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ON THE STRONG CONVERGENCE OF AN INERTIAL PROXIMAL
ALGORITHM WITH A TIME SCALE, HESSIAN-DRIVEN DAMPING, AND A
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AKRAM CHAHID BAGY, ZAKI CHBANI∗, HASSAN RIAHI

Department of Mathematics, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech, Morocco

Abstract. This paper concerns with convergence properties of an inertial proximal algorithm that con-
tains a Tikhonov term regularization, time scale parameter, and a Hessian-driven damping in a Hilbert
space. More precisely, we prove the strong convergence of the proximal algorithm obtained by temporal
discretization of a continuous dynamic that we treated earlier in a previous work. We also obtain the
convergence of the values to the global minimum of the objective function, and a strong convergence
of the gradient and the velocity towards zero. Finally, we present a numerical example to illustrate our
results.
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1. INTRODUCTION

In this paper, H is a real Hilbert space, with inner product and norm denoted by 〈·, ·〉 and
‖ ·‖ respectively, while f : H →R is a convex and continuously differentiable function, whose
gradient denoted by ∇ f is Lipschitz continuous on bounded sets. We are interested in the
following minimization problem:

min{ f (x) : x ∈H } (1.1)

whose solution set S := argminH f is nonempty.
One of the best-known methods for solving problem (1.1) is the classical proximal point

algorithm initiated by Martinet [1] which is defined, for a general set-valued monotone maximal
operator T : H → 2H , as follows

xk+1 = JT
λk
(xk), (PPA)

where (λk)k∈N represents the step sequence of the algorithm, and JT
λk

: H →H is the resolvent
of the monotone operator T , defined by JT

λk
(x) := (I +λkT )−1(x).
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Given that T−1(0) 6= /0 and λk bounded away from zero, Rockafellar [2] demonstrated that
(PPA) weakly converges to a solution of problem (1.1), and then asked whether (PPA) con-
verges strongly or not? Güler [3] answered this question by creating an example where the se-
quence converges weakly but not strongly. Subsequently, a number of authors suggested modifi-
cations to (PPA) to improve weak convergence to strong convergence; see, e.g., [4, 5, 6, 7, 8, 9].

We stress that when T = ∇ f , the (PPA) described here applies to problem (1.1), and it is
clear that (PPA) is equivalent to

xk+1− xk

λk
+∇ f (xk+1) = 0,

which can be considered as an implicit discretisation of the following continuous dynamical
system ẋ(t)+∇ f (x(t)) = 0. This was studied by many authors recently; see, e.g., [10, 11, 12,
13]. More generally, Polyak [14] considered the Heavy ball system

ẍ(t)+α ẋ(t)+∇ f (x(t)) = 0, (HBF)

where the damping coefficient α > 0 is fixed. In the case that f is strongly convex, he proved
convergence at an exponential rate of f (x(t)) to minH f ; see [15]. The weak convergence of
the trajectories of (HBF) was obtained by Alvarez in [16]. In the quest of strong convergence of
trajectories, Attouch and Czarnecki [17] added the Tikhonov term ε(t)x(t) to the (HBF) system

ẍ(t)+α ẋ(t)+∇ f (x(t))+ ε(t)x(t) = 0. (HBFC)

They proved, when ε(·) tends slowly to zero, i.e.,
∫+∞

0 ε(t)dt = +∞, that any solution x(·) of
(HBFC) converges strongly to the minimum norm element of argminH f . (HBFC) system is a
particular case of the general dynamic model

ẍ(t)+α ẋ(t)+∇ f (x(t))+ ε(t)∇g(t) = 0,

studied by Attouch and Czarnecki in [18] which involves two potential functions f and g in-
tervening with different time scales. When ε(·) tends to zero moderately slowly, they showed
that the trajectories converge asymptotically to equilibria that are solutions to the following hi-
erarchical minimization problem: they minimized the potential g on the set of minimizers of
f .

In the quest for faster convergence, Attouch, Chbani and Riahi carried out another develop-
ment in [19] which consists in the study of the dynamical system with asymptotically vanishing
damping

ẍ(t)+
α

t
ẋ(t)+∇ f (x(t))+ ε(t)x(t) = 0. (AVDα,ε )

It is a Tikhonov regularization of the dynamic system

ẍ(t)+
α

t
ẋ(t)+∇ f (x(t)) = 0, (AVDα )

which was introduced by Su, Boyd and Candès in [20], where they showed that, for α = 3, the
above system can be considered as a continuous version of the Nesterov accelerated gradient

method [21, 22, 23, 24] with f (x(t))−min
H

f = O

(
1
t2

)
as t → +∞. For the other two cases

α > 3 and α < 3, we refer to [25, 26, 27, 28, 29, 30].
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According to the structure of the heavy ball method for strongly convex functions, Attouch
and László in [31] considered the following system

ẍ(t)+α
√

ε(t)ẋ(t)+∇ f (x(t))+ ε(t)x(t) = 0,

where the viscous damping coefficient is proportional to the square root of the Tikhonov regu-
larization parameter. Given that α > 0 and ε(t) = 1

tr with 2
3 < r < 2, they proved that f (x(t))−

min
H

f = O

(
1

t
3r
2 −1

)
, as t→+∞. In addition, liminf

t→+∞
‖x(t)−x∗‖= 0 as soon as α > 3, where x∗

the element of minimum norm of argminH f .
In [32], Attouch et al. succeeded in obtaining limt→∞ ‖x(t)− x∗‖ = 0 in the case that α > 0

and ε(t) = 1
tr with 0 < r < 2. They obtained, for t large enough, the following convergence

rates

f (x(t))−min
H

f = O

(
1
tr

)
,
∥∥x(t)− xε(t)

∥∥2
= O

(
1

t
2−r

2

)
and ‖ẋ(t)‖2 = O

(
1

t
2+r

2

)
where xε(t) = argmin

H
{ f (x)+ ε(t)

2 ‖x‖
2}, which ensures the strong convergence of x(t) to x∗.

Later, in [33], the authors showed that the trajectories generated by the system

ẍ(t)+α
√

ε(t)ẋ(t)+δ∇
2 f (x(t))ẋ(t)+∇ f (x(t))+ ε(t)x(t) = 0, (1.2)

which is driven by the Hessian of the function f , retain the same convergence rates for ε(t) = 1
tr

with 1 < r < 2, and induce a significant attenuation of oscillations.
Very recently, we studied in [34] the following dynamic system involving a Tikhonov term

c
β (t)x(t) and a Hessian-driven damping:

ẍ(t)+α ẋ(t)+δ
d
dt

(∇ f (x(t)))+β (t)
(

∇ f (x(t))+
c

β (t)
x(t)
)
= 0, (1.3)

where α, c,δ > 0, and the time scale parameter β (·) is a positive nondecreasing function with
lim

t→+∞
β (t) = +∞. By imposing adequate hypothesis on first and second order derivatives of β ,

which may include the special cases t p(ln(t))q with p > 1, q≥ 0 and eγt p
with p ∈]0,1[, γ > 0,

we obtained, when t→+∞:

• Convergence rate of values: f (x(t))−min
H

f = O

(
1

β (t)

)
.

• Strong convergence of the trajectories with: ‖x(t)− xt‖2 = O

(
β̇ (t)
β (t)

+ e−µt

)
;

where xt := argmin
H
{ f (x)+ c

2β (t)‖x‖
2} and µ <

α

2
.

• Strong convergence rate of the gradients:

‖∇ f (x(t))‖2 = O

(
β̇ (t)
β (t)

+ e−µt +
1

β 2(t)

)
.

• Strong convergence rate of velocity: ‖ẋ(t)‖2 = O

(
β̇ (t)
β (t)

+ e−µt +
1

β 2(t)

)
.
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The case δ = 0, i.e., without Hessian-driven damping, was treated in [35].
We see that the Tikhonov regularization coefficient c

β (t) must vanish since β (t) goes to +∞.
Thus dynamical system (1.3) can be seen as a combination of two techniques: a time scaling of
the damped inertial gradient system (see [36, 37] ) and the Tikhonov regularization (see [32]).
The technique of time scaling was employed for dynamical system (1.3) in order to expedite
the convergence of function values along its trajectory, and the presence of the Tikhonov term
enhances the convergence of trajectories from weak convergence to strong convergence. Fur-
thermore, it ensures convergence towards the minimizer with the minimal norm rather than any
arbitrary element in the set of all minimizers.

Our contribution: In this work, we study the associated proximal algorithm obtained by
temporal discretization of (1.3). More precisely, we show that the corresponding proximal
algorithm has convergence properties similar to those of the continuous dynamics algorithm.
In this context, we consider the following implicit discretization case of (1.3) in time with step
h > 0. Setting s = h2, we have, for all k ≥ 1,

(xk+1− xk)− (xk− xk−1)+α
√

s(xk+1− xk)+δ
√

s [∇ f (xk+1)−∇ f (xk)]

+ sβk∇ f (xk+1)+ csxk+1 = 0, (1.4)

which gives(
1+α

√
s+ sc

)
(xk+1− xk)+(δ

√
s+ sβk)∇ f (xk+1) = xk− xk−1 +δ

√
s∇ f (xk)− sc)xk. (1.5)

Let us denote briefly d =
1

1+α
√

s+ sc
and λk = d (δ

√
s+ sβk). By multiplying (1.5) by d, we

obtain

(I +λk∇ f )(xk+1) = xk +d
[
xk− xk−1 +δ

√
s∇ f (xk)

]
−dscxk.

We can then formulate the Inertial Proximal Algorithm as
(IPATTH): Inertial Proximal Algorithm with Tikhonov regularization Time scale,

and Hessian damping.
Let α, c, δ > 0.

Step k: set d =
1

1+α
√

s+ sc
and λk = d (δ

√
s+ sβk){

yk = xk +d(xk− xk−1 +δ
√

s∇ f (xk))
xk+1 = proxλk f (yk−dscxk) .

(IPATTH)

The objective of this work is to obtain simultaneously strong convergence of algorithm (IPATTH),
as well as convergence rates similar to those obtained in the continuous cases mentioned above.

The remainder of the paper is organized as follows. In Section 2, we recall basic facts con-
cerning Thikonov approximation, and formulate the proposed Lyapunov energy sequence, and
we then present the main estimate of this sequence. In Section 3, we give the main results of
the paper concerning the asymptotic convergence properties of algorithm (IPATTH). Section
4 focuses on two specific cases of the sequence βk. Finally, the last section, Section 5, contains
numerical illustrations to end this paper.
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2. ESTIMATION OF THE LYAPUNOV ENERGY SEQUENCE

Throughout this section, we assume that{
f : H −→ R is convex, of class C1, ∇ f is Lipschitz continuous on bounded set,
argmin f 6= /0 and denote x∗ as its minimum norm element;

(H′0)

{
(βk)k≥k0 is a nondecreasing sequence, such that
lim

k→+∞
βk =+∞ and lim

k→+∞
βk+1−βk =+∞. (H0)

Let us define the real function φk : H → R by φk(x) := f (x)+
c

2βk
‖x‖2. It is clear that φk

is c
βk

-strongly convex. Then, for each k ≥ k0, there exists a unique minimizer xβk
∈H of the

strongly convex function φk. The first order optimality condition gives

∇ f (xβk
)+

c
βk

xβk
= 0. (2.1)

This means that xβk
= prox βk

c f
(0) = (I + βk

c ∇ f )−1(0), and then the following properties are

satisfied

∀k ≥ k0 :
∥∥xβk

∥∥≤ ‖x∗‖ and lim
k−→+∞

∥∥xβk
− x∗

∥∥= 0. (2.2)

Let us introduce the discrete energy sequence (Ep,k)k≥k0 ⊂ R+ that plays a key role in our
Lyapunov analysis. It is defined by

Ek = sβk
(
φk(xk)−φk(xβk

)
)
+

1
2
‖vk‖2, (2.3)

with vk = τ(xk− xβk−1
)+(xk− xk−1)+δ

√
s∇ f (xk),

where τ is a positive constant.
We now give, in the following Lemma, the relation between the asymptotic behavior of se-

quence (Ek) and the convergence rate of the values and iterates.

Lemma 2.1. Let (xk) be the sequence generated by the algorithm (IPATTH), and (Ek) be the
energy sequence defined in (2.3). Then, for any k ≥ k0,

f (xk)−min
H

f ≤ 1
βk

(
Ek

s
+

c
2

(
‖x∗‖2−‖xk‖2

))
(2.4)

and
∥∥xk− xβk

∥∥2 ≤ 2
sc

Ek. (2.5)

If lim
k→+∞

Ek = 0, then xk converges strongly to x∗.
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Proof. Based on the definition of φk and Ek, we have

f (xk)−min
H

f = φk(xk)−
c

2βk
‖xk‖2−φk(x∗)+

c
2βk
‖x∗‖2

=
[
φk(xk)−φk(xβk))

]
+

φk(xβk
)−φk(x∗)︸ ︷︷ ︸
≤0

+ c
2βk
‖x∗‖2− c

2βk
‖xk‖2

≤ φk(xk)−φk(xβk
)+

c
2βk

(
‖x∗‖2−‖xk‖2

)
≤ 1

βk

(
Ek

s
+

c
2

(
‖x∗‖2−‖xk‖2

))
.

On the other hand, from the strong convexity of φk and xβk
:= argmin

H
φk, we obtain

φk(xk)−φk(xβk
)≥ c

2βk

∥∥xk− xβk

∥∥2
,

which, combined with (2.3), gives
Ek

sβk
≥ c

2βk

∥∥xk− xβk

∥∥2
, which yields (2.5). �

In the following Lemma, we give some properties of the viscosity curve k→ xβk
, in relation

to the Moreau envelope. Firstly, let us recall that the Moreau envelope of f is the function
fλ : H −→ R (λ > 0), defined by

fλ (x) = min
y∈H

{
f (y)+

1
2λ
‖x− y‖2

}
, for any x ∈H , (2.6)

and proxλ f (x) is the unique point where the minimum value is achieved in (2.6), i.e.,

fλ (x) = f (proxλ f (x))+
1

2λ

∥∥x−proxλ f (x)
∥∥2
.

Lemma 2.2. For all k ≥ k0, the following properties are satisfied:

i) φk(xβk
)−φk+1(xβk+1

)≤ c
2

(
1
βk
− 1

βk+1

)∥∥xβk+1

∥∥2
,

ii)
∥∥xβk+1

− xβk

∥∥2 ≤ βk+1−βk

βk+1

〈
xβk+1

,xβk+1
− xβk

〉
, and thus

∥∥xβk+1
− xβk

∥∥≤ βk+1−βk

βk+1

∥∥xβk+1

∥∥.
Proof. i) We have

φk(xβk
) = f βk

c
(0) = min

y∈H

{
f (y)+

c
2βk
‖y‖2

}
≤ f (xβk+1

)+
c

2βk

∥∥xβk+1

∥∥2
,

and φk+1(xβk+1
) = f βk+1

c
(0) = f (xβk+1

)+ c
2βk+1

∥∥xβk+1

∥∥2
, which implies that

φk(xβk
)−φk+1(xβk+1

)≤ c
2

(
1
βk
− 1

βk+1

)∥∥xβk+1

∥∥2
.
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ii) One has −c
βk

xβk
= ∇ f (xβk

) and −c
βk+1

xβk+1
= ∇ f (xβk+1

), so the monotonicity of ∇ f

gives
〈

c
βk

xβk
− c

βk+1
xβk+1

,xβk+1
− xβk

〉
≥ 0. It follows that

c
βk

∥∥xβk+1
− xβk

∥∥2 ≤
(

c
βk
− c

βk+1

)〈
xβk+1

,xβk+1
− xβk

〉
,

which gives the claim. The last statement follows directly from the Cauchy-Schwarz
inequality.

�

Under general assumptions, we give in the following Theorem a very important estimate of
the Lyapunov energy sequence (Ek) defined in (2.3).

Theorem 2.1. Let (xk) be a sequence generated via the algorithm (IPATTH) with c ≥ α2.
Suppose (H0) and

lim
k−→+∞

βk+1

βk
< 1+α

√
s. (H1)

Then there exist a > 1 and k1 ≥ k0 such that, for all k ≥ k1,

Ek+1 ≤ eρ(k1−k−1)Ek1 +
‖x∗‖2

eρ(k+1)

(
k

∑
j=k1

eρ( j+1)
θ j

)
; (2.7)

where ρ =
α
√

s
1+a+α

√
s

and

θk =
1
2

(
aρ(2a+1)

(βk−βk−1)
2

β 2
k

+ sc
(

βk+1

βk
−1
)
+

aρ2δc
√

s
(1−ρ)βk

)
.

Proof. To simplify the writing of the proof, we use the following notations: for any sequence
(uk) in H , we write, for k ≥ 0,

u̇k := uk+1−uk and ük−1 := u̇k− u̇k−1 = uk+1−2uk +uk−1.

We have

Ek+1−Ek

= sβk+1
(
φk+1(xk+1)−φk+1(xβk+1

)
)
− sβk

(
φk(xk)−φk(xβk

)
)
+

1
2

(
‖vk+1‖2−‖vk‖2

)
.

Combining this last equality with this elementary algebraic inequality

1
2

(
‖vk+1‖2−‖vk‖2

)
= 〈vk+1− vk,vk+1〉−

1
2
‖vk+1− vk‖2 ≤ 〈v̇k,vk+1〉 ,

we obtain

Ek+1−Ek ≤ sβk+1
(
φk+1(xk+1)−φk+1(xβk+1

)
)
− sβk

(
φk(xk)−φk(xβk

)
)
+ 〈v̇k,vk+1〉

= sβk [φk(xk+1)−φk(xk)]+ s(βk+1−βk)
[
φk(xk+1)−φk(xβk

)
]

+ sβk+1
[
φk+1(xk+1)−φk(xk+1)+φk(xβk

)−φk+1(xβk+1
)
]
+ 〈v̇k,vk+1〉 .
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Obviously, from the definition of φk we have

φk+1(xk+1)−φk(xk+1) =
c
2

(
1

βk+1
− 1

βk

)
‖xk+1‖2.

According to Lemma 2.2 i), we obtain

Ek+1−Ek ≤ sβk [φk(xk+1)−φk(xk)]+ s(βk+1−βk)
[
φk(xk+1)−φk(xβk

)
]

+
sc
2

(
βk+1

βk
−1
)[∥∥xβk+1

∥∥2−‖xk+1‖2
]
+ 〈v̇k,vk+1〉 . (2.8)

On the other hand, we have, for every k ≥ k0,

v̇k = vk+1− vk = τ(xk+1− xβk
)+(xk+1− xk)+δ

√
s∇ f (xk+1)

− τ(xk− xβk−1
)− (xk− xk−1)−δ

√
s∇ f (xk)

= τ(ẋk− ẋβk−1
)+ ẍk−1 +δ

√
s [∇ f (xk+1)−∇ f (xk)] .

Returning to (1.4), we also obtain

ẍk−1 +δ
√

s [∇ f (xk+1)−∇ f (xk))] =−α
√

sẋk− sβk∇ f (xk+1)− csxk+1.

The combination of the last two equalities gives

v̇k = τ(ẋk− ẋβk−1
)−α

√
sẋk− sβk∇ f (xk+1)− csxk+1

= (τ−α
√

s)ẋk− τ ẋβk−1
− sβk

(
∇ f (xk+1)+

c
βk

xk+1

)
= (τ−α

√
s)ẋk− τ ẋβk−1

− sβk∇φk(xk+1).

Thus

〈v̇k,vk+1〉=
〈
(τ−α

√
s)ẋk− τ ẋβk−1

− sβk∇φk(xk+1) ,τ(xk+1− xβk
)+ ẋk +δ

√
s∇ f (xk+1)

〉
= τ(τ−α

√
s)
〈
ẋk,xk+1− xβk

〉
+(τ−α

√
s)‖ẋk‖2 +δ

√
s(τ−α

√
s)〈ẋk,∇ f (xk+1)〉

− τ
2 〈ẋβk−1

,xk+1− xβk

〉
− τ
〈
ẋβk−1

, ẋk
〉
−δτ

√
s
〈
ẋβk−1

,∇ f (xk+1)
〉

− sτβk
〈
∇φk(xk+1),xk+1− xβk

〉
− sβk 〈∇φk(xk+1), ẋk〉

−δ s
√

sβk 〈∇φk(xk+1),∇ f (xk+1)〉 . (2.9)

According to condition (H1) and lim
a→+∞

(a−1)α
√

s
a+1+α

√
s
= α
√

s, one can choose a > 1 such that,

for all k large enough,
βk+1

βk
−1≤ (a−1)α

√
s

a+1+α
√

s
; equivalently

βk+1

βk
≤ a(α

√
s+1)+1

a+1+α
√

s
. (2.10)

From Lemma 2.2 ii) and inequality (2.2), we have

−τ
〈
ẋβk−1

, ẋk
〉
≤ aτ

2

∥∥ẋβk−1

∥∥2
+

τ

2a
‖ẋk‖2 ≤ aτ

2
β̇ 2

k−1

β 2
k
‖x∗‖2 +

τ

2a
‖ẋk‖2, (2.11)
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and −δτ
√

s
〈
ẋβk−1

,∇ f (xk+1)
〉
≤ aτ

2

∥∥ẋβk−1

∥∥2
+

sδ 2τ

2a
‖∇ f (xk+1)‖2

≤ aτ

2
β̇ 2

k−1

β 2
k
‖x∗‖2 +

sδ 2τ

2a
‖∇ f (xk+1)‖2. (2.12)

In the same way,

−τ2 〈ẋβk−1
,xk+1− xβk

〉
≤ τ

2

∥∥ẋβk−1

∥∥2
+

τ3

2

∥∥xk+1− xβk

∥∥2

≤ τ

2
β̇ 2

k−1

β 2
k
‖x∗‖2 +

τ3

2

∥∥xk+1− xβk

∥∥2
.

(2.13)

By the strong convexity of φk, we obtain

φk(xβk
)−φk(xk+1)≥−

〈
∇φk(xk+1),xk+1− xβk

〉
+

c
2βk

∥∥xk+1− xβk

∥∥2
,

which is equivalent to

− sτβk
〈
∇φk(xk+1),xk+1− xβk

〉
≤−sτβk

(
φk(xk+1)−φk(xβk

)
)
− scτ

2

∥∥xk+1− xβk

∥∥2
. (2.14)

Similarly, φk(xk)−φk(xk+1)≥−〈∇φk(xk+1),xk+1− xk〉+
c

2βk
‖xk+1− xk‖2, which is equivalent

to

−sβk 〈∇φk(xk+1), ẋk〉 ≤ −sβk (φk(xk+1)−φk(xk))−
sc
2
‖xk+1− xk‖2. (2.15)

By replacing (2.11), (2.12), (2.13), (2.14), and (2.15), in formulation (2.9), and after simplifica-
tions, we deduce that

〈v̇k,vk+1〉 ≤
(

τ−α
√

s+
τ

2a

)
‖ẋk‖2 +

τ

2
(τ2− sc)

∥∥xk+1− xβk

∥∥2
+

τ

2
(2a+1)

β̇ 2
k−1

β 2
k
‖x∗‖2

+
sτδ 2

2a
‖∇ f (xk+1)‖2− sβk (φk(xk+1)−φk(xk))− sτβk

(
φk(xk+1)−φk(xβk

)
)

+ τ(τ−α
√

s)
〈
ẋk,xk+1− xβk

〉
+δ
√

s(τ−α
√

s)〈∇ f (xk+1), ẋk〉
−δ s
√

sβk 〈∇φk(xk+1),∇ f (xk+1)〉 .

By combining this last inequality with the following two equalities

δ
√

s(τ−α
√

s)〈∇ f (xk+1), ẋk〉=
1
2
(τ−α

√
s)
(∥∥ẋk +δ

√
s∇ f (xk+1)

∥∥2

−sδ
2‖∇ f (xk+1)‖2−‖ẋk‖2

)
,

and

−δ s
√

sβk 〈∇φk(xk+1),∇ f (xk+1)〉=
−δ s
√

sβk

2

(
‖∇φk(xk+1)‖2 +‖∇ f (xk+1)‖2− c2

β 2
k
‖xk+1‖2

)
,
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we obtain

〈v̇k,vk+1〉

≤ 1
2

(
τ−α

√
s+

τ

a

)
‖ẋk‖2 +

τ

2
(τ2− sc)

∥∥xk+1− xβk

∥∥2
+

τ

2
(2a+1)

β̇ 2
k−1

β 2
k
‖x∗‖2

− sβk (φk(xk+1)−φk(xk))+
sδ

2

(
τδ

a
−δ (τ−α

√
s)−
√

sβk

)
‖∇ f (xk+1)‖2

+
1
2
(τ−α

√
s)
∥∥ẋk +δ

√
s∇ f (xk+1)

∥∥2− δ s
√

sβk

2
‖∇φk(xk+1)‖2 +

δc2s
√

s
2βk

‖xk+1‖2

− sτβk
(
φk(xk+1)−φk(xβk

)
)
+ τ(τ−α

√
s)
〈
ẋk,xk+1− xβk

〉
. (2.16)

Combining (2.16) with (2.8), and using that
∥∥xβk+1

∥∥≤ ‖x∗‖, we obtain

Ek+1−Ek ≤
1
2

(
τ−α

√
s+

τ

a

)
‖ẋk‖2 +

τ

2
(τ2− sc)

∥∥xk+1− xβk

∥∥2

+
1
2

(
τ(2a+1)

β̇ 2
k−1

β 2
k

+ sc
(

βk+1

βk
−1
))
‖x∗‖2

+
sδ

2

(
τδ

a
−δ (τ−α

√
s)−
√

sβk

)
‖∇ f (xk+1)‖2 (2.17)

+
1
2
(τ−α

√
s)
∥∥ẋk +δ

√
s∇ f (xk+1)

∥∥2
+

sc
2βk

(δc
√

s−βk+1 +βk)‖xk+1‖2

+ s(βk+1− (1+ τ)βk)
(
φk(xk+1)−φk(xβk

)
)
− δ s

√
sβk

2
‖∇φk(xk+1)‖2

+ τ(τ−α
√

s)
〈
ẋk,xk+1− xβk

〉
.

Let µ > 0. From the definition of Ek, we conclude that

µEk+1 = µsβk+1
(
φk+1(xk+1)−φk+1(xβk+1

)
)
+

µ

2

∥∥τ(xk+1− xβk
)+ ẋk +δ

√
s∇ f (xk+1)

∥∥2

= µsβk+1
(
φk+1(xk+1)−φk+1(xβk+1

)
)
+

µτ2

2

∥∥xk+1− xβk

∥∥2

+
µ

2

∥∥∥∥ẋk +δ
√

s
(

∇ f (xk+1)+
pc
βk

xk+1

)∥∥∥∥2

+µτ
〈
xk+1− xβk

, ẋk +δ
√

s∇ f (xk+1)
〉
.

Using the fact that ∇ f (xk+1) = ∇φk(xk+1)−
c
βk

xk+1, we have

µEk+1 = µsβk+1
(
φk(xk+1)−φk(xβk

)
)

+µsβk+1
(
φk+1(xk+1)−φk(xk+1)+φk(xβk

)−φk+1(xβk+1
)
)

+
µτ2

2

∥∥xk+1− xβk

∥∥2
+

µ

2

∥∥ẋk +δ
√

s∇ f (xk+1)
∥∥2

+µτ
〈
xk+1− xβk

, ẋk
〉

+µτδ
√

s
〈
xk+1− xβk

, ∇φk(xk+1)
〉
− µτδc

√
s

βk

〈
xk+1− xβk

, xk+1
〉
.
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Since φk+1(xk+1)−φk(xk+1) =
c
2

(
1

βk+1
− 1

βk

)
‖xk+1‖2, according to Lemma 2.2 i), we obtain

µEk+1 ≤ µsβk+1
(
φk(xk+1)−φk(xβk

)
)
+

µsc
2

(
βk+1

βk
−1
)(∥∥xβk+1

∥∥2−‖xk+1‖2
)

+
µτ2

2

∥∥xk+1− xβk

∥∥2
+

µ

2

∥∥ẋk +δ
√

s∇ f (xk+1)
∥∥2

+µτ
〈
xk+1− xβk

, ẋk
〉

+µτδ
√

s
〈
xk+1− xβk

, ∇φk(xk+1)
〉
− µτδc

√
s

βk

〈
xk+1− xβk

, xk+1
〉
.

Note that
µτ2

2

∥∥xk+1− xβk

∥∥2
+µτδ

√
s
〈
xk+1− xβk

, ∇φk(xk+1)
〉

≤ µτ
2∥∥xk+1− xβk

∥∥2
+

µsδ 2

2
‖∇φk(xk+1)‖2.

It follows that

µEk+1 ≤ µsβk+1
(
φk(xk+1)−φk(xβk

)
)
+

µsc
2

(
βk+1

βk
−1
)(
‖x∗‖2−‖xk+1‖2

)
+µτ

2∥∥xk+1− xβk

∥∥2
+

µ

2

∥∥ẋk +δ
√

s∇ f (xk+1)
∥∥2

+µτ
〈
xk+1− xβk

, ẋk
〉

+
µsδ 2

2
‖∇φk(xk+1)‖2− µτδc

√
s

βk

〈
xk+1− xβk

, xk+1
〉
. (2.18)

By adding (2.17) with (2.18), we see that

Ek+1−Ek +µEk+1

≤ 1
2

(
τ−α

√
s+

τ

a

)
‖ẋk‖2 +

τ

2
(2µτ + τ

2− sc)
∥∥xk+1− xβk

∥∥2

+
1
2

(
τ(2a+1)

β̇ 2
k−1

β 2
k

+ sc(µ +1)
(

βk+1

βk
−1
))
‖x∗‖2

+
sδ

2
(
µδ −

√
sβk
)
‖∇φk(xk+1)‖2

+
sδ

2

(
τδ

a
−δ (τ−α

√
s)−
√

sβk

)
‖∇ f (xk+1)‖2

+
1
2
(µ + τ−α

√
s)
∥∥ẋk +δ

√
s∇ f (xk+1)

∥∥2

+ τ(µ + τ−α
√

s)
〈
ẋk,xk+1− xβk

〉
+

sc
2βk

(
δc
√

s− (µ +1)(βk+1−βk)
)
‖xk+1‖2− µτδc

√
s

βk

〈
xk+1− xβk

, xk+1
〉

+ s((µ +1)βk+1− (1+ τ)βk)
(
φk(xk+1)−φk(xβk

)
)
.

In addition, we have

−µτδc
√

s
βk

〈
xk+1− xβk

, xk+1
〉
=
−µτδc

√
s

2βk

(
‖xk+1‖2 +

∥∥xk+1− xβk

∥∥2−
∥∥xβk

∥∥2
)
.
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Hence

(1+µ)Ek+1−Ek ≤

1
2

τ−α
√

s+
τ

a︸ ︷︷ ︸
A

‖ẋk‖2 +
τ

2

2µτ + τ
2− sc︸ ︷︷ ︸

F

−µδc
√

s
βk︸ ︷︷ ︸
≤0

∥∥xk+1− xβk

∥∥2

+
sc

2βk

δc
√

s− (µ +1)(βk+1−βk)−
µτδ√

s︸ ︷︷ ︸
B

‖xk+1‖2

+
1
2

(
τ(2a+1)

β̇ 2
k−1

β 2
k

+ sc(µ +1)
(

βk+1

βk
−1
)
+

µτδc
√

s
βk

)
‖x∗‖2

+
sδ

2

τδ

a
−δ (τ−α

√
s)−
√

sβk︸ ︷︷ ︸
C

‖∇ f (xk+1)‖2 +
1
2
(µ + τ−α

√
s︸ ︷︷ ︸

E

)
∥∥ẋk +δ

√
s∇ f (xk+1)

∥∥2

+
sδ

2

µδ −
√

sβk︸ ︷︷ ︸
D

‖∇φk(xk+1)‖2 + τ(µ + τ−α
√

s︸ ︷︷ ︸
E

)
〈
ẋk,xk+1− xβk

〉

+ s

(µ +1)βk+1− (1+ τ)βk︸ ︷︷ ︸
G


φk(xk+1)−φk(xβk

)︸ ︷︷ ︸
≥0

 .

Taking µ =
α
√

s
a+1

and τ = aµ =
a

a+1
α
√

s, we obtain

• A = E = 0;
• From condition (H0), lim

k→+∞
βk =+∞ and lim

k→+∞
βk+1−βk =+∞, then C≤ 0, B≤ 0 and

D≤ 0, for k large enough ;

• G = (µ + 1)βk

(
βk+1

βk
− aµ +1

µ +1

)
= (µ + 1)βk

(
βk+1

βk
− a(α

√
s+1)+1

a+α
√

s+1

)
≤ 0, for k

large enough (here we use (2.10));

• F = 2µτ + τ2− sc = s
(

a2 +2a
(a+1)2 α2− c

)
≤ 0, because c≥ α2 ≥ a2 +2a

(a+1)2 α2.

Consequently, there exists k1 ≥ k0 such that, for all k ≥ k1,

(1+µ)Ek+1−Ek ≤ λk‖x∗‖2, (2.19)

where λk =
1
2

(
aµ(2a+1)

β̇ 2
k−1

β 2
k

+(µ +1)sc
(

βk+1

βk
−1
)
+

aµ2δc
√

s
βk

)
.

Inequality (2.19) is equivalent to Ek+1 +

(
−1+

µ

1+µ

)
Ek ≤

λk

1+µ
‖x∗‖2. Let us set ρ :=
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µ

1+µ
. By multiplying the last inequality by eρ(k+1), we obtain that

eρ(k+1)Ek+1 +(−1+ρ)eρ(k+1)Ek ≤
eρ(k+1)λk

1+µ
‖x∗‖2.

Therefore, for all k ≥ k1,

eρ(k+1)Ek+1− eρkEk + eρ(k+1)(e−ρ −1+ρ)Ek ≤
eρ(k+1)λk

1+µ
‖x∗‖2.

Remarking that, for all y ∈ R : e−y−1+ y≥ 0, we have eρk(e−ρ −1+ρ)Ek ≥ 0, and then, for
all k ≥ k1,

eρ(k+1)Ek+1− eρkEk ≤ eρ(k+1)
θk‖x∗‖2,

where

θk =
λk

1+µ
=

1
2

(
aρ(2a+1)

β̇ 2
k−1

β 2
k

+ sc
(

βk+1

βk
−1
)
+

aρ2δc
√

s
(1−ρ)βk

)
.

Summing the above inequalities between k1 and k > k1, we obtain

eρ(k+1)Ek+1− eρk1Ek1 ≤ ‖x
∗‖2

(
k

∑
j=k1

eρ( j+1)
θ j

)
.

Finally, by dividing by eρ(k+1), we obtain (2.7). �

3. STRONG CONVERGENCE OF (IPATTH)

Throughout the rest of this paper, we note as in the previous proof β̇k := βk+1−βk.
Under suitable assumptions on (βk), in this section, we can ensure: the convergence of values

to min f , the strong convergence of iterates towards x∗, and the convergence of the gradients and
velocities to zero.

Theorem 3.1. Let f : H → R be a convex function satisfying (H′0), and (xk) be a sequence
generated by the algorithm (IPATTH) with c≥ α2. Suppose (H0) and

lim
k−→+∞

β̇k+1

β̇k
= lim

k−→+∞

βk+1

βk
:= ` ∈ [1, 1+α

√
s[. (H2)

Then, for k large enough,

i) f (xk)−min
H

f = O

(
1
βk

)
.

If moreover `= 1, then we have simultaneously, the convergence of values to minH f , the strong
convergence of iterates to x∗, and the strong convergence of gradient and velocities to 0, with
the following rates:

ii) f (xk)−min
H

f = o
(

1
βk

)
;
∥∥xk− xβk

∥∥2
= O

(
β̇k

βk
+ e−ρk

)
;

‖∇ f (xk)‖2 = O

(
β̇k

βk
+ e−ρk +

1
β 2

k

)
; and ‖ẋk−1‖2 = O

(
β̇k

βk
+ e−ρk +

1
β 2

k

)
.
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Proof. From (2.7), we have

Ek+1 ≤ e(k1−k−1)ρEk1 +Nk‖x∗‖2 (3.1)

with

Nk =
sc

2eρ(k+1)

k

∑
j=k1+1

eρ( j+1)

(
r

β̇ 2
j−1

β 2
j

+
β̇ j

β j
+

b
β j

)
, (3.2)

where r :=
aρ(2a+1)

sc
and b :=

aρ2δ

(1−ρ)
√

s
. Set, for each j > k1,

Γ j =
1

r
β̇ 2

j−1β j+1

β 2
j β̇ j+1

+
β̇ jβ j+1

β̇ j+1β j
+

bβ j+1

β̇ j+1β j

×

(
eρ −

β̇ jβ j+1

β̇ j+1β j

)
.

Let us show that, for j large enough, Γ j > 0. Using conditions (H0) and (H2), we obtain

lim
j→+∞

r
β̇ 2

j−1β j+1

β 2
j β̇ j+1

+
β̇ jβ j+1

β̇ j+1β j
+

bβ j+1

β̇ j+1β j

= lim
j→+∞

β j+1

β j

r

(
β̇ j−1

β̇ j

)2

×
β̇ j

β̇ j+1
×

β̇ j

β j
+

β̇ j

β̇ j+1
+

b
β̇ j+1


= `

(
r
`2 ×

1
`
× (`−1)+

1
`

)
=

r(`−1)
`2 +1≥ 1,

and we also have lim
j→+∞

(
eρ −

β̇ jβ j+1

β̇ j+1β j

)
= eρ −1 > 0. Therefore,

lim
j→+∞

Γ j =
1

1+ r(`−1)
`2

(eρ −1)> 0.

Hence, for j large enough Γ j > 0. Consequently, There exists m > 0 such that, for j large
enough, 0 < m≤ Γ j, which implies that, for j large enough,

m

(
r

β̇ 2
j−1β j+1

β 2
j β̇ j+1

+
β̇ jβ j+1

β̇ j+1β j
+

bβ j+1

β̇ j+1β j

)
≤ eρ −

β̇ jβ j+1

β̇ j+1β j
.

Multiplying by
β̇ j+1

mβ j+1
eρ( j+1), we obtain

eρ( j+1)

(
r

β̇ 2
j−1

β 2
j

+
β̇ j

β j
+

b
β j

)
≤

β̇ j+1

mβ j+1
eρ( j+2)−

β̇ j

mβ j
eρ( j+1).
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Using (3.2), we deduce that there exists k2 > k1 +1 such that, for all k ≥ k2,

Nk ≤
sc

2eρ(k+1)

[
C1 +

k

∑
j=k2

(
β̇ j+1

mβ j+1
eρ( j+2)−

β̇ j

mβ j
eρ( j+1)

)]

=
sc

2eρ(k+1)

(
C1 +

β̇k+1

mβk+1
eρ(k+2)−

β̇k2

mβk2

eρ(k2+1)

)
≤ C1sc

2
e−ρ(k+1)+

sceρ

2m
β̇k+1

βk+1
.

where

C1 =
k2−1

∑
j=k1+1

eρ( j+1)

(
r

β̇ 2
j−1

β 2
j

+
β̇ j

β j
+

b
β j

)
.

Returning to (3.1), we deduce that for k large enough

Ek+1 = O

(
β̇k+1

βk+1
+ e−ρ(k+1)

)
. (3.3)

i) From (2.4) and (3.3), there exist a positive constant C2 such that for k large enough

f (xk)−min
H

f ≤ 1
βk

(
Ek +

c
2
‖x∗‖2

)
≤ 1

βk

[
C2

(
β̇k

βk
+ e−ρk

)
+

c
2
‖x∗‖2

]
.

Condition (H2) means that

(
β̇k

βk

)
is bounded, and we have lim

k→+∞
e−ρk = 0. Thus, for k large

enough, f (xk)−minH f = O

(
1
βk

)
.

ii) Now, assume that lim
k→+∞

βk+1

βk
= 1

(
i.e. lim

k→+∞

β̇k

βk
= 0

)
, which implies that lim

k→+∞
Ek = 0. From

Lemma 2.1, we have
∥∥xk− xβk

∥∥2 ≤ 2
sc

Ek. Thus it follows from (3.3) that, for k large enough,

∥∥xk− xβk

∥∥2
= O

(
β̇k

βk
+ e−ρk

)
, (3.4)

which ensures the strong convergence of (xk) to x∗ and consequently the convergence to zero of(
‖x∗‖2−‖xk‖2

)
. Using again Lemma 2.1, we have

f (xk)−min
H

f = o
(

1
βk

)
, as k→+∞.

Applying the Lipschitz continuity of ∇ f , (2.1) and (2.2), we have

‖∇ f (xk)‖ ≤ ‖∇ f (xk)−∇ f (xβk
)‖+‖∇ f (xβk

)‖

≤ L‖xk− xβk
‖+ c

βk
‖xβk
‖

≤ L‖xk− xβk
‖+ c

βk
‖x∗‖.
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Using (3.4), we conclude

‖∇ f (xk)‖2 = O

(
β̇k

βk
+ e−ρk +

1
β 2

k

)
, as k→+∞.

It follows that∥∥ẋk−1 +δ
√

s∇ f (xk)
∥∥2 ≤ 2

∥∥τ
(
xk− xβk−1

)
+ ẋk−1 +δ

√
s∇ f (xk)

∥∥2
+2τ

2∥∥xk− xβk−1

∥∥2

≤ 2
∥∥τ
(
xk− xβk−1

)
+ ẋk−1 +δ

√
s f (xk)

∥∥2

+4τ
2
(∥∥xk− xβk

∥∥2
+
∥∥xβk
− xβk−1

∥∥2
)
.

By definition of Ek and (3.3), we obtain as k→+∞

2
∥∥τ
(
xk− xβk−1

)
+ ẋk−1 +δ

√
s∇ f (xk)

∥∥2 ≤ 4Ek = O

(
β̇k

βk
+ e−ρk

)
. (3.5)

From Lemma 2.2, we have
∥∥xβk
− xβk−1

∥∥≤ β̇k−1

βk
‖x∗‖. Therefore, by using (3.4), we obtain

∥∥ẋk−1 +δ
√

s∇ f (xk)
∥∥2 ≤C3

(
β̇k

βk
+ e−ρk

)
+4τ

2

(
β̇k−1

βk

)2

‖x∗‖2,

where C3 is a positive constant. For k large enough,

(
β̇k−1

βk

)2

=O

(
β̇k

βk

)
. Indeed, using (H2),

we obtain

lim
k→+∞

(
β̇k−1

βk

)2

× βk

β̇k
= lim

k→+∞

β̇k−1

β̇k
× β̇k−1

βk
= lim

k→+∞

β̇k−1

β̇k
×
(

1− βk−1

βk

)
=

1
`

(
1− 1

`

)
≤ 1.

Therefore, we conclude that, for k large enough,

∥∥ẋk−1 +δ
√

s∇ f (xk)
∥∥2

= O

(
β̇k

βk
+ e−ρk

)
. (3.6)

Returning to

‖ẋk−1‖2 ≤ 2
∥∥ẋk−1 +δ

√
s∇ f (xk)

∥∥2
+2sδ

2‖∇ f (xk)‖2,

and using (3) and (3.6), we conclude that ‖ẋk−1‖2 = O

(
β̇k

βk
+ e−ρk +

1
β 2

k

)
, as k→+∞. �

4. PARTICULAR RASES

In this section, we investigate two particular examples of βk to illustrate the results of the
previous sections.
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4.1. Case βk = kr lnq(k). Let us investigate the case βk = kr lnq(k) for r ≥ 1 and q≥ 0.

Proposition 4.1. Let (xk) be a sequence generated via the algorithm (IPATTH). If either
βk = kr lnq(k), where r > 1 or r = 1 and q 6= 0, α > 0, and c≥ α2. Then, as k→+∞,

i) f (xk)−min
H

f = o
(

1
kr lnq(k)

)
ii)
∥∥xk− xβk

∥∥2
= O

(
1
k

)
iii) ‖∇ f (xk)‖2 = O

(
1
k

)
iv) ‖ẋk−1‖2 = O

(
1
k

)
.

Proof. To fulfil the conditions of Theorem 3.1, we first note that when k→ +∞, and for all
a > 0, we have (

1+
a
k

)r
= 1+

ar
k
+o
(

1
k

)
and ln

(
1+

a
k

)
=

a
k
+o
(

1
k

)
.

Then (
1+ a

k

)r
(

1+ ln(1+ a
k )

ln(k)

)q
=

(
1+ ar

k +o
(1

k

))(
1+ a

k ln(k) +o
(

1
k ln(k)

))q

=
(
1+ ar

k +o
(1

k

))(
1+ aq

k ln(k) +o
(

1
k ln(k)

))
;

which gives (
1+

a
k

)r
(

1+
ln(1+ a

k )

ln(k)

)q

= 1+
ar
k
+

aq
k ln(k)

+o
(

1
k ln(k)

)
. (4.1)

Now let us check that (βk) satisfies all conditions (H0) and (H2). We have

• lim
k→+∞

βk = lim
k→+∞

kr lnq(k) = +∞;

• Using (4.1), when k→+∞, we obtain

βk+1−βk = (k+1)r lnq(k+1)− kr lnq(k)

= kr lnq(k)

((
1+

1
k

)r
(

1+
ln
(
1+ 1

k

)
ln(k)

)q

−1

)

= kr lnq(k)
(

r
k
+

q
k ln(k)

+o
(

1
k ln(k)

))
= rkr−1 lnq(k)+qkr−1 lnq−1(k)+o

(
kr−1 lnq−1(k)

)
.

Hence, if r > 1 or (r = 1 and q > 0) , then lim
k→+∞

βk+1−βk =+∞.

Therefore, (H0) is verified.

• βk+1

βk
=

(k+1)r lnq(k+1)
kr lnq(k)

=

(
1+

1
k

)r
(

1+
ln(1+ 1

k )

ln(k)

)q

;

using (4.1), we get, when k→+∞,
βk+1

βk
= 1+ r

k +
q

k ln(k) +o
(

1
k ln(k)

)
∼
+∞

1.
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• On the other hand,

β̇k+1

β̇k
=

(k+2)r lnq(k+2)− (k+1)r lnq(k+1)
(k+1)r lnq(k+1)− kr lnq(k)

=

(
1+ 2

k

)r
(

1+ ln(1+ 2
k )

ln(k)

)q

−
(
1+ 1

k

)r
(

1+ ln(1+ 1
k )

ln(k)

)q

(
1+ 1

k

)r
(

1+ ln(1+ 1
k )

ln(k)

)q

−1
.

Therefore, by using again (4.1), we see that when k→+∞

β̇k+1

β̇k
=

(
1+ 2r

k + 2q
k ln(k) +o

(
1

k ln(k)

))
−
(

1+ r
k +

q
k ln(k) +o

(
1

k ln(k)

))
(

1+ r
k +

q
k ln(k) +o

(
1

k ln(k)

))
−1

=
r ln(k)+q+o(1)
r ln(k)+q+o(1)

.

Thus lim
k→+∞

β̇k+1

β̇k
= 1.

Consequently condition (H2) is satisfied. Then by applying Theorem 3.1, we obtain the asser-
tions i), ii), iii), and iv). �

4.2. Case βk = eγkr . Let us now treat the case βk = eγkr
with r ∈]0,1] and γ > 0. Remark that,

when k→+∞,

(k+1)r− kr = kr
[(

1+
1
k

)r

−1
]
= rkr−1 +o(kr−1). (4.2)

Hence, for all a > 0,

eγ((k+a)r−kr) = eaγrkr−1+o(kr−1) = 1+aγrkr−1 +o(kr−1). (4.3)

We have
• β̇k 6= 0 for all k > 0 ;
• (βk)k≥0 is a nondecreasing sequence, with lim

k→+∞
βk =+∞;

• It follows fro (4.2) that
βk+1

βk
= eγ((k+1)r−kr) = eγrkr−1+o(kr−1) −−−−→

k→+∞

{
eγ if r = 1
1 if 0 < r < 1.

• If 0 < r < 1, by using (4.3), we see then, when k→+∞,

β̇k+1

β̇k
=

eγ(k+2)r − eγ(k+1)r

eγ(k+1)r − eγkr =
eγ((k+2)r−kr

)− eγ((k+1)r−kr)

eγ((k+1)r−kr)−1

=
γrkr−1 +o(kr−1)

γrkr−1 +o(kr−1)
.

Therefore, lim
k→+∞

β̇k+1

β̇k
= 1. In the case that r = 1,

lim
k→+∞

β̇k+1

β̇k
= lim

k→+∞

eγ(k+1)

eγk = eγ .
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• βk+1−βk = eγkr
(

eγ((k+1)r−kr)−1
)
= eγkr (

γrkr−1 +o(kr−1)
)
.

Hence lim
k→+∞

βk+1−βk =+∞.

Consequently, (βk) fulfils assumption (H0) and condition (H2) is verified if and only if 0 <
r < 1 or (r = 1, and γ < ln(1+α

√
s)). Then by applying Theorem 3.1, we have the following

proposition.

Proposition 4.2. Let f satisfy (H′0), and let (xk) be a sequence generated by the algorithm
(IPATTH), where βk = eγkr

, r ∈]0,1], γ > 0, α > 0 and c≥ α2. Then:
• If r = 1, γ < ln(1+α

√
s), then f (xk)−min

H
f = O

(
e−γk) as k→+∞.

• If 0 < r < 1, then, as k→+∞,

f (xk)−min
H

f = o
(

e−γkr
)

;
∥∥xk− xβk

∥∥2
= O

(
1

k1−r

)
;

‖∇ f (xk)‖2 = O

(
1

k1−r

)
; ‖ẋk−1‖2 = O

(
1

k1−r

)
.

5. NUMERICAL EXAMPLE

Consider the convex differentiable function f : R∗+×R∗+→ R defined by

f (x,y) = 2x2 + x− 3
2

ln(x)+
1
2

y2−3ln(y).

We have ∇ f (x,y) =
(

4x+1− 3
2x

y− 3
y

)
and x∗ =

(1
2 ,
√

3
)

is the unique global minimizer of f ,

moreover min
(R∗+)2

f = 5
2 +

3
2 ln
(2

3

)
. Further, for all λ > 0,

prox λ f (x,y) =

(
x−λ +

√
(x−λ )2 +6λ (1+4λ )

2(1+4λ )
,
y+
√

y2 +12λ (1+λ )

2(1+λ )

)
.

In Figure 1, we compare the convergence rate associated with our algorithm (IPATTH), under
different choices of βk, to that studied by Attouch, Balhag, Chbani and Riahi in [33]. The latter
represents an implicit discretization of system (1.2) and is defined as follows

Step k : set dk =
1

1+α
√

sεk + sεk
and λk =

s+δ
√

s
1+α

√
sεk + sεk

yk = xk +dk(xk− xk−1 +δ
√

s∇ f (xk))
xk+1 = proxλk f (yk− sεkdkxk) ,

(5.1)

where εk = t−r with 1 < r < 2.
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FIGURE 1. Comparison of convergence rates for solutions associated with the algo-
rithms (IPATTH) and (5.1). We also add the path trajectory xk for different sequence
βk.
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