̄

〉
+

m

∑
k=1

βkεk||x− x̄|| ≥ 0.

Since p− s?q is ε-quasi pseudo-convex on Ω at x̄, it follows that
m

∑
k=1

βk (pk(x)− skqk(x))+
m

∑
k=1

βkεk||x− x̄|| ≥
m

∑
k=1

βk (pk(x̄)− skqk(x̄)) .

This follows that there exists β := (β1, · · · ,βm) ∈ intRm
+ such that

〈β ,(p(x)− s? p(x))+ ε||x− x̄||〉 ≥ 〈β ,(p(x̄)− s? p(x̄))〉 ,∀x ∈C.

Therefore, x̄ is a robust ε-quasi positively properly efficient solution to problem (USIMP)s. �

Now, we present an example to show the importance of the ε-quasi pseudo-convexity in
Theorem 3.2.

Example 3.3. Let f : R→ R2 be defined by f (x) = (p1(x)− s1q1(x), p2(x)− s2q2(x)) with
p1(x)= p2(x)= x3−1 and q1(x)= q2(x)= x4+1, x∈R. Take T = [0,1],Vt = [2−t,2+t], t ∈ T
and let gt : R×Vt → R be given by gt(x,vt) = −vtx2,x ∈ R, vt ∈ Vt , t ∈ T. We consider the
problem (USIMP)s with m = 2 and Ω = (−∞,0] ⊂ R. By selecting x̄ = 0 ∈ Ω and by simple
computation, one has C = (−∞,0], N(x̄;Ω) = N(x̄;(−∞,0]) = [0,+∞),

∂ pk(x̄) = {0},∂qk(x̄) = {0},k = 1,2 and ∂xgt(x̄,vt) = {0},vt ∈ Vt , t ∈ T.

It is easy to follow that gt , t ∈ T is quasi-convex on Ω at x̄. Indeed, one has

gt(x,vt) =−vtx2 ≤ 0 = gt(x̄,vt),vt ∈ Vt , t ∈ T

⇒ 〈x∗t ,x− x̄〉= 0≤ 0,∀x∗t ∈ ∂xgt(x̄,vt) = {0},∀x ∈Ω, t ∈ T.

It is it easy to imply that x̄ = 0 satisfies the robust ε−quasi (KKT) condition. Indeed, let us
select s1 = s2 = 0,ε1 = ε2 =

1
2 ,BR = [−1,1],β = (β1,β2) ∈ intR2

+ with β1 +β2 = 1, one has

0 ∈
[
−1

2
,
1
2

]
+[0,+∞) =

2

∑
k=1

βk [∂ pk(x̄)− sk∂qk(x̄)]+ ∑
t∈T

λt∂xgt(x̄,vt)+
2

∑
k=1

βkεkBR+N(x̄;Ω),
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λtgt(x̄,vt) = 0,vt ∈ Vt , t ∈ T . However, x̄ is not a robust ε-quasi positively properly efficient
of problem (USIMP)s. In order to see this, taking s1 = s2 = 0,ε1 = ε2 = 1

2 , x̂ = −2 ∈ C and
β = (β1,β2) ∈ intR2

+ with β1 +β2 = 1, we have

2

∑
k=1

βk [pk(x̂)− skqk(x̂)]+
2

∑
k=1

βkεk||x̂− x̄||=−8 <−1 =
2

∑
k=1

βk [pk(x̄)− skqk(x̄)] .

The reason is that p−s?q is not ε-quasi pseudo-convex on Ω at x̄ = 0. Indeed, taking s1 = s2 =
0,ε1 = ε2 =

1
2 ,x =−3 ∈Ω,x∗k ∈ ∂ pk(x̄) = {0} and z∗k ∈ ∂qk(x̄) = {0},k = 1,2, we see that

pk(x)− skqk(x)+ εk||x− x̄||= x3−1+
1
2
|x|=−53

2
<−1 = pk(x̄)− skqk(x̄),k = 1,2.

However, 〈x∗k− skz∗k ,x− x̄〉+ εk||x− x̄||= 3
2 > 0,k = 1,2.

Remark 3.3. Theorem 3.2 improves [26, Theorem 3].

4. DUALITY THEOREMS

4.1. Wolfe type duality. In this section, we consider the dual problem of the problem (USIMP)s
in the Wolfe type.

For x ∈ Rn,β := (β1, · · · ,βm) ∈ intRm
+ with ∑

m
k=1 βk = 1,vt ∈ Vt , t ∈ T and λ ∈ R(T )

+ , p :=
(p1, · · · , pm),q := (q1, · · · ,qm),gT := (gt)t∈T ,s := (s1, · · · ,sm) ∈ Rm

−, Ω a nonempty locally
closed subset of Rn, let us denote a vector function Ls := (Ls1

1 , · · · ,Lsm
m ) by

Ls(x,vt ,β ,λ ) := p(x)− s?q(x)+ ∑
t∈T

λtgt(x,vt)e,

where e := (1, · · · ,1) ∈ Rm. For ε := (ε1, · · · ,εm) ∈ Rm
+\{0}, we consider the Wolfe type dual

problem (UWD)s with respect to the primal problem (USIMP)s as follows:

(UWD)s



max Ls(y,vt ,β ,λ )

s.t. 0 ∈
m

∑
k=1

βk (∂ pk(y)− sk∂qk(y))+ ∑
t∈T

λt∂xgt(y,vt)

+
m

∑
k=1

βkεkBRn +N(y;Ω),

y ∈Ω,λ ∈ R(T )
+ ,β ∈ intRm

+,
m

∑
k=1

βk = 1.

The optimistic counterpart, say (OUWD)s of problem (UWD)s (also known as a Wolfe type
optimistic dual optimization problem) is a deterministic maximization problem given by

(OUWD)s



max Ls(y,vt ,β ,λ )

s.t. 0 ∈
m

∑
k=1

βk (∂ pk(y)− sk∂qk(y))+ ∑
t∈T

λt∂xgt(y,vt)

+
m

∑
k=1

βkεkBRn +N(y;Ω),

y ∈Ω,λ ∈ R(T )
+ ,β ∈ intRm

+,
m

∑
k=1

βk = 1,∀vt ∈ Vt , t ∈ T.
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The feasible set of problem (OUWD)s is defined by

COUWD := {(y,vt ,β ,λ ) ∈Ω×Vt× intRm
+×R(T )

+ | 0 ∈
m

∑
k=1

βk (∂ pk(y)− sk∂qk(y))

+ ∑
t∈T

λt∂xgt(y,vt)+
m

∑
k=1

βkεkBRn +N(y;Ω),
m

∑
k=1

βk = 1}.

In what follows, we use the following notation for convenience:

u� v⇔ u− v ∈ −Rm
+\{0}, u 6� v is the negation of u� v.

Now, we introduce the definition of the robust ε-quasi efficient solution / the robust ε-quasi
positively properly efficient solution for problem (OUWD)s.

Definition 4.1. A point (ȳ, v̄t , β̄ , λ̄ ) ∈COUWD is said to be
(i) a robust ε-quasi efficient solution to problem (OUWD)s if

Ls(y,vt ,β ,λ )−Ls(ȳ, v̄t , β̄ , λ̄ )− ε||ȳ− y|| /∈ Rm
+\{0},∀(y,vt ,β ,λ ) ∈COUWD.

(ii) a robust ε-quasi positively properly efficient solution to problem (OUWD) if there exists
θ := (θ1, · · · ,θm) ∈ −intRm

+ such that

〈θ ,Ls(y,vt ,β ,λ )+ ε||x− x̄||〉 ≥
〈
θ ,Ls(ȳ, v̄t , β̄ , λ̄ )

〉
,∀(y,vt ,β ,λ ) ∈COUWD.

Motivated by the definition of generalized convexity due to [42], we introduce the concepts
as follows:

Definition 4.2. We say that (p− s ? q,gT ) is generalized convex on Ω at x̄ ∈ Ω if, for any
x ∈ Ω, x∗k ∈ ∂ pk(x̄),z∗k ∈ ∂qk(x̄),k = 1, · · · ,m and x∗t ∈ ∂xgt(x̄,vt),vt ∈ Vt , t ∈ T , there exists
w ∈ N(x̄;Ω)◦ such that (pk(x)− skqk(x))− (pk(x̄)− skqk(x̄)) ≥

〈
x∗k− skz∗k ,w

〉
, k = 1, · · · ,m,

gt(x)−gt(x̄)≥ 〈x∗t ,w〉 for all t ∈ T and 〈b∗,w〉 ≤ ||x− x̄|| for all b∗ ∈ BRn.

Remark 4.1. Note that if Ω is a convex set and pk,qk,k = 1, · · · ,m,gt , t ∈ T are convex func-
tions, then (p− s ? q,gT ) is generalized convex on Ω at any x̄ ∈ Ω with w := x− x̄ for each
x ∈ Ω. In addition, by a similar argument in [42, Example 3], we can prove that the class of
generalized convex functions is properly larger than the one of convex functions.

Theorem 4.1. (ε-quasi weak robust duality) Suppose that x ∈C and (y,vt ,β ,λ ) ∈COUWD. If
(p− s?q,gT ) is generalized convex on Ω at y, then p(x)− s?q(x) 6� Ls(y,vt ,β ,λ )− ε||x− y||.

Proof. Since (y,vt ,β ,λ )∈COUWD, there exist x∗k ∈ ∂ pk(y),z∗k ∈ ∂qk(y),k = 1, · · · ,m, β ∈ intRm
+

with ∑
m
k=1 βk = 1 and x∗t ∈ ∂xgt(y,vt),vt ∈ Vt , t ∈ T , λ ∈ R(T )

+ , as well as b∗ ∈ BRn such that

−

(
m

∑
k=1

βk(x∗k− skz∗k)+ ∑
t∈T

λtx∗t +
m

∑
k=1

βkεkb∗
)
∈ N(y;Ω). (4.1)

Let x ∈C. Suppose on contrary that p(x)− s?q(x)� Ls(y,vt ,β ,λ )− ε||x− y||, which together
with β := (β1, · · · ,βm) ∈ intRm

+ yield that 〈β , p(x)− s?q(x)−Ls(y,vt ,β ,λ )+ ε||x− y||〉 < 0.
Thus

∑
m
k=1 βk [(pk(x)− skqk(x))− (pk(y)− skqk(y))]+∑

m
k=1 βkεk||x− y||−∑

t∈T
λtgt(y,vt)< 0.

(4.2)
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By the definition of polar cone (2.1), the generalized convexity of (p− s?q,gT ) on Ω at y and
(4.1), for such x, there exists w ∈ N(y;Ω)◦ such that

0 ≤
m

∑
k=1

βk 〈x∗k− skz∗k ,w〉+ ∑
t∈T

λt 〈x∗t ,w〉+
m

∑
k=1

βkεk 〈b∗,w〉

≤
m

∑
k=1

βk [(pk(x)− skqk(x))− (pk(y)− skqk(y))]+ ∑
t∈T

λt [gt(x,vt)−gt(y,vt)]

+
m

∑
k=1

βkεk||x− y||.

(4.3)

By x ∈C, it is obvious that gt(x,vt)≤ 0,∀vt ∈ Vt , t ∈ T . Thus ∑t∈T λtgt(x,vt)≤ 0. From (4.3),
we can assert that

∑
m
k=1 βk [(pk(x)− skqk(x))− (pk(y)− skqk(y))]+∑

m
k=1 βkεk||x− y||−∑

t∈T
λtgt(y,vt)≥ 0,

which contradicts (4.2). The proof is complete. �

The following example demonstrates that the generalized convexity of (p−s?q,gT ) imposed
in Theorem 4.1 is essential.

Example 4.1. Let f : R→ R2 be defined by f (x) = (p1(x)− s1q1(x), p2(x)− s2q2(x)) with
s = (s1,s2) = (−1,−1), and p1(x) = p2(x) = x5 and q1(x) = q2(x) = x4 + 1,x ∈ R. Take T =
[0,1],Vt = [2− t,2+ t], t ∈ T and let gt : R×Vt → R be given by gt(x,vt) = tx2 +3vtx, x ∈ R,
vt ∈ Vt , t ∈ T. We consider the problem (USIMP)s with m = 2 and Ω = (−∞,0]⊂R. By simple
computation, one has C = [−3,0]. Now, consider the dual problem (OUWD)s. By choosing ȳ =
0∈Ω, λ̄t = 0, v̄t ∈Vt , t ∈ T, β̄ =(β̄1, β̄2)∈ intR2

+ with β̄1+ β̄2 = 1,ε1 = ε2 =
1
2 ,BR= [−1,1], we

have N(ȳ;Ω) = N(ȳ;(−∞,0]) = [0,+∞) and ∂ pk(ȳ) = {0},∂qk(ȳ) = {0},k = 1,2,∂xgt(ȳ, v̄t) =
{3v̄t}, v̄t ∈ Vt , t ∈ T . It is easy to see that

0 ∈
[
−1

2
,
1
2

]
+[0,+∞) =

2

∑
k=1

β̄k [∂ pk(ȳ)− sk∂qk(ȳ)]+ ∑
t∈T

λ̄t∂xgt(ȳ, v̄t)+
2

∑
k=1

β̄kεkBR+N(ȳ;Ω),

where ∑
m
k=1 β̄k = 1. Thus (ȳ, v̄t , β̄ , λ̄ ) ∈COUWD. However, by choosing x̄ =−2 ∈C = (−∞,0],

we see that
p(x̄)− s?q(x̄) = (p1(x̄)− s1q1(x̄), p2(x̄)− s2q2(x̄))

= (−15,−15)
� (0,0)
= (Ls1

1 (ȳ, v̄t , β̄ , λ̄ )− ε1||x̄− ȳ||,Ls2
2 (ȳ, v̄t , β̄ , λ̄ )− ε2||x̄− ȳ||)

= Ls(ȳ, v̄t , β̄ , λ̄ )− ε||x̄− ȳ||.

The reason is that (p− s ? q,gT ) is not generalized convex on Ω at ȳ ∈ Ω. To see this, we can
choose y =−3 ∈Ω and x∗k ∈ ∂ pk(ȳ) = {0},z∗k ∈ ∂qk(ȳ) = {0},k = 1,2. Then, it is easy to see
that N(ȳ;Ω)◦ = N(ȳ;(−∞,0])◦ = (−∞,0] and

pk(y)− skqk(y)− [pk(ȳ)− skqk(ȳ)] =−162 < 0 = 〈x∗k− skz∗k ,w〉 ,∀w ∈ N(ȳ;Ω)◦,k = 1,2.

Remark 4.2. Theorem 4.1 improves [13, Theorem 4.1] and [19, Theorem 4.1].

Theorem 4.2. (ε−quasi strong robust duality) Let x̄ ∈C be a robust ε-quasi positively prop-
erly efficient solution to problem (USIMP)s such that condition (RCQ) is satisfied at x̄. Then
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there exists (v̄t , β̄ , λ̄ ) ∈ Vt× intRm
+×R(T )

+ such that (x̄, v̄t , β̄ , λ̄ ) ∈COUWD and p(x̄)− s?q(x̄) =
Ls(x̄, v̄t , β̄ , λ̄ ). If, in addition, (p−s?q,gT ) is generalized convex on Ω at y∈Ω, then (x̄, v̄t , β̄ , λ̄ )
is a robust ε-quasi efficient solution to problem (OUWD)s.

Proof. According to Theorem 3.1, there exist β := (β1, · · · ,βm) ∈ intRm
+,vt ∈ Vt , t ∈ T and

λ ∈ A(x̄) defined in (3.1) such that

0 ∈
m

∑
k=1

βk(∂ pk(x̄)− sk∂qk(x̄))+ ∑
t∈T

λt∂xgt(x̄,vt)+
m

∑
k=1

βkεkBRn +N(x̄;Ω).

Putting

β̄k :=
βk

m

∑
k=1

βk

,k = 1, · · · ,m, λ̄t :=
λt

m

∑
k=1

βk

, v̄t :=
vt

m

∑
k=1

βk

, t ∈ T,

one has β̄ := (β̄1, · · · , β̄m) ∈ Rm
+ with ∑

m
k=1 β̄k = 1, λ̄ := (λ̄t)t∈T ∈ R(T )

+ , v̄t ∈ Vt , t ∈ T . Further-
more, the assertion in (4.9) is also valid when βk’s, λt’s, and vt’s are replaced by ᾱk’s, λ̄t’s, and
v̄t’s, respectively. Thus (x̄, v̄t , β̄ , λ̄ ) ∈COWMD. Besides, since λ ∈ A(x̄) is defined in (3.1), one
has λtgt(x̄,vt) = 0 for all vt ∈ Vt , t ∈ T , which implies that ∑t∈T λ̄tgt(x̄, v̄t) = 0. Therefore, one
has

p(x̄)− s?q(x̄) = p(x̄)− s?q(x̄)+ ∑
t∈T

λ̄tgt(x̄, v̄t)e = Ls(x̄, v̄t , β̄ , λ̄ ).

If (p− s?q,gT ) is generalized convex on Ω at any y ∈Ω, then we obtain by Theorem 4.1 that

Ls(x̄, v̄t , β̄ , λ̄ ) = p(x̄)− s?q(x̄) 6� Ls(y,vt ,β ,λ )− ε||x̄− y||,

for any (y,vt ,β ,λ ) ∈COUWD, which means that (x̄, v̄t , β̄ , λ̄ ) is a robust ε-quasi positively prop-
erly efficient solution to problem (OUWD)s. The proof is complete. �

Note that the conclusion of Theorem 4.2 may fail to hold if condition (RCQ) is not satisfied.
To see this, let us look back at Example 3.1.

Remark 4.3. Theorem 4.2 improves [13, Theorem 4.4] and [19, Theorem 4.2].

Theorem 4.3. (ε−quasi converse robust duality) Let (x̄, v̄t , β̄ , λ̄ ) ∈COUWD such that p(x̄)−
s?q(x̄) = Ls(x̄, v̄t , β̄ , λ̄ ). If x̄ ∈C and (p− s?q,gT ) is generalized convex on Ω at x̄, then x̄ is a
robust ε-quasi positively properly efficient solution to problem (USIMP)s.

Proof. Since (x̄, v̄t , β̄ , λ̄ )∈COUWD, we see that there exist x∗k ∈ ∂ pk(x̄),z∗k ∈ ∂qk(x̄),k= 1, · · · ,m,
β̄ ∈ intRm

+ with ∑
m
k=1 β̄k = 1 and x∗t ∈ ∂xgt(x̄, v̄t), v̄t ∈ Vt , t ∈ T , λ̄ := (λ̄t)t∈T ∈ R(T )

+ , as well as
b∗ ∈ BRn such that

−

(
m

∑
k=1

β̄k(x∗k− skz∗k)+ ∑
t∈T

λ̄tx∗t +
m

∑
k=1

β̄kεkb∗
)
∈ N(x̄;Ω). (4.4)

Suppose on contrary that x̄ ∈C is not a robust ε-quasi positively properly efficient solution to
problem (USIMP)s. It then follows that there exists x̂ ∈C satisfying

m

∑
k=1

β̄k [pk(x̂)− skqk(x̂)]+
m

∑
k=1

β̄kεk||x̂− x||<
m

∑
k=1

β̄k [pk(x̄)− skqk(x̄)] . (4.5)
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By the generalized convexity of (p− s?q,gT ) on Ω at x̄, for such x̂, there exists w ∈ N(x̄;Ω)◦

such that

(pk(x̂)− skqk(x̂))− (pk(x̄)− skqk(x̄))≥ 〈x∗k− skz∗k ,w〉 ,k = 1, · · · ,m (4.6)

gt(x̂, v̄t)−gt(x̄, v̄t)≥ 〈x∗t ,w〉 , v̄t ∈ Vt , t ∈ T (4.7)

and
〈b∗,w〉 ≤ ||x̂− x̄||,b∗ ∈ BRn. (4.8)

Combining (4.5) and (4.6), one has
m

∑
k=1

β̄k 〈x∗k− skz∗k ,w〉+
m

∑
k=1

β̄kεk||x̂− x||< 0. (4.9)

In addition, since p(x̄)− s?q(x̄) = Ls(x̄, v̄t , β̄ , λ̄ ) = p(x̄)− s?q(x̄)+∑t∈T λ̄tgt(x̄, v̄t)e, it follows
that ∑t∈T λ̄tgt(x̄, v̄t)e = (0, · · · ,0) ∈ Rm. Thus, one has ∑t∈T λ̄tgt(x̄, v̄t) = 0. Note that, for any
x̂∈C, ∑t∈T λ̄tgt(x̂, v̄t)≤ 0. It follows that ∑t∈T λ̄tgt(x̂, v̄t)≤ 0 =∑t∈T λ̄tgt(x̄, v̄t), which together
with (4.7) implies that ∑t∈T λ̄t 〈x∗t ,w〉 ≤ 0. Combining (4.8) and (4.9) yields

m

∑
k=1

β̄k 〈x∗k− skz∗k ,w〉+
m

∑
k=1

β̄kεk 〈b∗,w〉+ ∑
t∈T

λ̄t 〈x∗t ,w〉< 0. (4.10)

On the other hand, by the definition of polar cone (2.1), it yields from (4.4) and the relation
w ∈ N(x̄;Ω)◦ that

m

∑
k=1

β̄k 〈x∗k− skz∗k ,w〉+
m

∑
k=1

β̄kεk 〈b∗,w〉+ ∑
t∈T

λ̄t 〈x∗t ,w〉 ≥ 0,

which contradicts (4.10). The proof is complete. �

By virtue of Example 4.1, we see that the result of Theorem 4.3 may not be valid if the
generalized convexity of (p− s?q,gT ) is not satisfied.

4.2. Mond-Weir type duality. In this section, we consider the dual problem of the problem
(USIMP)s in the Mond-Weir type.

For x ∈ Rn,β := (β1, · · · ,βm) ∈ intRm
+ with

m

∑
k=1

βk = 1 and λ ∈ R(T )
+ ,vt ∈ Vt , t ∈ T, p :=

(p1, · · · , pm),q := (q1, · · · ,qm),s := (s1, · · · ,sm) ∈ Rm
−,gT := (gt)t∈T , Ω, a nonempty locally

closed subset of Rn, let us denote a vector function Ls := (Ls1
1 , · · · ,Lsm

m ) by Ls(x,vt ,β ,λ ) :=
p(x)−s?q(x). For ε := (ε1, · · · ,εm)∈Rm

+\{0}, we consider the Mond–Weir type dual problem
(UMWD)s with respect to its primal problem (USIMP)s as follows:

(UMWD)s



max Ls(y,vt ,β ,λ )

s.t. 0 ∈
m

∑
k=1

βk (∂ pk(y)− sk∂qk(y))+ ∑
t∈T

λt∂xgt(y,vt)

+
m

∑
k=1

βkεkBRn +N(y;Ω), ∑
t∈T

λtgt(y,vt)≥ 0,

y ∈Ω,λ ∈ R(T )
+ ,β ∈ intRm

+,
m

∑
k=1

βk = 1.
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The optimistic counterpart, say (OUMWD)s of problem (UMWD)s (also known as a Mond–
Weir type optimistic dual optimization problem), is a deterministic maximization problem given
by

(OUMWD)s



max Ls(y,vt ,β ,λ )

s.t. 0 ∈
m

∑
k=1

βk (∂ pk(y)− sk∂qk(y))+ ∑
t∈T

λt∂xgt(y,vt)

+
m

∑
k=1

βkεkBRn +N(y;Ω),

∑
t∈T

λtgt(y,vt)≥ 0,∀vt ∈ Vt , t ∈ T,

y ∈Ω,λ ∈ R(T )
+ ,β ∈ intRm

+,
m

∑
k=1

βk = 1.

The feasible set of problem (OUMWD)s is defined by

COUMWD := {(y,vt ,β ,λ ) ∈Ω×Vt× intRm
+×R(T )

+ | 0 ∈
m

∑
k=1

βk (∂ pk(y)− sk∂qk(y))

+ ∑
t∈T

λt∂xgt(y,vt)+
m

∑
k=1

βkεkBRn +N(y;Ω), ∑
t∈T

λtgt(y,vt)≥ 0,
m

∑
k=1

βk = 1}.

In what follows, we use the following notation for convenience:

u� v⇔ u− v ∈ −Rm
+\{0}, u 6� v is the negation of u� v.

Now, we introduce the definition of a robust ε-quasi efficient solution / a robust ε-quasi
positively properly efficient solution to problem (OUMWD)s.

Definition 4.3. A point (ȳ, v̄t , β̄ , λ̄ ) ∈COUMWD is said to be
(i) a robust ε-quasi efficient solution to problem (OUMWD)s if

Ls(y,vt ,β ,λ )−Ls(ȳ, v̄t , β̄ , λ̄ )− ε||ȳ− y|| /∈ Rm
+\{0},∀(y,vt ,β ,λ ) ∈COUMWD.

(ii) a robust positively properly efficient solution to problem (OUMWD)s if there exists
θ := (θ1, · · · ,θm) ∈ −intRm

+ such that

〈θ ,Ls(y,vt ,β ,λ )+ ε||ȳ− y||〉>
〈
θ ,Ls(ȳ, v̄t , β̄ , λ̄ )

〉
,∀(y,vt ,β ,λ ) ∈COUMWD.

Motivated by the definition of generalized convexity due to [42], we introduce the concept as
follows.

Definition 4.4. We say that (p− s?q,gT ) is ε-quasi pseudo-generalized convex on Ω at x̄ ∈Ω

if, for any x ∈Ω, x∗k ∈ ∂ pk(x̄),z∗k ∈ ∂qk(x̄),k = 1, · · · ,m and x∗t ∈ ∂xgt(x̄,vt),vt ∈ Vt , t ∈ T , there
exists w ∈ N(x̄;Ω)◦ such that

pk(x)− skqk(x)+ εk||x− x̄||< pk(x̄)− skqk(x̄)⇒ 〈x∗k− skz∗k ,w〉+ εk||x− x̄||< 0,k = 1, · · · ,m,

gt(x,vt)≤ gt(x̄,vt)⇒ 〈x∗t ,w〉 ≤ 0 for all t ∈ T, and 〈b∗,w〉 ≤ ||x− x̄|| for all b∗ ∈ BRn.

Remark 4.4. If (p− s ? q,gT ) is ε-quasi generalized convex on Ω at any x̄ ∈ Ω, then (p− s ?
q,gT ) is pseudo-generalized convex on Ω at x ∈ Ω. In addition, by a similar argument in ([26,
Example 6]), we can prove that the class of the ε-quasi pseudo-generalized convex functions is
properly larger than the one of the generalized convex functions.
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Theorem 4.4. (ε−quasi weak robust duality) Let x ∈C and (y,vt ,β ,λ ) ∈COUMWD. If (p−
s?q,gT ) is ε-quasi pseudo-generalized convex on Ω at y, then p(x)− s?q(x) 6� Ls(y,vt ,β ,λ )−
ε||x− y||.

Proof. Since (y,vt ,β ,λ ) ∈ COUMWD, there exist x∗k ∈ ∂ pk(y),z∗k ∈ ∂qk(y),k = 1, · · · ,m,β ∈

intRm
+ with

m

∑
k=1

βk = 1 and x∗t ∈ ∂xgt(y,vt),vt ∈ Vt , t ∈ T , λ ∈R(T )
+ , as well as b∗ ∈BRn such that

−

(
m

∑
k=1

βk(x∗k− skz∗k)+ ∑
t∈T

λtx∗t +
m

∑
k=1

βkεkb∗
)
∈ N(y;Ω) (4.11)

and

∑
t∈T

λtgt(y,vt)≥ 0. (4.12)

Let x ∈C. Suppose on contrary that p(x)−s?q(x)� Ls(y,vt ,β ,λ ,)−ε||x−y||. It follows from
β := (β1, · · · ,βm) ∈ intRm

+ that 〈β , p(x)− s?q(x)−Ls(y,vt ,β ,λ )+ ε||x− y||〉 < 0. Therefore,
one has

〈β ,(p(x)− s?q(x))− (p(y)− s?q(y))+ ε||x− y||〉< 0,

which is equivavalent to the following inequality
m

∑
k=1

βk [pk(x)− skqk(x)]+
m

∑
k=1

βkεk||x− y||<
m

∑
k=1

βk [pk(y)− skqk(y)] . (4.13)

Note that, for x ∈C, gt(x,vt)≤ 0 for any vt ∈ Vt , t ∈ T . It yields that ∑t∈T λtgt(x,vt)≤ 0, which
together with (4.12) implies that

∑
t∈T

λtgt(x,vt)≤ ∑
t∈T

λtgt(y,vt). (4.14)

By the ε-quasi pseudo-generalized convexity of (p− s?q,gT ) on Ω at y ∈Ω and (4.13), (4.14)
for such x ∈C⊆Ω,x∗k ∈ ∂ pk(y),z∗k ∈ ∂qk(y),k = 1, · · · ,m,x∗t ∈ ∂xgt(y,vt),vt ∈ Vt , t ∈ T , we see
that there exists w ∈ N(y;Ω)◦ such that

m

∑
k=1

βk 〈x∗k− skz∗k ,w〉+ ∑
t∈T

βkεk 〈b∗,w〉+ ∑
t∈T

λt 〈x∗t ,w〉< 0. (4.15)

On the other hand, by the definition of polar cone (2.1), it yields from (4.11) and the relation
w ∈ N(y;Ω)◦ that

m

∑
k=1

βk 〈x∗k− skz∗k ,w〉+ ∑
t∈T

βkεk 〈b∗,w〉+ ∑
t∈T

λt 〈x∗t ,w〉 ≥ 0,

which contradicts (4.15). The proof is complete. �

The following example demonstrates that the ε-quasi pseudo-generalized convexity of (p−
s?q,gT ) imposed in the Theorem 4.4 is essential.

Example 4.2. Let f : R→ R2 be defined by f (x) = (p1(x)− s1q1(x), p2(x)− s2q2(x)) with
s = (s1,s2) = (−1,−1) and

p1(x) = p2(x) = x7,q1(x) = q2(x) = x6 +1,x ∈ R.
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Take T = [0,1],Vt = [2− t,2+ t], t ∈ T and let gt : R×Vt → R be given by

gt(x,vt) =−vtx2,x ∈ R,vt ∈ Vt , t ∈ T.

We consider the problem (USIMP)s with m= 2 and Ω= (−∞,0]⊂R. Simple calculation yields
C = (−∞,0]. Now, we consider dual problem (OUMWD)s. By choosing ȳ = 0 ∈ Ω,ε1 = ε2 =
1
3 , v̄t ∈Vt , λ̄ ∈R(T )

+ , β̄ = (β̄1, β̄2)∈ intR2
+ with β̄1+ β̄2 = 1 and BR = [−1,1], we have N(ȳ;Ω) =

N(ȳ;(−∞,0]) = [0,+∞) and ∂ pk(ȳ) = {0},∂qk(ȳ) = {0},k = 1,2,∂xgt(ȳ, v̄t) = {0}, v̄t ∈ Vt , t ∈
T . It is easy to see that

0 ∈
[
−1

3
,
1
3

]
+[0,+∞) =

2

∑
k=1

β̄k [∂ pk(ȳ)− sk∂qk(x̄)]+ ∑
t∈T

λ̄t∂xgt(ȳ, v̄t)+
2

∑
k=1

β̄kεkBR+N(ȳ;Ω),

∑t∈T λ̄tgt(ȳ, v̄t) = 0 ≥ 0. Thus, (ȳ, v̄t , β̄ , λ̄ ) ∈COUMWD. However, by choosing x̄ = −2 ∈C =
(−∞,0], it follows that

p(x̄)− s?q(x̄) = (p1(x̄)− s1q1(x̄), p2(x̄)− s2q2(x̄))
= (−63,−63)
�
(1

3 ,
1
3

)
= (Ls1

1 (ȳ, v̄t , β̄ , λ̄ )− ε1|x̄− ȳ||,Ls2
2 (ȳ, v̄t , β̄ , λ̄ )− ε2|x̄− ȳ||)

= Ls(ȳ, v̄t , β̄ , λ̄ )− ε|x̄− ȳ||.

The reason is that (p−s?q,gT ) is not ε−quasi pseudo-generalized convex on Ω at ȳ= 0. To see
this, we can choose y=−3∈Ω and x∗k ∈ ∂ pk(ȳ) = {0},z∗k ∈ ∂qk(ȳ) = {0},k = 1,2,ε1 = ε2 =

1
3 .

Then, it is easy to see that N(ȳ;Ω)◦ = N(ȳ;(−∞,0])◦ = (−∞,0] and

pk(y)− skqk(y)+ εk||y− ȳ||=−1456 < 1 = pk(ȳ)− skqk(ȳ),k = 1,2.

However,
〈
x∗k− skz∗k ,w

〉
+ εk||y− ȳ||= 1 > 0,∀w ∈ N(ȳ;Ω)◦, k = 1,2.

Remark 4.5. Theorem 4.4 improves Theorem 4 in [26].

Theorem 4.5. (ε−quasi strong robust duality) Let x̄ ∈C be a robust ε-quasi positively prop-
erly efficient solution to problem (USIMP)s such that condition (RCQ) is satisfied at x̄. Then
there exists (v̄t , β̄ , λ̄ )∈Vt× intRm

+×R
(T )
+ such that (x̄, v̄t , β̄ , λ̄ )∈COUMWD and p(x̄)−s?q(x̄) =

Ls(x̄, v̄t , β̄ , λ̄ ). If, in addition, (p−s?q,gT ) is ε-quasi pseudo-generalized convex on Ω at y∈Ω,
then (x̄, v̄t , β̄ , λ̄ ) is a robust ε-quasi efficient solution to problem (OUMWD)s.

Proof. According to Theorem 3.1, there exist β := (β1, · · · ,βm) ∈ intRm
+,vt ∈ Vt , t ∈ T and

λ ∈ A(x̄) defined in (3.1) such that

0 ∈
m

∑
k=1

βk(∂ pk(x̄)− sk∂qk(x̄))+ ∑
t∈T

λt∂xgt(x̄,vt)+
m

∑
k=1

βkεkBRn +N(x̄;Ω). (4.16)

Putting

β̄k :=
βk

∑
m
k=1 βk

,k = 1, · · · ,m, λ̄t :=
λt

∑
m
k=1 βk

, v̄t :=
vt

∑
m
k=1 βk

, t ∈ T,

one has β̄ := (β̄1, · · · , β̄m) ∈ intRm
+ with ∑

m
k=1 β̄k = 1, λ̄ := (λ̄t)t∈T ∈ R(T )

+ , v̄t ∈ Vt , t ∈ T . Fur-
thermore, the assertion in (4.16) is also valid when βk’s, λt’s, and vt’s are replaced by β̄k’s,
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λ̄t’s, and v̄t’s, respectively. Clearly, (x̄, v̄t , β̄ , λ̄ ) ∈ COUMWD. In view of λ ∈ A(x̄), one has
λtgt(x̄,vt) = 0,∀vt ∈ Vt , t ∈ T , which implies that ∑t∈T λ̄tgt(x̄, v̄t) = 0. Thus

p(x̄)− s?q(x̄) = Ls(x̄, v̄t , β̄ , λ̄ ).

If (p−s?q,gT ) is ε-quasi pseudo-generalized convex on Ω at any y∈Ω, then we obtain by The-
orem 4.4 that Ls(x̄, v̄t , β̄ , λ̄ ) = p(x̄)− s?q(x̄) 6� Ls(y,vt ,β ,λ )− ε||x̄− y||, for any (y,vt ,β ,λ ) ∈
COUMWD, that is, (x̄, v̄t , β̄ , λ̄ ) is a robust ε-quasi efficient solution to problem (OUMWD)s. The
proof is complete. �

Note that the conclusion of Theorem 4.5 may fail to hold if condition (RCQ) is not satisfied.
To see this, let us recall Example 3.1.

Remark 4.6. Theorem 4.5 improves [26, Theorem 5].

Theorem 4.6. (ε−quasi converse robust duality) Let (x̄, v̄t , β̄ , λ̄ ) ∈ COUMWD. If x̄ ∈ C and
(p− s?q,gT ) is ε-quasi pseudo-generalized convex on Ω at x̄, then x̄ is a robust ε-quasi posi-
tively properly efficient solution to problem (USIMP)s.

Proof. Since (x̄, v̄t , β̄ , λ̄ ) ∈ COUMWD, there exist x∗k ∈ ∂ pk(x̄),z∗k ∈ ∂qk(x̄),k = 1, · · · ,m, β̄ ∈
intRm

+ with ∑
m
k=1 β̄k = 1 and x∗t ∈ ∂xgt(x̄, v̄t), v̄t ∈ Vt , t ∈ T , λ̄ := (λ̄t)t∈T ∈ R(T )

+ , as well as
b∗ ∈ BRn such that

−

(
m

∑
k=1

β̄k(x∗k− skz∗k)+ ∑
t∈T

λ̄tx∗t +
m

∑
k=1

β̄kεkb∗
)
∈ N(x̄;Ω) (4.17)

and

∑
t∈T

λ̄tgt(x̄, v̄t)≥ 0. (4.18)

Suppose on contrary that x̄ ∈C is not a robust ε-quasi positively properly efficient solution to
problem (USIMP)s. For such β̄ := (β̄1, · · · , β̄m) ∈ intRm

+, it then follows that there exists x̃ ∈C
satisfying

m

∑
k=1

β̄k [pk(x̃)− skqk(x̃)]+
m

∑
k=1

β̄kεk||x̃− x̄||<
m

∑
k=1

β̄k [pk(x̄)− skqk(x̄)] . (4.19)

Note that, for any x̃∈C, gt(x̃, v̄t)≤ 0 for any v̄t ∈Vt , t ∈ T , which yields that ∑t∈T λ̄tgt(x̃, v̄t)≤ 0.
From (4.18), we see that

∑
t∈T

λ̄tgt(x̃, v̄t)≤ ∑
t∈T

λ̄tgt(x̄, v̄t). (4.20)

By the ε-quasi pseudo-generalized convexity of (p− s?q,gT ) on Ω at x̄ ∈Ω and (4.19), (4.20)
for such x ∈C ⊆ Ω,x∗k ∈ ∂ pk(x̄),z∗k ∈ ∂qk(x̄),k = 1, · · · ,m,x∗t ∈ ∂xgt(x̄, v̄t), v̄t ∈ Vt , t ∈ T , there
exists w ∈ N(y;Ω)◦ such that

m

∑
k=1

β̄k 〈x∗k− skz∗k ,w〉+
m

∑
k=1

β̄kεk 〈b∗,w〉+ ∑
t∈T

λ̄t 〈x∗t ,w〉< 0. (4.21)

Besides, by the definition of polar cone (2.1), it yields from (4.17) and the relation w∈N(x̄;Ω)◦

that ∑
m
k=1 β̄k〈x∗k− skz∗k ,w〉+ ∑

m
k=1 β̄kεk〈b∗,w〉+ ∑t∈T λ̄t〈x∗t ,w〉 ≥ 0, which contradicts (4.21).

The proof is complete. �
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By virtue of Example 4.2, we see that the result of Theorem 4.6 may not be valid if the
ε-quasi pseudo-generalized convexity of (p− s?q,gT ) is not satisfied.

Remark 4.7. Theorem 4.6 improves [26, Theorem 6].
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