
J. Appl. Numer. Optim. 6 (2024), No. 1, pp. 135-151
Available online at http://jano.biemdas.com
https://doi.org/10.23952/jano.6.2024.1.08

MODIFIED RELAXED CQ-ALGORITHMS FOR A SPLIT EQUALITY PROBLEM IN
HILBERT SPACES

YU CAO1, YISHUO PENG1, LUOYI SHI2, YASONG CHEN1,∗

1School of Mathematical Sciences, Tiangong University, Tianjin, 300387, China
2School of Software, Tiangong University, Tianjin 300387, China

Abstract. In this paper, we propose three self-adaptive relaxed CQ-algorithms with projections onto half-
spaces for solving a split equality problem. The stepsize of the algorithms is dynamically calculated with-
out any prior information regarding operator norms. Moreover, we prove the strong convergence to the
minimum-norm solution of the split equality problem. Finally, we test the validity of our results by conduct-
ing some numerical experiments and consider signal recovery problems as applications.

Keywords. Minimum-norm solution; Polyak’s gradient method; Split equality problem; Self-adaptive step-
size; Signal recovery problem.

2020 Mathematics Subject Classification. 65K15, 90C30.

1. INTRODUCTION

Let A : H1 → H2 be a bounded and linear operator, where H1 and H2 are real Hilbert spaces,
and let C and Q be nonempty, convex, and closed subsets of H1 and H2, respectively. The Split
Feasibility Problem (SFP), which was firstly introduced by Censor and Elfving [1], is formulated
as:

finding x ∈C such that Ax ∈ Q. (1.1)

The SFP finds wide applications in medical imaging and there are various efficient algorithms
for solving it; see, e.g., [2, 3, 4, 5, 6, 7] and the references therein.

Recently, Moudafi [8] proposed a Split Equality Problem (SEP): Let A : H1→ H3 and B : H2→
H3 be two bounded and linear operators, and let C ⊂ H1 and Q ⊂ H2 be two nonempty, convex,
and closed sets, where H1,H2, and H3 are real Hilbert spaces. The SEP is formulated as:

finding x ∈C and y ∈ Q such that Ax = By. (1.2)

If B = I, then SEP (1.2) reduces to the celebrated SFP (1.1). Observe that the SEP allows for
asymmetric and partial relations between x and y. This covers numerous problems such as the
intensity-modulated radiation therapy. Assume that SEP (1.2) is consistent, which means that the
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solution set is nonempty. In 2013, Moudafi [8] introduced a popular CQ-algorithm to solve the
SEP, which is presented as follows:{

xn+1 = PC (xn− γn A∗(Axn−Byn)),

yn+1 = PQ (yn + γn B∗(Axn−Byn)),
(1.3)

where PC and PQ are the metric (nearest point) projections onto C and Q, respectively, A∗ : H3→H1
and B∗ : H3 → H2 are the adjoint of A and B, and the stepsize {γn} ⊂ (ε,min{ 1

λA
, 1

λB
}− ε) for a

small enough ε > 0, where λA and λB stand for the spectral radius of A∗A and B∗B, respectively.
Moudafi’s CQ-algorithm can be considered as a specific instance of the gradient-projection tech-
nique employed in constrained convex minimization problems. The CQ-algorithm could be used
to solve the SEP (1.2) when the PC, PQ, and operator norms are calculable. Note that the task of
determining the metric projection to a convex and closed set is not an easy job due to the absence of
an explicit formula. In order to overcome these technical difficulties in Algorithm (1.3), Moudafi
[9] further proposed the following relaxed alternating CQ-algorithm{

xn+1 = PCn (xn− γn A∗(Axn−Byn)),

yn+1 = PQn (yn + γn B∗(Axn−Byn)).
(1.4)

In this situation, {Cn} and {Qn} are two sequences of convex and closed sets defined by:

Cn = {x ∈ H1 : c(xn)+ 〈ξn,x− xn〉 ≤ 0},

where ξn ∈ ∂c(xn) and
Qn = {y ∈ H2 : q(yn)+ 〈ηn,y− yn〉 ≤ 0},

where ηn ∈ ∂q(yn).
Algorithm (1.4) is devised by replacing the C and Q to Cn and Qn, respectively. Hence, PCn and

PQn as the projection onto half-spaces are easy to calculate. This technique expands the range of
the algorithm in the practical applications from the viewpoint of numerical computation.

It is noted that the calculation of the stepsize γn in Algorithms (1.3) and (1.4) is dependent on
the operator matrix norms ‖A‖ and ‖B‖ (or the highest eigenvalues of A∗A and B∗B). In order to
execute the alternating CQ-algorithm, one must calculate (at the very least estimate) the operator
norms of A and B, which is in general not an easy task in practice.

In 2012, López et al. [10] and Zhao and Shi [11] presented an efficient technique for estimating
the stepsize, which does not need any prior information of the operator norms for solving SFP (1.1)
and multiple-set split problems, respectively. Inspired by this, Dong, He and Zhao [12] introduced
a new algorithm with a choice of the stepsize sequence γn and a new relaxed algorithm with a
choice of the stepsize sequence γn in 2014 as follows:

(DHZ−1) :

{
xn+1 = PC (xn− γn A∗(Axn−Byn)),

yn+1 = PQ (yn + γn B∗(Axn−Byn)),
(1.5)

where γn is chosen in such a way that

γn = ρn min{ ‖Axn−Byn‖2

‖A∗(Axn−Byn)‖2 ,
‖Axn−Byn‖2

‖B∗(Axn−Byn)‖2},

where 0 < ρn < 1,
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(DHZ−2) :

{
xn+1 = PCn (xn− γn A∗(Axn−Byn)),

yn+1 = PQn (yn + γn B∗(Axn−Byn)),
(1.6)

where {Cn} and {Qn} are the same as the ones in Algorithm (1.4), and the stepsize is chosen as
follows:

γn = ρn min{ ‖Axn−Byn‖2

‖A∗(Axn−Byn)‖2 ,
‖Axn−Byn‖2

‖B∗(Axn−Byn)‖2},

where 0 < ρn < 1.
Note that Algorithms (1.3), (1.4), (1.5), and (1.6) only have the weak convergence. Thus Shi,

Chen and Wu [13] investigated the strong convergence for SEP (1.2). In this situation, we use
Γ to denote the solution set of SEP (1.2), i.e., Γ = {(x,y) ∈ C×Q : Ax = By,x ∈ C,y ∈ Q}. Let
S =C×Q in H = H1×H2, and define G : H → H3 by G = [A,−B]. Then, G∗G : H → H has the
matrix form:

G∗G =

[
A∗A −A∗B
−B∗A B∗B

]
.

Observe that (1.2) can be rephrased as finding w = (x,y) ∈ S with Gw = 0, or, more generally,
minimizing ‖Gw‖ over w ∈ S. The algorithm is proposed as wn+1 = PS {(1−αn)[I− γ G∗G]wn},
i.e., {

xn+1 = PC {(1−αn)[xn− γ A∗(Axn−Byn)]},
yn+1 = PQ {(1−αn)[yn + γ B∗(Axn−Byn)]},

where αn > 0 and γ > 0 are under simple and straightforward conditions.
In addition, Shi, Chen and Wu [13] also gave another KM-CQ-like algorithm that converges

strongly to a solution of SEP (1.2) as follows

wn+1 = (1−βn)wn +βnPS {(1−αn)[I− γ G∗G]wn},

i.e., {
xn+1 = (1−βn)xn +βnPC {(1−αn)[xn− γ A∗(Axn−Byn)]},
yn+1 = (1−βn)yn +βnPQ {(1−αn)[yn + γ B∗(Axn−Byn)]},

where αn > 0 and βn > 0 are under simple and straightforward conditions.
It is widely believed that the gradient-projection method is one of the most popular methods for

tackling SFP (1.1) among the various algorithms: xn+1 = xn−αn∇ f (xn), where the stepsize αn≥ 0
can be selected by using diverse ways. Among various gradient-projection methods, Polyak [14]
suggested the following way to select the stepsize: αn = λn

f (xn)− f ∗

‖∇ f (xn)‖2 with λn ∈ (0,2). In 2018,
Wang [15] initially proposed an algorithm, which is a combination of the relaxed CQ method and
Polyak’s gradient method with weak convergence to solve the SFP (1.1), which is described as
follows: xn+1 = xn− γn[(xn−PCnxn)+A∗(I−PQn)Axn], where

γn =
ρn(‖xn−PCnxn‖2 +‖(I−PQn)Axn‖2)

2‖(xn−PCnxn)+A∗(I−PQn)Axn‖2 ,

with 0 < ε ≤ ρn ≤ 4− ε for a small enough ε > 0.
On the other hand, the calculation processes of some algorithms are unexpectedly tedious, which

limit its practical applications. Thus scholars also proposed various techniques to accelerate their
algorithms, such as inertial techniques or alternated inertial techniques.
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In 2022, Yu and Wang [16] suggested a number of relaxed CQ-algorithms for SFP (1.1). The
core of their algorithms lies in substituting the projections to the half-spaces Cn and Qn with the
projections to the intersection of Cn and Cn−1 and the intersection of Qn and Qn−1. The special
projections expedite the rate of convergence. Their algorithm is described as follows:

xn+1 = PC2
n
(xn− γn A∗(I−PQ2

n
)Axn),

where x0,x1 ∈ H1,C2
n =Cn∩Cn−1,Q2

n = Qn∩Qn−1, and γn =
ρn‖(I−PQ2n

)Axn‖2

‖A∗(I−PQ2n
)Axn‖2 with ρn ∈ (0,2).

They numerically demonstrated that their algorithm is obviously accelerated by using the special
half-spaces C2

n and Q2
n. Based on the research of Yu and Wang [16], Ling, Tong and Shi [17]

developed a number of algorithms for SFP (1.1) with the projections to the intersection of Cn and
Cn−1 and the intersection of Qn and Qn−1, respectively. Their proposed algorithms with strong
convergence are presented as following:

(LTS−1) : xn+1 = PC2
n
[(1−αn)(xn− γn A∗(I−PQ2

n
)Axn)],

where C2
n =Cn∩Cn−1,Q2

n = Qn∩Qn−1, and γn =
ρn‖(I−PQ2n

)Axn‖2

‖A∗(I−PQ2n
)Axn‖2 , where ρn ∈ (0,2),

(LTS−2) : xn+1 = (1−αn)[xn− γn ((xn−PC2
n
xn)+A∗(I−PQ2

n
)Axn)],

where C2
n =Cn∩Cn−1,Q2

n = Qn∩Qn−1, and

γn =
ρn(‖xn−PC2

n
xn‖2 +‖(I−PQ2

n
)Axn‖2)

‖(xn−PC2
n
xn)+A∗(I−PQ2

n
)Axn‖2

with ρn ∈ (0,2).
In this paper, based on the algorithms in [16], we devise three strong convergence schemes for

solving SEP (1.2). The organization of this paper is as follows: In Section 2, we provide some def-
initions and preliminary results for the convergence analysis of our iterative algorithms. In Section
3, we introduce our first iterative algorithm and discuss its strong convergence analysis. In Section
4, we introduce the second algorithm and present its the analysis of the strong convergence. In
Section 5, we present the last algorithm and demonstrate its strong convergence. In Section 6,
we provide some numerical experiments in signal recovery problems to demonstrate the effective-
ness of the suggested iterative algorithms. In Section 7, the last section, we give a concluding
conclusion.

2. PRELIMINARIES

In this paper, we use the following notations:
• M stands for a convex, closed, and nonempty subset of a real Hilbert space of H;
• I stands for the identity operator on H;
• → stands for the strong convergence and ⇀ stands for the weak convergence;
• ωw(wn) = {w ∈ H : ∃{wni} ⊂ {wn} such that wni ⇀ w} stands for the weak ω-limit set of
{wn}n∈N .

Recall that an operator D : M → H is called: (1) nonexpansive on if ‖Dx−Dy‖ ≤ ‖x− y‖
for all x,y ∈ M; firmly nonexpansive if ‖Dx−Dy‖2 ≤ ‖x− y‖2−‖(I−D)x− (I−D)y‖2 for all
x,y∈M, which is equivlent to ‖Dx−Dy‖2≤〈Dx−Dy,x−y〉 for all x,y∈M; (3) κ-inverse strongly
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monotone (κ-ism) if 〈Dx−Dy,x− y〉 ≥ κ‖Dx−Dy‖2, where k is some positive constant, for all
x,y ∈M.

The metric projection, which plays an important role in this paper, is defined as follows: for
each x ∈ H, there is a unique nearest point PMx ∈M such that ‖x−PMx‖= min{‖x− y‖ : y ∈M}.
Notice that both PM and I−PM are 1-ism, nonexpansive, and firmly nonexpansive.

Recall that the subdifferential of a convex function f : H→ R at x ∈ H is defined as:

∂ f (x) = {φ ∈ H : f (y)− f (x)≥ 〈φ ,y− x〉,∀y ∈ H}.

Recall that f : H → R is said to be weakly lower semi-continuous (w-lsc) at x if xn ⇀ x implies
f (x)≤ liminfn→∞ f (xn).

Finally, we present a crucial lemma for our convergence analysis in the following sections.

Lemma 2.1. [18] Let {hn} be a nonnegative sequence with{
hn+1 ≤ hn−ξn + τn,

hn+1 ≤ (1−δn)hn +δnθn,

where {δn} ⊂ (0,1) with ∑
∞
n=1 δn = ∞, {τn} is a real sequence with limn→∞ τn = 0, {θn} is

a real sequence, and {ξn} is nonnegative real sequence such that limi→∞ ξni = 0 yields that
limsupi→∞ θni ≤ 0 for every subsequence {ni} of {n}. Then limn→∞ hn = 0.

3. THE FIRST ALGORITHM

In this section, we still use the notations Γ, G, S, and w, which are the same as in [13]. The sets
Sn, Cn, and Qn at points wn, xn, and yn are defined by:

Sn = {w ∈ H : s(wn)≤ 〈ηn,wn−w〉},
Cn = {x ∈ H1 : c(xn)≤ 〈η ′n,xn− x〉},
Qn = {y ∈ H2 : q(yn)≤ 〈η ′′n ,yn− y〉},

where ηn ∈ ∂ s(wn),η
′
n ∈ ∂c(xn), and η ′′n ∈ ∂q(yn). It is clear to see that C ⊂ Cn, Q ⊂ Qn, and

S ⊂ Sn for all n ≥ 1, and Sn is a half-space and therefore the corresponding projection is easy to
calculate.

Next, we present two assumptions.
Assumption 1:
(A1): The solution set of SEP (1.2), Γ = {ŵ ∈ S : Gŵ = 0}, is convex, closed, and nonempty.
(A2): The function s : H→ R are subdifferentiable, weakly lower semi-continuous, and convex

on H.
Assumption 2:
{ρn}∞

n=1 is a positive sequence which satisfies the following condition:
(A3): {ρn} ⊂ (0,2) with infn∈N ρn(2−ρn)> 0.
We are now in a position to present first modified relaxed algorithm.

Algorithm 1. Initialization: Choose {αn}∞
n=1 satisfying the conditions below and {ρn}∞

n=1 satisfy-
ing Assumption 2 (A3), respectively. Select initials w0,w1 ∈ H and set n := 1.
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Iterative Step: Given the iterate wn, construct wn+1 by wn+1 = PS2
n
{(1−αn)[I− γn G∗G]wn},

where S2
n, γn, and {αn}∞

n=1 are defined as follows respectively S2
n = Sn∩Sn−1, γn =

ρn‖Gwn‖2

‖G∗Gwn‖2 , and

(i) limn→∞ αn = 0; (ii) ∑
∞
n=0 αn = ∞; (iii) ∑

∞
n=0 |αn+1−αn|< ∞ or limn→∞

|αn+1−αn|
αn

= 0.
Stopping Criterion: If wn+1 = wn and ‖G∗Gwn‖= 0, then terminate. Otherwise, set n := n+1

and proceed to Iterative Step.
That is, {

xn+1 = PC2
n
{(1−αn)[xn− γn A∗(Axn−Byn)]},

yn+1 = PQ2
n
{(1−αn)[yn + γn B∗(Axn−Byn)]},

where C2
n , Q2

n, and γn are respectively defined as C2
n =Cn∩Cn−1 and Q2

n = Qn∩Qn−1, and

γn = min{ ρn‖Axn−Byn‖2

‖A∗(Axn−Byn)‖2 ,
ρn‖Axn−Byn‖2

‖B∗(Axn−Byn)‖2}.

Lemma 3.1. If wn+1 = wn and ‖G∗Gwn‖= 0 for some n≥ 0, then wn ∈ Γ.

Proof. Let wn+1 = wn, then it follows that wn = PS2
n
{(1−αn)[I− γn G∗G]wn}, which means that

wn ∈ S2
n. According to ‖G∗Gwn‖= 0 and the fact that G is bounded, we conclude that ‖Gwn‖= 0.

Thus, wn ∈ Γ. �

Theorem 3.1. The sequence {wn} generated by Algorithm 1 converges strongly to w∗ ∈ Γ, where
w∗ = PΓ(0).

Proof. Letting dn = (1−αn)[I− γnG∗G]wn, one has wn+1 = PS2
n
dn. Next, we divide the proof into

four steps.
Step 1. Let ŵ ∈ Γ. Since S ⊂ S2

n, then ŵ = PSŵ = PS2
n
ŵ. In view of the fact that PS2

n
is firmly

nonexpansive, we have

‖wn+1− ŵ‖2

≤ ‖dn− ŵ‖2−‖(I−PS2
n
)dn‖2

= ‖(1−αn)(wn− γnG∗Gwn− ŵ)+αn(−ŵ)‖2−‖(I−PS2
n
)dn‖2

= αn‖ŵ‖2 +(1−αn)‖wn− γnG∗Gwn− ŵ‖2−αn(1−αn)‖wn− γnG∗Gwn‖2−‖(I−PS2
n
)dn‖2

≤ αn‖ŵ‖2 +(1−αn)‖wn− γnG∗Gwn− ŵ‖2−‖(I−PS2
n
)dn‖2.

(3.1)
Moreover, we have

‖wn− γnG∗Gwn− ŵ‖2 = ‖wn− ŵ‖2 + γ
2
n‖G∗Gwn‖2−2γn〈wn− ŵ,G∗Gwn〉

= ‖wn− ŵ‖2 + γ
2
n‖G∗Gwn‖2−2γn‖Gwn‖2

= ‖wn− ŵ‖2−ρn(2−ρn)
‖Gwn‖4

‖G∗Gwn‖2 .

(3.2)

Combining (3.1) and (3.2), we see that

‖wn+1− ŵ‖2

≤ αn‖ŵ‖2 +(1−αn)‖wn− ŵ‖2−ρn(2−ρn)(1−αn)
‖Gwn‖4

‖G∗Gwn‖2 −‖(I−PS2
n
)dn‖2.

(3.3)
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Step 2. According to (3.3) and Assumption 2 (A3), we have

‖wn+1− ŵ‖2

≤ αn‖ŵ‖2 +(1−αn)‖wn− ŵ‖2−ρn(2−ρn)(1−αn)
‖Gwn‖4

‖G∗Gwn‖2 −‖(I−PS2
n
)dn‖2

≤ αn‖ŵ‖2 +(1−αn)‖wn− ŵ‖2.

Thus ‖wn+1− ŵ‖2 ≤max{‖ŵ‖2,‖w0− ŵ‖2}. Hence, {‖wn− ŵ‖} is bounded. As a result, {wn} is
bounded too.

Step 3. From Assumption 2 (A3) and (3.2), we see that

‖wn− γnG∗Gwn− ŵ‖2 = ‖wn− ŵ‖2−ρn(2−ρn)
‖Gwn‖4

‖G∗Gwn‖2 ≤ ‖wn− ŵ‖2.

Since PS2
n

is firmly nonexpansive, we have

‖wn+1− ŵ‖2 ≤ ‖(1−αn)(wn− γnG∗Gwn− ŵ)+αn(−ŵ)‖2

= α
2
n‖ŵ‖2 +(1−αn)

2‖wn− γnG∗Gwn− ŵ‖2

+2αn(1−αn)〈wn− ŵ,−ŵ〉+2αn(1−αn)γn〈G∗Gwn, ŵ〉

≤ α
2
n‖ŵ‖2 +(1−αn)‖wn− γnG∗Gwn− ŵ‖2

+2αn(1−αn)〈wn− ŵ,−ŵ〉+2αn(1−αn)γn‖G‖‖ŵ‖‖Gwn‖

≤ (1−αn)‖wn− ŵ‖2 +αn[αn‖ŵ‖2 +2(1−αn)〈wn− ŵ,−ŵ〉
+2(1−αn)γn‖G‖‖ŵ‖‖Gwn‖].

(3.4)

Step 4. We prove that {wn} converges strongly to w∗ = PΓ(0). Without loss of generality, we
assume that there exists ε > 0 such that ρn(2−ρn)(1−αn)≥ ε . It follows from (3.3) that

‖wn+1−w∗‖2

≤ αn‖w∗‖2 +(1−αn)‖wn−w∗‖2−ρn(2−ρn)(1−αn)
‖Gwn‖4

‖G∗Gwn‖2 −‖(I−PS2
n
)dn‖2

≤ αn‖w∗‖2 +(1−αn)‖wn−w∗‖2− ε‖Gwn‖4

‖G∗Gwn‖2 −‖(I−PS2
n
)dn‖2

≤ αn‖w∗‖2 +‖wn−w∗‖2− ε‖Gwn‖4

‖G∗Gwn‖2 −‖(I−PS2
n
)dn‖2.

(3.5)

In view of (3.4) and (3.5), we have{
‖wn+1−w∗‖2 ≤ (1−αn)‖wn−w∗‖2 +αnθn,

‖wn+1−w∗‖2 ≤ ‖wn−w∗‖2−ξn +αn‖w∗‖2,

where θn = αn‖w∗‖2 +2(1−αn)〈wn−w∗,−w∗〉+2(1−αn)γn‖G‖‖w∗‖‖Gwn‖ and

ξn =
ε‖Gwn‖4

‖G∗Gwn‖2 +‖(I−PS2
n
)dn‖2

with {αn}⊂ (0,1), limn→∞ αn = 0, and ∑
∞
n=0 αn =∞. Let hn = ‖wn−w∗‖2. To utilize Lemma (2.1),

it suffices to confirm that, for every subsequence {ni} ⊂ {n}, limi→∞ ξni = 0⇒ limsupi→∞θni ≤ 0.
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Suppose that limi→∞ ξni = 0. Thus

lim
i→∞

(
ε‖Gwni‖4

‖G∗Gwni‖2 +‖(I−PS2
ni
)dni‖

2) = 0,

which implies that limi→∞

ε‖Gwni‖
4

‖G∗Gwni‖2 = 0 and limi→∞ ‖(I−PS2
ni
)dni‖= 0. Since G is a bounded linear

operator and {wn} is a bounded sequence, we obtain that limi→∞ ‖Gwni‖= limi→∞ ‖wni‖= 0.
Next, we show that ωw(wni) ∈ Γ. Since {wni} is bounded, then ωw(wni) 6= /0. Let w̄ ∈ ωw(wni).

Then there exists a subsequence {wni j
} of {wni} such that wni j

⇀ w̄. Without loss of generality, we

may assume that wni ⇀ w̄. Since PS2
ni
(wni) ∈ S2

ni
⊂ Sni , we have s(wni)≤ 〈ηni,wni−PS2

ni
wni〉, where

ηni ∈ ∂ s(wni). From the hypothesis that ηni is bounded and the fact that I−PS2
ni

is nonexpansive,
we see that

s(wni)≤ 〈ηni,wni−PS2
ni

wni〉 ≤ ‖ηni‖‖I−PS2
ni
‖‖wni‖→ 0

as i→ ∞. Since s is weakly lower semi-continuous, it follows that w̄ ∈ S and

0≤ ‖Gw̄‖2 = 〈Gw̄,Gw̄〉= lim
i→∞
〈Gwni,Gw̄〉 ≤ lim

i→∞
‖Gwni‖‖Gw̄‖→ 0

as i→ ∞. This implies Gw̄ = 0, that is, w̄ ∈ Γ, i.e., ωw(wni) ∈ Γ. Note that

limsupi→∞θni

= limsupi→∞[αni‖w
∗‖2 +2(1−αni)〈wni−w∗,−w∗〉+2(1−αni)γni‖G‖‖w

∗‖‖Gwni‖]
= 2 limsupi→∞〈wni−w∗,−w∗〉= 2 max

w̄∈ωw(wni)
〈w̄−w∗,−w∗〉 ≤ 0.

From Lemma 2.1, we can infer that {wn} converges strongly to w∗= PΓ(0). The proof is complete.
�

4. THE SECOND ALGORITHM

In this section, we propose our second modified relaxed algorithm for solving SEP (1.2).

Algorithm 2. Initialization: Choose {ρn}∞
n=1 satisfying Assumption 2 (A3) and {αn}∞

n=1 and
{βn}∞

n=1 satisfying the conditions: (i) limn→∞ αn = 0 and ∑
∞
n=0 αn = ∞; (ii) ∑

∞
n=0 |αn+1−αn|= 0;

and (iii) 0 < liminfn→∞βn ≤ limsupn→∞βn < 1. Select initials w0,w1 ∈ H and set n := 1.
Iterative Step: Given the iterate wn, construct wn+1 by wn+1 = (1−βn)wn+βnPS2

n
{(1−αn)[I−

γn G∗G]wn}, where S2
n and γn are the same as Algorithm 1, respectively.

Stopping Criterion: If wn+1 = wn and ‖G∗Gwn‖= 0, then terminate. Otherwise, set n := n+1
and proceed to Iterative Step.

That is, {
xn+1 = (1−βn)xn +βnPC2

n
{(1−αn)[xn− γn A∗(Axn−Byn)]},

yn+1 = (1−βn)yn +βnPQ2
n
{(1−αn)[yn + γn B∗(Axn−Byn)]},

where C2
n , Q2

n, and γn are respectively defined by C2
n =Cn∩Cn−1, Q2

n = Qn∩Qn−1, and

γn = min{ ρn‖Axn−Byn‖2

‖A∗(Axn−Byn)‖2 ,
ρn‖Axn−Byn‖2

‖B∗(Axn−Byn)‖2}.

Lemma 4.1. If wn+1 = wn and ‖G∗Gwn‖= 0 for some n≥ 0, then wn ∈ Γ.
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Since the proof of this lemma is similar to Lemma 3.1, we omit the proof here.

Theorem 4.1. The sequence {wn} generated by Algorithm 2 converges strongly to w∗ ∈ Γ, where
w∗ = PΓ(0).

Proof. Letting dn = (1−αn)[I−γnG∗G]wn, one sees that wn+1 = (1−βn)wn+βnPS2
n
dn. Let ŵ∈ Γ.

From S⊂ S2
n, one has ŵ = PSŵ = PS2

n
ŵ. Since PS2

n
is firmly nonexpansive, one has

‖wn+1− ŵ‖2 = ‖(1−βn)(wn− ŵ)+βn(PS2
n
dn−PS2

n
ŵ)‖2

= (1−βn)‖wn− ŵ‖2 +βn‖PS2
n
dn−PS2

n
ŵ‖2−βn(1−βn)‖wn−PS2

n
dn‖2

≤ (1−βn)‖wn− ŵ‖2 +βn‖PS2
n
dn−PS2

n
ŵ‖2.

(4.1)

Moreover,

‖PS2
n
dn−PS2

n
ŵ‖2 ≤ ‖dn− ŵ‖2−‖(I−PS2

n
)dn‖2

= αn‖ŵ‖2 +(1−αn)‖wn− γnG∗Gwn− ŵ‖2−αn(1−αn)‖wn− γnG∗Gwn‖2

−‖(I−PS2
n
)dn‖2

≤ αn‖ŵ‖2 +(1−αn)‖wn− γnG∗Gwn− ŵ‖2−‖(I−PS2
n
)dn‖2.

(4.2)

It follows from (3.2), (4.1), and (4.2) that

‖wn+1− ŵ‖2

≤ (1−βn)‖wn− ŵ‖2 +βn‖PS2
n
dn−PS2

n
ŵ‖2

≤ (1−βn)‖wn− ŵ‖2 +βn[αn‖ŵ‖2 +(1−αn)‖wn− γnG∗Gwn− ŵ‖2−‖(I−PS2
n
)dn‖2]

≤ αnβn‖ŵ‖2 +(1−αnβn)‖wn− ŵ‖2− (1−αn)βnρn(2−ρn)
‖Gwn‖4

‖G∗Gwn‖2 −βn‖(I−PS2
n
)dn‖2.

(4.3)
From Assumption 2 (A3) and (4.3), we have

‖wn+1− ŵ‖2 ≤ αnβn‖ŵ‖2 +(1−αnβn)‖wn− ŵ‖2− (1−αn)βnρn(2−ρn)
‖Gwn‖4

‖G∗Gwn‖2

−βn‖(I−PS2
n
)dn‖2

≤ αnβn‖ŵ‖2 +(1−αnβn)‖wn− ŵ‖2.

Thus ‖wn+1− ŵ‖2≤max{‖ŵ‖2,‖w0− ŵ‖2}. This proves that {‖wn− ŵ‖} is bounded. As a result,
{wn} is bounded too. In view of (3.4) and (4.1), we conclude that

‖wn+1− ŵ‖2 ≤ (1−βn)‖wn− ŵ‖2 +βn‖PS2
n
dn−PS2

n
ŵ‖2

≤ (1−βn)‖wn− ŵ‖2 +βn‖dn− ŵ‖2

≤ (1−αnβn)‖wn− ŵ‖2 +αnβn[αn‖ŵ‖2 +2(1−αn)〈wn− ŵ,−ŵ〉
+2(1−αn)γn‖G‖‖ŵ‖‖Gwn‖].

(4.4)

Finally, we prove that {wn} converges strongly to w∗ = PΓ(0) (i.e., the minimum norm element
of Γ). Without loss of generality, we assume that there exists ε ′ > 0 such that (1−αn)βnρn(2−
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ρn)≥ ε ′. Thus we find from (4.3) that

‖wn+1−w∗‖2

≤ αnβn‖w∗‖2 +(1−αnβn)‖wn−w∗‖2− (1−αn)βnρn(2−ρn)
‖Gwn‖4

‖G∗Gwn‖2

−βn‖(I−PS2
n
)dn‖2

≤ αnβn‖w∗‖2 +(1−αnβn)‖wn−w∗‖2− ε ′‖Gwn‖4

‖G∗Gwn‖2 −βn‖(I−PS2
n
)dn‖2

≤ αnβn‖w∗‖2 +‖wn−w∗‖2− ε ′‖Gwn‖4

‖G∗Gwn‖2 −βn‖(I−PS2
n
)dn‖2.

(4.5)

From (4.4) and (4.5), we have the two following inequalities:{
‖wn+1−w∗‖2 ≤ (1−δn)‖wn−w∗‖2 +δnθn,

‖wn+1−w∗‖2 ≤ ‖wn−w∗‖2−ξn +δn‖w∗‖2,

where θn = αn‖w∗‖2 +2(1−αn)〈wn−w∗,−w∗〉+2(1−αn)γn‖G‖‖w∗‖‖Gwn‖, δn = αnβn, and

ξn =
ε ′‖Gwn‖4

‖G∗Gwn‖2 +βn‖(I−PS2
n
)dn‖2,

with {δn} ⊂ (0,1), limn→∞ δn = 0, and ∑
∞
n=0 δn = ∞. Let hn = ‖wn−w∗‖2. To utilize Lemma 2.1,

it suffices to confirm that, for every subsequence {ni} ⊂ {n}, limi→∞ ξni = 0⇒ limsupi→∞θni ≤ 0.

If limi→∞ ξni = 0, then limi→∞(
ε ′‖Gwni‖

4

‖G∗Gwni‖2 +βn‖(I−PS2
ni
)dni‖2) = 0, which implies that

lim
i→∞

ε ′‖Gwni‖4

‖G∗Gwni‖2 = lim
i→∞
‖(I−PS2

ni
)dni‖= 0.

Since G is a bounded linear operator and {wn} is a bounded sequence, we obtain that limi→∞ ‖Gwni‖
= limi→∞ ‖wni‖= 0.

Next, we show that ωw(wni) ∈ Γ. Since {wni} is bounded, then ωw(wni) 6= /0. Let w̄ ∈ ωw(wni).
Then there exists a subsequence {wni j

} of {wni} such that wni j
⇀ w̄. Without loss of generality, we

can assume that wni ⇀ w̄. Since PS2
ni
(wni) ∈ S2

ni
⊂ Sni , we have s(wni)≤ 〈ηni,wni−PS2

ni
wni〉, where

ηni ∈ ∂ s(wni). Since ηni is bounded, we obtain from the property of I−PS2
ni

that

s(wni)≤ 〈ηni,(I−PS2
ni
)wni〉 ≤ ‖ηni‖‖I−PS2

ni
‖‖wni‖→ 0

as i→ ∞. Since s is w-lsc, it follows that w̄ ∈ S. Hence,

0≤ ‖Gw̄‖2 = 〈w̄,G∗Gw̄〉= lim
i→∞
〈wni,G

∗Gw̄〉= lim
i→∞
〈Gwni,Gw̄〉 ≤ lim

i→∞
‖Gwni‖‖Gw̄‖→ 0

as i→ ∞. Thus Gw̄ = 0, which implies that w̄ ∈ Γ, i.e., ωw(wni) ∈ Γ. Observe that

limsupi→∞θni = limsupi→∞[αni‖w
∗‖2 +2(1−αni)〈wni−w∗,−w∗〉

+2(1−αni)γni‖G‖‖w
∗‖‖Gwni‖]

= 2 limsupi→∞〈wni−w∗,−w∗〉
= 2 max

w̄∈ωw(wni)
〈w̄−w∗,−w∗〉 ≤ 0.
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From Lemma 2.1, we can infer that {wn} converges strongly to w∗= PΓ(0). The proof is complete.
�

5. THE THIRD ALGORITHM

In this section, we propose the last modified relaxed algorithm for solving SEP (1.2) .

Algorithm 3. Initialization: Choose sequence {αn}∞
n=1 satisfying (i) limn→∞ αn = 0; (ii) ∑

∞
n=0 αn =

∞, and sequence {ρn}∞
n=1 satisfying Assumption 2 (A3), respectively. Select initial w0,w1 ∈H and

set n := 1.
Iterative Step: Given the iterate wn, construct wn+1 by

wn+1 = (1−αn)[wn− γn(wn−PS2
n
wn +G∗Gwn)],

where S2
n and γn are defined as follows respectively S2

n = Sn∩Sn−1 and

γn =
ρn[‖wn−PS2

n
wn‖2 +‖Gwn‖2]

‖wn−PS2
n
wn +G∗Gwn‖2 .

Stopping Criterion: If ‖wn−PS2
n
wn +G∗Gwn‖ = 0, then terminate. Otherwise, set n := n+ 1

and proceed to Iterative Step.
That is, {

xn+1 = (1−αn){xn− γn[xn−PC2
n
xn +A∗(Axn−Byn)]},

yn+1 = (1−αn){yn− γn[yn−PQ2
n
yn−B∗(Axn−Byn)]},

where C2
n , Q2

n, and γn are respectively defined by C2
n =Cn∩Cn−1, Q2

n = Qn∩Qn−1, and

γn =min{
ρn[‖xn−PC2

n
xn‖2 +‖A∗(Axn−Byn)‖2]

‖xn−PC2
n
xn +A∗(Axn−Byn)‖2 ,

ρn[‖yn−PQ2
n
yn‖2 +‖B∗(Axn−Byn)‖2]

‖yn−PQ2
n
yn−B∗(Axn−Byn)‖2 }.

Lemma 5.1. If ‖wn−PS2
n
wn +G∗Gwn‖= 0 for some n≥ 0, then wn ∈ Γ.

Proof. Let w̌ ∈ Γ. Since ‖wn−PS2
n
wn +G∗Gwn‖= 0, then

0 = 〈wn−PS2
n
wn +G∗Gwn,wn− w̌〉

= 〈wn−PS2
n
wn,wn− w̌〉+ 〈Gwn,G(wn− w̌)〉

≥ ‖wn−PS2
n
wn‖2 +‖Gwn‖2.

(5.1)

Thus wn = PS2
n
wn and Gwn = 0. That is, wn ∈ Γ. Hence, Algorithm 3 is well defined. �

Theorem 5.1. The sequence {wn} generated by Algorithm 3 converges strongly to w∗ ∈ Γ, where
w∗ = PΓ(0).

Proof. Let en = wn− γn(wn−PS2
n
wn +G∗Gwn). Thus wn+1 = (1−αn)en. Fixing ŵ ∈ Γ, one has

‖wn+1− ŵ‖2 = ‖(1−αn)(en− ŵ)+αn(−ŵ)‖2 ≤ (1−αn)‖en− ŵ‖2 +αn‖ŵ‖2. (5.2)

From the definition of en, we see that

‖en− ŵ‖2 = ‖wn− ŵ‖2 + γ
2
n‖wn−PS2

n
wn +G∗Gwn‖2−2γn〈wn− ŵ,wn−PS2

n
wn +G∗Gwn〉.



146 Y. CAO, Y. PENG, L. SHI, Y. CHEN

According to (5.1), we have

‖en− ŵ‖2 ≤ ‖wn− ŵ‖2 + γ
2
n‖wn−PS2

n
wn +G∗Gwn‖2−2γn(‖wn−PS2

n
wn‖2 +‖Gwn‖2)

≤ ‖wn− ŵ‖2 +
ρ2

n (‖wn−PS2
n
wn‖2 +‖Gwn‖2)2

‖wn−PS2
n
wn +G∗Gwn‖2 −

2ρn(‖wn−PS2
n
wn‖2 +‖Gwn‖2)2

‖wn−PS2
n
wn +G∗Gwn‖2

≤ ‖wn− ŵ‖2−ρn(2−ρn)
(‖wn−PS2

n
wn‖2 +‖Gwn‖2)2

‖wn−PS2
n
wn +G∗Gwn‖2 .

(5.3)

It then follows from (5.2) that

‖wn+1− ŵ‖2 ≤ (1−αn)‖en− ŵ‖2 +αn‖ŵ‖2

≤ (1−αn)‖wn− ŵ‖2 +αn‖ŵ‖2

− (1−αn)ρn(2−ρn)
(‖wn−PS2

n
wn‖2 +‖Gwn‖2)2

‖wn−PS2
n
wn +G∗Gwn‖2 .

(5.4)

From Assumption 2 (A3) and (5.4), we have

‖wn+1− ŵ‖2 ≤ (1−αn)‖wn− ŵ‖2 +αn‖ŵ‖2.

Thus ‖wn+1− ŵ‖2 ≤ max{‖ŵ‖2,‖w0− ŵ‖2}. Hence, {wn} is bounded. According to (5.3), we
have

‖en− ŵ‖2 ≤ ‖wn− ŵ‖2−ρn(2−ρn)
(‖wn−PS2

n
wn‖2 +‖Gwn‖2)2

‖wn−PS2
n
wn +G∗Gwn‖2 ≤ ‖wn− ŵ‖2.

Thus

‖wn+1− ŵ‖2 = ‖(1−αn)(en− ŵ)+αn(−ŵ)‖2

= (1−αn)
2‖en− ŵ‖2 +α

2
n‖ŵ‖2 +2(1−αn)αn〈wn− ŵ,−ŵ〉

+2(1−αn)αnγn〈wn−PS2
n
wn +G∗Gwn, ŵ〉

≤ (1−αn)‖wn− ŵ‖2 +αn[αn‖ŵ‖2 +2(1−αn)〈wn− ŵ,−ŵ〉
+2(1−αn)γn‖ŵ‖‖wn−PS2

n
wn +G∗Gwn‖].

(5.5)

Without loss of generality, we may assume that there exists ε > 0 such that ρn(2−ρn)(1−αn)≥ ε .
It follows from (5.4) that

‖wn+1−w∗‖2 ≤ (1−αn)‖wn−w∗‖2 +αn‖w∗‖2

− (1−αn)ρn(2−ρn)
(‖wn−PS2

n
wn‖2 +‖Gwn‖2)2

‖wn−PS2
n
wn +G∗Gwn‖2

≤ ‖wn−w∗‖2 +αn‖w∗‖2−
ε(‖wn−PS2

n
wn‖2 +‖Gwn‖2)2

‖wn−PS2
n
wn +G∗Gwn‖2 .

(5.6)

In view of (5.5) and (5.6), we have{
‖wn+1−w∗‖2 ≤ (1−αn)‖wn−w∗‖2 +αnθn,

‖wn+1−w∗‖2 ≤ ‖wn−w∗‖2−ξn +αn‖w∗‖2,
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where θn = αn‖ŵ‖2 +2(1−αn)〈wn− ŵ,−ŵ〉+2(1−αn)γn‖ŵ‖‖wn−PS2
n
wn +G∗Gwn‖ and

ξn =
ε(‖wn−PS2

n
wn‖2 +‖Gwn‖2)2

‖wn−PS2
n
wn +G∗Gwn‖2 ,

with {αn} ⊂ (0,1), limn→∞ αn = 0 and ∑
∞
n=0 αn = ∞. Let hn = ‖wn−w∗‖2. To utilize Lemma 2.1,

it suffices to confirm that, for every subsequence {ni} ⊂ {n}, limi→∞ ξni = 0⇒ limsupi→∞θni ≤ 0.
Note that G is a bounded linear operator and {wn} is a bounded vector sequence. If limi→∞ ξni = 0,
then limi→∞ ‖wni−PS2

ni
wni‖= limi→∞ ‖Gwni‖= 0. Thus limi→∞ ‖wni‖= 0.

Next, we show that ωw(wni) ∈ Γ. Since {wni} is bounded, then ωw(wni) 6= /0. Let w̄ ∈ ωw(wni).
Thus there exists a subsequence {wni j

} of {wni} such that wni j
⇀ w̄. Without loss of generality, we

can assume that wni ⇀ w̄. Since PS2
ni
(wni) ∈ S2

ni
⊂ Sni , we have s(wni)≤ 〈ηni,wni−PS2

ni
wni〉, where

ηni ∈ ∂ s(wni). Since ηni is bounded and I−PS2
ni

is firmly nonexpansive, we see that

s(wni)≤ 〈ηni,wni−PS2
ni

wni〉 ≤ ‖ηni‖‖I−PS2
ni
‖‖wni‖→ 0 (i→ ∞).

Since s is w-lsc, it follows that w̄ ∈ S. Thus

0≤ ‖Gw̄‖2 = lim
i→∞
〈Gwni,Gw̄〉 ≤ lim

i→∞
‖Gwni‖‖Gw̄‖→ 0 (i→ ∞),

which implies that w̄ ∈ Γ, i.e., ωw(wni) ∈ Γ. Observe that

limsupi→∞θni ≤ 2 limsupi→∞[〈wni−w∗,−w∗〉+ γni‖w
∗‖(‖wni−PS2

ni
wni‖+‖G

∗Gwni‖)]

= 2 max
w̄∈ωw(wni)

〈w̄−w∗,−w∗〉 ≤ 0.

From Lemma 2.1, we conclude that {wn} converges strongly to w∗=PΓ(0). The proof is complete.
�

6. NUMERICAL EXPERIMENT

In this section, we present a series of numerical experiments pertaining to signal recovery. We
designate Algorithms 1, 2, and 3, López’s algorithm in [10] and Yang’s algorithm in [19] as Alg1,
Alg2, Alg3, López Alg, and Yang Alg, respectively, for the sake of convenience. The code is
implemented in MATLAB R2022a and is running on a personal computer with Inter(R) Core(TM)
i5-8250U CPU @1.60GHz.

The following lemma is crucial for our numerical experiments.

Lemma 6.1. [20] Let u1 and u2 be two vectors in H. Let η1 and η2 be two real numbers. Let
‖u1‖2‖u2‖2 > |〈u1,u2〉|2. Let C = {x ∈ H|〈x,u1〉 ≤ η1}∩{x ∈ H|〈x,u2〉 ≤ η2}. Then C 6= Φ and
PCx = x− v1u1− v2u2, where exactly one of the following holds:

(i) 〈x,u1〉 ≤ η1 and 〈x,u2〉 ≤ η2. Then v1 = v2 = 0.
(ii) ‖u2‖2(〈x,u1〉−η1)> 〈u1,u2〉(〈x,u2〉−η2) and ‖u1‖2(〈x,u2〉−η2)> 〈u1,u2〉(〈x,u1〉−η1).

Then

v1 =
‖u2‖2(〈x,u1〉−η1)−〈u1,u2〉(〈x,u2〉−η2)

‖u1‖2‖u2‖2−|〈u1,u2〉|2
> 0 (6.1)

and
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v2 =
‖u1‖2(〈x,u2〉−η2)−〈u1,u2〉(〈x,u1〉−η1)

‖u1‖2‖u2‖2−|〈u1,u2〉|2
> 0. (6.2)

(iii) 〈x,u2〉> η2 and ‖u2‖2(〈x,u1〉−η1)≤ 〈u1,u2〉(〈x,u2〉−η2). Then

v1 = 0 and v2 =
〈x,u2〉−η2

‖u2‖2 > 0. (6.3)

(iv) 〈x,u1〉> η1 and ‖u1‖2(〈x,u2〉−η2)≤ 〈u1,u2〉(〈x,u1〉−η1). Then

v1 =
〈x,u1〉−η1

‖u1‖2 > 0 and v2 = 0. (6.4)

The signal recovery problem is established as minx∈RN
1
2‖Ax− y‖2

2 subject to ‖x‖1 ≤ s, where
A ∈ RM×N ,M < N,y ∈ RM,s > 0, ‖ ·‖1 is l1-norm defined by ‖x‖1 = ∑

N
n=1 |xn|, and A is a matrix of

perceptions, which is constructed from a standard normal distribution. The genuine sparse signal
x∗ is formed by uniformly distribution within the interval [−1,1] by using random K nonzero
elements. The sample data y = Ax∗ without any assumption of noise.

For convenience, we define B= I in Algorithm 1, Algorithm 2, and Algorithm 3. Then SEP (1.2)
reduces to SFP (1.1). In this situation, we define C = {x ∈ RN : ‖x‖1 ≤ s},s = K, and Q = {y}. By
using the relaxed CQ algorithms, we define the convex function c(x) := ‖x‖1− s and designate the
half space Cn as: Cn = {x ∈ RN : c(tn)≤ 〈ξn, tn− x〉}, where ξn ∈ ∂c(tn). The subdifferential ∂c at
tn ∈ RN is defined by [∂c(tn)]i = sign((tn)i), where sign(·) presents the sign function.

The metric projection of a point x ∈ RN onto Cn is as follows:

PCn(x) =

{
x, i f c(tn)+ 〈ξn,x− tn〉 ≤ 0,

x− c(tn)+〈ξn,x−tn〉
‖ξn‖2 ξn, otherwise.

The initials are as x0 = x1 = (0,0, ...,0)T ∈ RN . The parameters for Alg1, Alg2, Alg3, López’s
Alg, and Yang Alg are adjusted as in Table 1. To gauge the precision of the recovery, we employ
the following mean square error technique: MSE = 1

N ‖xn− x∗‖, where xn is the recovered signal
at nth iteration.

On the other hand, we use the stop criterion of the iteration as MSE < 10−6 and MSE < 10−8. It
is demonstrated that our relaxed CQ-algorithms exhibit lower iterations and CPU time compared
with the López algorithm and Yang algorithm across various K-sparse scenarios in Table 2. Fig-
ure 2 illustrates the relationship between MSE values and the number of iterations for M = 256,
N = 512, and K = 40 when MSE < 10−8. As illustrated in Figure 1 and Figure 2, our proposed
algorithms have the capability to accurately estimate the signal x∗. Simultaneously, the CPU time
of our proposed methods is less and the MSE is smaller with the same number of iterations.

In this numerical example, it is evident that our algorithms outperform the López’s algorithm
and Yang’s algorithm when the parameters are suitable.

7. CONCLUSION

In this paper, we proposed three novel relaxed CQ-algorithms for solving SEP (1.2) and obtained
the strong convergence of the three algorithms under mild conditions. For our algorithms, there
are two features. One is the projection onto the intersection of two half-spaces, and the other one
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FIGURE 1. Comparison of Different Algorithms of Signal processing

FIGURE 2. Graph of MSE values and number of iterations for M = 256, N =
512, K = 40 when MSE < 10−8
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TABLE 1. Algorithms and Their Setting of Parameters

Algorithm Setting of Parameters
Alg1 αn =

1
105 n , ρn = 1

Alg2 αn =
1

105 n , ρn = 1 , βn =
1
2

Alg3 αn =
1

105 n , ρn = 1
Yang Alg γ = 1

‖A‖2

López Alg ρn = 1

TABLE 2. Calculative Results of the Five Algorithms with M = 256, N = 512 and
different K-sparse signal, MSE < 10−6 and MSE < 10−8

K-sparse signal Algorithms MSE < 10−6 MSE < 10−8

Iter CPU time Iter CPU time
K=20 Alg1 169 0.0783 260 0.1103

Alg2 213 0.0840 335 0.1240
Alg3 201 0.1349 303 0.1830

Yang Alg 619 5.1785 852 7.0907
López Alg 571 0.4551 773 0.6279

K=30 Alg1 270 0.1181 416 0.1823
Alg2 341 0.1262 524 0.2301
Alg3 302 0.1616 496 0.1802

Yang Alg 923 17.1308 1239 16.0637
López Alg 1477 1.0487 1496 1.6438

K=40 Alg1 279 0.1251 433 0.1685
Alg2 338 0.1297 529 0.2041
Alg3 335 0.2156 479 0.1776

Yang Alg 1023 16.7836 1345 18.2422
López Alg 1687 1.4419 1544 1.5986

is the step-sizes, which does not need the prior operator norm. The efficacy of our algorithms is
demonstrated through numerical experiments conducted on signal recovery problems.
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