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RAVINES OF QUADRATIC FUNCTIONS
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Abstract. In this paper, the notion of the ravine of real-valued functions is extended from the finite-
dimensional setting to an infinite-dimensional setting. Ravines of quadratic functions are studied in
detail. The obtained results solve a problem raised by Professor Joachim Gwinner. In addition, it is
proved that a weakly continuous real-valued convex function defined on a reflexive Banach space cannot
have any ravine along the null subspace.
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1. INTRODUCTION

The notion of the ravine of a function was first introduced by Belousov and Andronov in [1].
Later, a detailed study on the ravine of a function was given by the same authors in [2, 3].
For more comments and discussions on the importance of the ravine of a function, we refer
to [8]. Since quadratic functions were widely used in the literature (see, e.g., [4, 5, 6] and the
references therein), it is of interest to investigate what the ravine means for quadratic functions.
In a finite-dimensional setting, Tam et al. [8, Theorem 4.1] have proved that quadratic functions
cannot have ravines along linear subspaces.

Due to their variety of applications, quadratic functions defined on infinite-dimensional spaces
have been studied by many authors, especially in optimization (see, e.g., [4, 9]). Since the no-
tion of the ravine of a function has been considered only in finite-dimensional settings so far, it
is desirable to obtain some analogues of the results on the ravines of quadratic functions in [8] in
an infinite-dimensional setting. This problem was shown to us by Professor Joachim Gwinner
in private communication.

In the present paper, we extend the notion of the ravine of a function in [1] to a normed space
setting and show that any real-valued function defined on a normed space has a ravine along
any dense proper linear subspace. Since the proof of the result on real-valued convex functions
given in [2, Remark 6, p. 37] seems to be incorrect, we give a completely different proof and
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show that the result is true not only in finite dimensions but also in infinite dimensions. Then,
we establish a result on the ravines of quadratic functions.

The definition of a ravine of a real-valued function defined on a normed space and a sufficient
condition for a function to have a ravine are presented in Section 2. The non-existence of ravines
of a weakly continuous real-valued convex function defined on a reflexive Banach space along
the null subspace is proved in the same section. A theorem on the ravines of quadratic functions,
which is our main result, is obtained in Section 3. Some concluding remarks are given in
Section 4, the last section.

2. RAVINES OF REAL-VALUED FUNCTIONS

Let (X ,‖ · ‖) be a real normed space. Suppose that f : X → R is a function defined on X ,
and L ⊂ X is a fixed proper linear subspace. One says that L is dense in X if L = X , where L
denotes the topological closure of L in X . The distance from z ∈ X to a subset A⊂ X is defined
by d(z,A) := inf

x∈A
‖z− x‖. The closed ball (resp., the open ball) centered at x̄ ∈ X with radius

ρ > 0 is denoted by B̄(x̄,ρ) (resp., B(x̄,ρ)). Let S(x̄,ρ) := B̄(x̄,ρ)\B(x̄,ρ) be the corresponding
sphere. By N, we denote the set of positive natural numbers.

Definition 2.1. (See [2, p. 34] for the definition in the case X = Rn) We say that f has a ravine
along the proper subspace L or, shorter, L-ravine, if there exists a sequence {xk}, called an
L-ravine sequence, such that, for all positive numbers δ and ε , and for all sequences {yk} and
{zk} satisfying the conditions{

‖xk− yk‖< δ , yk ∈ xk +L,

‖xk− zk‖< δ , d(zk,xk +L)> ε
(2.1)

for all k ∈ N, the equality lim
k→+∞

[
f (zk)− f (yk)

]
=+∞ is fulfilled.

Now, let us consider an example of a function of the cubic polynomial type on an infinite-
dimensional normed space, which has a ravine along a proper subspace L. By `2 we denote

the Hilbert space of real sequences x = (x1,x2, . . .) with
+∞

∑
i=1

(xi)
2 <+∞. The inner product and

the norm are defined respectively by 〈x,y〉=
+∞

∑
i=1

xiyi and ‖x‖= 〈x,x〉1/2 =

(
+∞

∑
i=1

(xi)
2
)1/2

for all

x = (x1,x2, . . .), y = (y1,y2, . . .) from `2.

Example 2.1. (cf. [2, Example 1, p. 48]) Consider the function f (x) = (x1)
2x2 of the argument

x = (x1,x2, . . .) ∈ `2 and let L =
{

x = (x1,x2, . . .) ∈ `2 | x1 = 0
}

. Choose xk = (0, tk,0,0, . . .),
where lim

k→+∞
tk =+∞. Suppose that the constants δ > 0 and ε > 0 are given arbitrarily. If {yk}

and {zk} are two sequences of vectors in `2 satisfying the conditions in (2.1), then one must
have yk = (0, tk +αk,yk

3,y
k
4, . . .) and zk = (zk

1, tk +βk,zk
3,z

k
4, . . .) with(

|αk|2 +(yk
3)

2 +(yk
4)

2 + . . .
)1/2

< δ ,(
(zk

1)
2 +β

2
k +(zk

3)
2 +(zk

4)
2 + . . .

)1/2
< δ ,
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and |zk
1|> ε for all k ∈ N. It follows that |βk|< δ for every k ∈ N. Therefore,

f (zk)− f (yk) = f (zk) = (zk
1)

2(tk +βk)→+∞ as k→+∞.

This shows that {xk} is an L-ravine sequence of f .

The following theorem reveals a pathological situation related to Definition 2.1.

Theorem 2.1. If the proper subspace L is dense in X, then any function f : X →R has a ravine
along L. Moreover, any sequence {xk} ⊂ X is an L-ravine sequence.

Proof. To prove the theorem, fix any sequence {xk} ⊂ X and let δ > 0 and ε > 0 be given
arbitrarily. Suppose that {yk} is a sequence satisfying the conditions ‖xk− yk‖ < δ and yk ∈
xk +L for all k. Then, there is no sequence {zk} in X such that ‖xk− zk‖< δ and

d(zk,xk +L)> ε.

Indeed, since d(zk,xk + L) = d(zk− xk,L), the last inequality implies that d(zk− xk,L) > ε .
This is impossible because zk−xk ∈ L by the density of L. Thus, one cannot find any sequences
{yk} and {zk} satisfying (2.1). Therefore, in accordance with Definition 2.1, {xk} is an L-ravine
sequence. �

Theorem 2.1 tells us that the above definition of ravine is meaningful only if L 6= X .
The next theorem is on the non-existence of any ravine of a convex function along the null

subspace. This result was given in [2, Remark 6, p. 37] for real-valued convex functions defined
on finite-dimensional Euclidean spaces. But, as far as we know, the proof there is incorrect. By
a completely different proof, we now show that the result is true not only in finite dimensions
but also in infinite dimensions. The exact formulation of our result is as follows.

Theorem 2.2. A weakly continuous real-valued convex function on a real reflexive Banach
space cannot have any ravine along the null subspace.

Proof. Let f : X → R be a weakly continuous convex function, where X is a real reflexive
Banach space. To prove by contradiction, suppose that f has a ravine along the subspace L =
{0}. Then, by Definition 2.1, there exists a sequence {xk} such that for any numbers δ > 0 and
ε > 0, and for any sequences {yk} and {zk} satisfying the conditions in (2.1) for all k ∈ N, the
equality lim

k→+∞

[
f (zk)− f (yk)

]
=+∞ holds. Since L = {0}, this means that yk = xk for all k,

ε < ‖xk− zk‖< δ (∀k ∈ N) (2.2)

and
lim

k→+∞

[
f (zk)− f (xk)

]
=+∞. (2.3)

Fix any positive numbers ε and δ with ε < δ . Take a number δ1 ∈ (ε,δ ).
CLAIM 1. Sequence {xk} is unbounded.
Indeed, if {xk} is bounded, then there is ρ > 0 such that xk ∈ B̄(0,ρ) for all k ∈ N. Select a

sequence {zk} satisfying (2.2). Then (2.3) holds. On one hand, since zk ∈ B̄(0,ρ + δ ) for all
k ∈ N and X is a reflexive Banach space, there exists a subsequence {zk′} of {zk} that weakly
converges to a vector ẑ ∈ B̄(0,ρ +δ ) as k′→ +∞. On the other hand, by the lower semiconti-
nuity of f in the weak topology of X and the Weierstrass theorem, one can find x̂ ∈ B̄(0,ρ +δ )
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such that f (x̂)≤ f (x) for every x ∈ B̄(0,ρ +δ ). In particular,

f (zk)− f (x̂)≥ f (zk)− f (xk) (∀k ∈ N).

Then, it follows from (2.3) that

liminf
k→+∞

[
f (zk)− f (x̂)

]
≥ liminf

k→+∞

[
f (zk)− f (xk)

]
= lim

k→+∞

[
f (zk)− f (xk)

]
=+∞.

Obviously, this yields lim
k′→+∞

f (zk′) = +∞. Meanwhile, by the weak continuity of f and the

weak convergence of {zk′} to ẑ, we have lim
k′→+∞

f (zk′) = f (ẑ). This reaches a contradiction.

Thus sequence {xk} must be unbounded.
Thanks to Claim 1, by considering a subsequence of {xk} (if necessary), we can assume that

lim
k→+∞

‖xk‖=+∞.

CLAIM 2. There exists an index k1 ∈ N such that, for every k ≥ k1,

f (z)> f (xk) ∀z ∈ S(xk,δ1). (2.4)

Indeed, if the claim was false, we would find a subsequence {k′} of {k} and a sequence {zk′}
with zk′ ∈ S(xk′,δ1) such that f (zk′)≤ f (xk′) for all k′. This implies that

limsup
k′→+∞

[
f (zk′)− f (xk′)

]
≤ 0,

which contradicts (2.3). So, the claim is valid.
For every k ≥ k1, by the lower semicontinuity of f in the weak topology and the Weierstrass

theorem, there exists uk ∈ B̄(xk,δ1) with f (uk) ≤ f (x) for all x ∈ B̄(xk,δ1). Property (2.4)
guarantees that uk ∈ B(xk,δ1). Hence, uk is a local minimizer of f . As f is a convex function,
we have uk ∈ Σ f for every k ≥ k1, where Σ f denotes the solution set of optimization problem
min{ f (x) | x ∈ X}. In particular, we have uk1 ∈ Σ f .

Since lim
k→+∞

‖xk‖ = +∞, we can find an integer k2 > k1 such that ‖xk1 − xk2‖ > 2δ . As

δ1 ∈ (ε,δ ), this yields B̄(xk1,δ1)∩ B̄(xk2,δ1) = /0. Then, uk2 /∈ B̄(xk1 ,δ1). So, the line seg-
ment

[
uk1,uk2

]
must intersect the sphere S(xk1,δ1) at a point denoted by zk1 . Since uk2 ∈ Σ f and

uk1 ∈ Σ f , by the convexity of Σ f we have zk1 ∈ Σ f . Hence,

f (zk1) = f (uk1)≤ f (xk1).

But this comes in conflict with (2.4).
The proof of the theorem is complete. �

Remark 2.1. For a real-valued convex function on an infinite-dimensional real reflexive Banach
space X , the weak continuity in Theorem 2.2 is sufficient, but not necessary, for the non-existence
of ravines of the function along the null subspace. To justify this claim, choose f (x) = ‖x‖ and
observe that if (2.2) holds, then (2.3) cannot hold, because

limsup
k→+∞

[
f (zk)− f (xk)

]
= limsup

k→+∞

[
‖zk‖−‖xk‖

]
≤ limsup

k→+∞

‖zk− xk‖ ≤ δ .

Therefore, f cannot have any ravine along the null subspace. As the convex function f (x) = ‖x‖
is continuous on X , it is weakly lower semicontinuous on X . However, since the reflexive
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Banach space X is infinite-dimensional, one can easily show that this function f is not weakly
upper semicontinuous on X . Thus, f is not weakly continuous on X .

Corollary 2.1. A real-valued convex function on Rn cannot have any ravine along the null
subspace.

Proof. Observe by [7, Corollary 10.1.1] that any convex function f : Rn→ R is continuous on
Rn. So, since the weak topology of Rn coincides with the norm topology, the desired result
follows from Theorem 2.2. �

3. RAVINES OF QUADRATIC FUNCTIONS

Following [4, p. 193], we say that a function Q : X → R, where X is a real normed space, is
a quadratic form on X if there exists a bilinear symmetric function ψ : X ×X → R such that
Q(x) = ψ(x,x) for all x ∈ X . The symmetry of ψ means that ψ(x,y) = ψ(y,x) for all x,y ∈ X .
If ψ is continuous at (0,0) ∈ X ×X , then Q is Fréchet differentiable at any point u ∈ X and
one has ∇Q(u) = 2ψ(u, .) (see [9, Proposition 2.1] for a proof of this fact). Conversely, if Q

is continuous, then using the formula ψ(x,y) =
1
4
(Q(x+ y)−Q(x− y)), which holds for all

x,y ∈ X , we can infer that ψ is continuous on X×X . We have thus seen that the continuity of Q
on X is equivalent to the continuity of ψ on X×X . Examples of discontinuous quadratic forms
can be found, e.g., in [9, p. 40].

We will deal with quadratic functions of the type

f (x) = Q(x)+ 〈b,x〉+ γ, (3.1)

where Q is a quadratic form, 〈b, .〉 is a linear functional on X which is not required to be
continuous, and γ is a real number. In the next theorem, there is no condition on the continuity
of Q. This means that the result is valid even for discontinuous quadratic functions.

Theorem 3.1. Quadratic functions on a real normed space cannot have a ravine along any
non-dense linear subspace.

Proof. Let f (x) be a quadratic function of type (3.1). Let L ⊂ X be a linear subspace with
L 6= X . We will prove that f cannot have any L-ravine sequence.

Suppose that {xk} is an arbitrarily given sequence in X . Fix any vector c ∈ X \L. Note that
c 6= 0 and d(c,L) > 0. Suppose that ψ : X ×X → R is a bilinear symmetric function such that
Q(x) = ψ(x,x). Select any µ ∈ (0,λ ), where λ := d(c,L). Put δ = λ + ‖c‖, ε = λ − µ , and
yk = xk. For each k ∈ N, define α(c,xk) = 2ψ(xk,c).

First, consider the case where α(c,xk) does not tend to +∞ as k→ +∞. In this situation,
setting zk = xk + c, we have

‖xk− yk‖= 0 < δ , yk ∈ xk +L,

‖xk− zk‖= ‖c‖< δ ,

d(zk,xk +L) = d(zk,xk +L) = d(c,L) = λ > ε.

(3.2)
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Besides,
f (zk) = Q(zk)+ 〈b,zk〉+ γ

= Q(xk + c)+ 〈b,xk + c)+ γ

= ψ(xk + c,xk + c)+ 〈b,xk + c〉+ γ

= Q(xk)+Q(c)+ψ(xk,c)+ψ(c,xk)+ 〈b,xk〉+ 〈b,c〉+ γ

= f (xk)+ f (c)+α(c,xk)− γ.

By (3.2), sequences {yk} and {zk} satisfy the conditions in (2.1). Since

f (zk)− f (yk) = f (zk)− f (xk) = α(c,xk)+ f (c)− γ,

one sees that sequence { f (zk)− f (yk)} does not tend to +∞ as k→+∞.
Now, let us consider the case where lim

k→+∞
α(c,xk) = +∞. Set zk = xk− c for every k ∈ N.

Since L is a linear subspace of X , we have
‖xk− yk‖= 0 < δ , yk ∈ xk +L,

‖xk− zk‖= ‖c‖< δ ,

d(zk,xk +L) = d(zk,xk +L) = d(−c,L) = d(c,L) = λ > ε.

(3.3)

In addition, it holds that

f (zk) = Q(zk)+ 〈b,zk〉+ γ

= Q(xk− c)+ 〈b,xk− c)+ γ

= ψ(xk− c,xk− c)+ 〈b,xk− c〉+ γ

= Q(xk)+Q(c)−
(

ψ(xk,c)+ψ(c,xk)
)
+ 〈b,xk〉−〈b,c〉+ γ

= f (xk)+ f (c)−α(c,xk)−2〈b,c〉− γ.

Thanks to (3.3), sequences {yk} and {zk} satisfy the conditions in (2.1). Since

f (zk)− f (yk) = f (zk)− f (xk) =−α(c,xk)+ f (c)−2〈b,c〉− γ,

one obtains lim
k→+∞

[
f (zk)− f (yk)

]
=−∞.

We have thus shown that there exist constants δ > 0 and ε > 0 such that one can find some
sequences {yk} and {zk} satisfying the conditions in (2.1) for which the property

lim
k→+∞

[
f (zk)− f (yk)

]
=+∞

is invalid. Therefore, {xk} is not an L-ravine sequence. Since {xk} was given arbitrarily, this
completes the proof. �

4. CONCLUSIONS

We extended some results on ravines of quadratic functions to an infinite dimensional setting.
Theorem 3.1 shows that quadratic functions cannot have a ravine along any non-dense subspace.
Combining this with Theorem 2.1, we can infer that quadratic functions on a real normed space
X have a ravine along a linear subspace L if and only if L is dense in X .
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Another result of the paper is Theorem 2.2 on the non-existence of ravines of real-valued
convex functions along the null subspace, which shows that the statement given in [2, Remark 6,
p. 37] is correct and it is valid for weakly continuous real-valued convex functions defined on
reflexive Banach spaces.
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