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Abstract. Over the fast few years, the numerical success of the generalized alternating direction method
of multipliers (GADMM) proposed by Eckstein and Bertsekas [Math. Progam. 1992] has inspired in-
tensive attention in analyzing its theoretical convergence properties. This paper is devoted to the linear
convergence rate of the semi-proximal GADMM (sPGADMM) for solving linearly constrained convex
composite optimization problems. The semi-proximal terms contained in each subproblem possess the
abilities of handling with multi-block problems efficiently. We initially present some important inequal-
ities for the sequence generated by the sPGADMM, and then establish the local linear convergence rate
under the assumption of calmness. As a by-product, the global convergence property is also discussed.
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1. INTRODUCTION

Let X , Y , and Z be finite-dimensional real Euclidean spaces each equipped with an inner
product 〈·, ·〉 and its induced norm ‖·‖, in which, Y := Y1×·· ·×Ym and Z := Z1×·· ·×Zn
are the Cartesian product of some finite-dimensional real Euclidean spaces. We consider the
following linearly constrained convex composite optimization problem

min f1(y1)+ f2(y1,y2, . . . ,ym)+g1(z1)+g2(z1,z2, . . . ,zn)

s.t. A ∗
1 y1 +A ∗

2 y2 + . . .+A ∗
mym +B∗1z1 +B∗2z2 + . . .+B∗nzn = c,

(1.1)

where f1 : Y1 → (−∞,+∞] and g1 : Z1 → (−∞,+∞] are simple closed proper convex (not
necessarily smooth) functions; f2 : Y → (−∞,+∞) and g2 : Z → (−∞,+∞) are continuously
differentiable convex quadratic functions; A ∗

i : Yi→X and B∗i : Zi→X are the adjoints of
the linear operators Ai : X → Yi and Bi : X →Zi, respectively; c ∈X is a given data. For
convenience, we denote the linear maps A : X → Y and B : X →Z such that their adjoint
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maps are given by

A ∗y =
m

∑
i=1

A ∗
i yi, ∀y ∈ Y , B∗z =

n

∑
j=1

B∗i zi, ∀z ∈Z .

Accordingly, model (1.1) could be transformed into the following form
min f (y)+g(z)

s.t. A ∗y+B∗z = c,
(1.2)

where f (y) := f1(y1)+ f2(y1,y2, . . . ,ym) and g(z) := g1(z1)+g2(z1,z2, . . . ,zn) are closed proper
convex functions in the form of ‘nonsmooth+quadratic’.

Given its structure, problem (1.2) covers a wide range of apparently related formulations
in different scientific fields, including deep learning, compressive sensing, sparse coefficient
estimation, etc. For solving (1.2), a frequently used benchmark is the alternating direction
method of multipliers (ADMM) which was originally proposed by Glowinski & Marroco [19]
and Gabay & Mercier [17]. Starting from (x0,y0,z0) ∈X ×Y ×Z , the iterative scheme of
ADMM for solving (1.2) takes the following form

yk+1 = argmin
y∈Y

f (y)−〈A xk,y〉+ σ

2
‖A ∗y+B∗zk− c‖2,

zk+1 = argmin
z∈Z

g(z)−〈Bxk,z〉+ σ

2
‖A ∗yk+1 +B∗z− c‖2,

xk+1 = xk− τσ(A ∗yk+1 +B∗zk+1− c),

(1.3)

where x ∈X is a multiplier, σ > 0 is a penalty parameter, and τ is a steplenght within the
interval (0,(1+

√
5)/2). Incidentally, iteration scheme (1.3) is not always well-defined. One

can consult a counter-example in [6] for more details.
Interestingly, Gabay [16] showed that the type of ADMM (1.3) with a unit steplength is

equivalent to the Douglas-Rachford splitting (DRs) method [9, 26] for the sum of two maximal
monotone operators. And then, Eckstein & Bertsekas [12] showed that the DRs is actually an
application of the proximal point algorithm (PPA) [32, 33]. For the historical developments and
applications of ADMM, one may refer to [4, 13, 18, 39]. In light of this, Eckstein & Bertsekas
[12] considered a variant of PPA and then applied it on the minimization problem (1.2) which
leads to the following generalized version of ADMM (GADMM):

yk+1 = argmin
y∈Y

f (y)−〈A xk,y〉+ σ

2
‖A ∗y+B∗zk− c‖2,

zk+1 = argmin
z∈Z

g(z)−
〈
Bxk,z

〉
+

σ

2

∥∥ρ(A ∗yk+1 +B∗zk− c)+B∗(z− zk)
∥∥2

,

xk+1 = xk−σ
(
ρ(A ∗yk+1 +B∗zk− c)+B∗(zk+1− zk)

)
,

(1.4)

where ρ ∈ (0,2) is a relaxation factor. It is quite clear that the GADMM (1.4) with a unit
relaxation factor is just the case of ADMM (1.3) with τ = 1. As pointed out by Adona et al.
[1] that, the GADMM is actually an instance of a hybrid proximal extra-gradient framework of
Monteiro & Svaiter [27].

Comparing with (1.3) and (1.4), we see that GADMM still retains the benefits of ADMM
in treating f and g separately, but the relaxation factor may make this method more flexible
and efficient. Some earlier numerical studies of GADMM in this shell can be found in [2, 10].
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Eckstien [11] suggested adding proximal terms to the subproblems contained in (1.3) to make
them easier to solve. Then, Fazel et al. [15] proved that these proximal terms can be relaxed to
positive and semi-definite operators (named semi-proximal terms). It should be emphasized that
the semi-proximal terms allow the subproblems in (1.3) to be decomposed into some smaller
ones and then solved individually. For example, note f (y) = f1(y1)+ f2(y1,y2, . . . ,ym), then
the y-subproblem can be attained via the following process

ym→ ym−1→ ··· → y2→ y1→ y2 · · · → ym−1→ ym (1.5)

by fixing other blocks with their latest values, which means that (1.3) has the advantage to
resolve the potentially nonsolvability issue of the subproblems. This updating order is called
symmetric Gauss-Seidel (sGS) iteration which was firstly appeared in [36] and later was ana-
lyzed by Li et al. [23, 25]. For more details on the developments and applications of sGS, one
may refer to the Ph.D. thesis [22] and the papers of [21, 5, 24, 40]. From [25, Theorem 1],
we know that this updating order (1.5) is actually equivalent to adding a special semi-proximal
term, and hence, the convergence can be easily obtained from Fazel et al. [15, Theorem B.1].

Inspired by the success of sGS technique, it is natural to add a pair of semi-proximal terms
to the subproblems in (1.4) so that GADMM possesses the abilities of handling multi-block
problems in the form of (1.1). Actually, this idea was firstly attempted by Fang et al. [14] in the
sense of adding a proximal term to the z-subproblem in (1.4), but the y-subproblem was ignored.
This defect was remedied immediately by Adona et al. [1]. Let S : Y → Y and T : Z →Z
be a pair of self-adjoint positive semidefinite (not necessarily positive definite) linear operators,
the generalized ADMM with semi-proximal terms (abbr. sPGADMM) for solving the convex
composite programming (1.2) can be described as follows:

Algorithm sPGADMM:
Step 0: Let σ ∈ (0,+∞) and ρ ∈ (0,2) be given parameters. Choose (y0,z0,x0)∈ dom( f )×
dom (g)×X . For k = 0,1,2, . . ., do the following steps iteratively:
Step 1: Compute

yk+1 = argmin
y∈Y

f (y)−〈A xk,y〉+ σ

2
‖A ∗y+B∗zk− c‖2

+
1
2

∥∥∥y− yk
∥∥∥2

S
, (1.6a)

zk+1 = argmin
z∈Z

g(z)−
〈
Bxk,z

〉
+

1
2

∥∥∥z− zk
∥∥∥2

T

+
σ

2

∥∥∥ρ(A ∗yk+1 +B∗zk− c)+B∗(z− zk)
∥∥∥2

, (1.6b)

xk+1 := xk−σ

(
ρ(A ∗yk+1 +B∗zk− c)+B∗(zk+1− zk)

)
. (1.6c)

Step 2: If a termination criterion is not met, set k := k+1 and go to Step 1.

In this paper, we only focus on the linear convergence rate of the sPGADMM because it plays
a pivotal role to measure an algorithm’s behavior. We note that there is a smaller number of pa-
pers being devoted to the linear convergence rate of the GADMM (1.4) and its related variants.
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For example, Fang et al. [14] proved the iteration complexity in both the ergodic and a noner-
godic senses for a special case of sPGADMM, and then, the ergodic iteration complexity result
was further improved by Adona et al. [1]. Corman & Yuan [7] and Tao & Yuan [38] analyzed
the linear convergence rate of GADMM (1.4) from the aspect of generalized PPA, which is only
a particular instance of sPGADMM. Peng & Zhang [29] established the linear convergence rate
of GADMM (1.4) for the sequence {(zk,xk)} instead of the whole sequence {(yk,zk,xk)} it-
self. In this shell, Peng et al. [28] proved the linear convergence rate of sPGADMM under
certain settings, however, both S and T must be positive definite operators. Our focus of
this paper is on the sPGADMM scheme (1.6a)-(1.6c) with S and T being semi-positive defi-
nite, which covers almost all the works aforementioned. We attempt to establish the linear rate
of sPGADMM under a calmness condition, which holds automatically for convex composite
piecewise linear-quadratic programming. Here, it is worth emphasizing that our convergence
analysis is inspired by Han et al. [20] who provided a general linear rate convergence analysis
for the semi-proximal ADMM of Fazel et al. [15]. Nevertheless, we show that the proof process
is not trivial, because the relaxation factor brings many technical difficulties.

The remaining parts of this paper are organized as follows. Section 2 is divided into two parts:
Subsection 2.1 presents some preliminary results on the optimimality conditions for problem
(1.2), and Subsection 2.2 briefly reviews the concepts of locally upper Lipschitz continuity
and the calmness for multi-valued mappings. In Section 3, we provide a particularly useful
inequality for the iteration sequence generated by sPGADMM, which is the key to the global
convergence of sPGADMM. Section 4 is devoted to building up a general local linear conver-
gence rate under an error bound condition, and then obtaining a global linear convergence rate.
Finally, we conclude our paper with some remarks in Section 5.

2. PRELIMINARIES

In this section, we introduce some notations in the context and summarize some useful pre-
liminaries for later analysis.

2.1. Optimality conditions. For any two vectors x ∈ Rn and y ∈ Rm, we use (x,y) to denote
their adjunction, i.e., (x,y) = (x>,y>)>. For p ≥ 1, we use ‖x‖p to denote an `p-norm of a
vector x, and ‖x‖ is short for `2-norm. Let G be a positive definite matrix, the G -norm of x
is denoted by ‖x‖G :=

√
x>G x. Given a closed convex set C, the distance of x to C regarding

G -norm is denoted as distG (x,C) := infy∈C‖x− y‖G .
Recall that f and g in (1.2) are closed proper convex functions, we denote their subdifferential

mappings by ∂ f and ∂g, respectively. Moreover, the subdifferential mappings of the closed
proper convex functions are maximal monotone [35, Theorem 12.17], i.e., there exist two self-
adjoint and positive semidefinite operators Σ f and Σg such that for all y,y′ ∈ dom( f ), ξ ∈ ∂ f (y)
and ξ ′ ∈ ∂ f (y′),

〈ξ ′−ξ ,y′− y〉 ≥ ‖y′− y‖2
Σ f
, (2.1)

and for all z,z′ ∈ dom(g), ζ ∈ ∂g(z) and ζ ′ ∈ ∂g(z′),

〈ζ ′−ζ ,z′− z〉 ≥ ‖z′− z‖2
Σg
. (2.2)

It follows from [34, Corollaries 28.2.2 and 28.3.1] that, (ȳ, z̄) ∈ ri(dom( f )× dom(g)) is an
optimal solution to problem (1.2) if and only if there exists a Lagrange multiplier x̄ ∈X such



LINEAR CONVERGENCE RATE OF GENERALIZED ADMM 119

that (ȳ, z̄, x̄) satisfies the following Karush-Kuhn-Tucker (KKT) system:

A x̄ ∈ ∂ f (ȳ), Bz̄ ∈ ∂g(z̄) and A ∗ȳ+B∗z̄− c = 0. (2.3)

The solution set to the KKT system (2.3) is denoted by Ω̄. The nonempty of Ω̄ can be guaran-
teed if a certain constraint qualification such as the Slater condition holds, that is, there exists
(y0,z0) ∈ ri(dom( f )× dom(g)) such that A ∗y0 +B∗z0 = c, where ri(·) denotes the relative
interior of a given convex set. In this paper, instead of using an explicit constraint qualification,
we only make the following assumption on the existence of a KKT point.

Assumption 2.1. The KKT system (2.3) has a nonempty solution set, i.e., Ω̄ 6=∅.

For notational convenience, we let u := (y,z,x) ∈U with U := Y ×Z ×X such that y ∈
Y ,z ∈Z , and x ∈X . Define the KKT mapping R : U →U as

R(u) :=


y−Prox f (y+A x)

z−Proxg(z+Bx)

A ∗y+B∗z− c

 , ∀u ∈U , (2.4)

where Prox f (·) represents the proximal mapping of a closed proper convex function f . From
optimization theory, it was known that the proximal mappings Prox f (·) and Proxg(·) are glob-
ally Lipschitz continuous, which means that the mapping R(·) is continuous on U and R(u) = 0
if and only if u ∈ Ω̄. The KKT mapping of (2.4) originated from Han et al. [20], which plays a
vital role in our subsequent analysis.

2.2. Calmness. Let F : X ⇒Y be a set-valued mapping with its graph denoted by gphF , and
let BY be a unit ball in Y . In the first place, we give the definition of locally upper Lipschitz
continuity.

Definition 2.1 ([30]). The multi-valued mapping F : X ⇒ Y is said to be Locally upper Lip-
schitz continuity at x0 ∈X if there exist a constant k0 > 0 along with a neighborhood V of x0
such that

F (x)⊆ F
(
x0)+ k0

∥∥x− x0∥∥BY , ∀x ∈V.

It was known from Robinson [31] that, if a multivalued mapping F : X ⇒ Y is piecewise
polyhedral, then F is locally upper Lipschitz continuous at any x0 ∈X with modulus k0 inde-
pendent of the choice of x0. A closed proper convex function f : X → (−∞,+∞] is said to be
piecewise linear-quadratic if dom( f ) is an union of finitely many polyhedral sets and on each
of these polyhedral sets, f is either an affine or a quadratic function. Sun [37] proved that, f is
piecewise linear-quadratic if and only if the graph of its subdifferential mapping ∂ f is piecewise
polyhedral. For more details, one may refer to Rockafellar & Wets [35, propositions 12.30 and
11.14]

In the second place, we give the definition of calmness for F : X ⇒ Y at x0 for y0 with
(x0,y0) ∈ gphF . For more details on calmness, one can see Dontchev & Rockafellar [8, Section
3.8 (3H)] and Rockafellar & Wets [35] .

Definition 2.2 ([8, 35]). Let (x0,y0) ∈ gphF . The multi-valued mapping F : X ⇒ Y is said to
be calm at x0 for y0 with modulus k0 ≥ 0 if there exist a neighborhood V of x0 and a neighbor-
hood W of y0 such that

F (x)∩W ⊆ F
(
x0)+ k0

∥∥x− x0∥∥BY , ∀x ∈V.
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Therefore, we get that the subdifferential mapping ∂ f (=: F) of a convex piecewise linear-
quadratic function f is calm at x0 for y0 meeting (x0,y0) ∈ gphF with modulus k0 ≥ 0 inde-
pendent of the selection of (x0,y0). Besides, it is also known from Dontchev & Rockafellar [8,
Theorem 3H.3] that, for any (x0,y0) ∈ gphF , the mapping F is calm at x0 for y0 if and only if
F−1 (the inverse mapping of F) is metrically subregular at y0 for x0, i.e., there exist a constant
k′0 ≥ 0, a neighborhood W of y0, and a neighborhood V of x0 such that

dist(y,F(x0))≤ k′0dist(x0,F−1(y)∩V ), ∀y ∈W, (2.5)

where dist(·, ·) represents a distance regarding an appropriate norm.

3. GLOBAL CONVERGENCE OF SPGADMM

In order to prove the linear convergence rate, we must establish the global convergence of
sPGADMM because it is essential to our subsequent analysis. Certainly, the convergence can
be followed directly from the framework of PPA, but there is no proof for optimization problems
especially including a pair of semi-definite operators S and T in the current literature. In our
analysis, the following elementary equality is used times and times again

2〈v1,G v2〉= ‖v1‖2
G +‖v2‖2

G −‖v1− v2‖2
G = ‖v1 + v2‖2

G −‖v1‖2
G −‖v2‖2

G , (3.1)

where v1 and v2 are vectors in the same finite dimensional real Euclidean space endowed with
inner product 〈·, ·〉 and induced norm ‖·‖, and G is an arbitrary self-adjoint positive semi-definite
linear operator.

For notational convenience, we denote ye = y− ȳ, ze = z− z̄, and xe = x− x̄. Now, we are
ready to give some inequalities used in the later analysis.

Lemma 3.1. Let
{

uk} be the sequence generated by the sPGADMM scheme (1.6a)-(1.6c). For
any k ≥ 0, the following results hold:

〈B∗(zk+1− zk),xk+1− xk〉 ≥ 1
2

(
‖zk+1− zk‖2

T −‖zk− zk−1‖2
T

)
, (3.2)〈

xk+1
e +σ(1−ρ)B∗zk+1,A ∗yk+1

e +B∗zk+1
e

〉
+

1
2

σρ‖A ∗yk+1
e +B∗zk+1

e ‖2

=(2σρ)−1
[
‖xk

e +σ(1−ρ)B∗zk
e‖2−‖xk+1

e +σ(1−ρ)B∗zk+1
e ‖2

]
,

(3.3)

and
〈B∗(zk+1

e − zk
e),A

∗yk+1
e 〉+(2ρ)−1(2−ρ)‖B∗(zk+1

e − zk
e)‖2

≤ 1
2

(
‖B∗zk

e‖2−‖B∗zk+1
e ‖2

)
+

1
2
(σρ)−1

(
‖zk− zk−1‖2

T −‖zk+1− zk‖2
T

)
.

(3.4)

Proof. Firstly, invoking the first-order optimality condition for (1.6b), we obtain

B
[
xk−σρ

(
A ∗yk+1 +B∗zk+1− c

)
−σ (1−ρ)B∗(zk+1− zk)

]
−T

(
zk+1− zk

)
∈ ∂g(zk+1),

which, together with (1.6c), implies

Bxk+1−T (zk+1− zk) ∈ ∂g(zk+1), (3.5)

and Bxk−T (zk− zk−1) ∈ ∂g(zk). From the maximal monotonicity of ∂g(·), we have〈
B∗
(

zk+1− zk
)
,xk+1− xk

〉
−
〈
T
(

zk+1− zk
)
−T

(
zk− zk−1

)
,zk+1− zk

〉
≥ 0.



LINEAR CONVERGENCE RATE OF GENERALIZED ADMM 121

The above inequality yields〈
B∗
(

zk+1− zk
)
,xk+1− xk

〉
≥
〈
T
(

zk+1− zk
)
−T

(
zk− zk−1

)
,zk+1− zk

〉
≥
∥∥∥zk+1− zk

∥∥∥2

T
− 1

2

(∥∥∥zk+1− zk
∥∥∥2

T
+
∥∥∥zk− zk−1

∥∥∥2

T

)
=

1
2

(∥∥∥zk+1− zk
∥∥∥2

T
−
∥∥∥zk− zk−1

∥∥∥2

T

)
,

which indicates that (3.2) is true.
Secondly, it follows from (1.6c) that

xk = xk+1 +σρ

(
A ∗yk+1 +B∗zk+1− c

)
+σ (1−ρ)B∗(zk+1− zk).

It is easy to see that[
xk

e +σ (1−ρ)B∗zk
e

]
−
[
xk+1

e +σ (1−ρ)B∗zk+1
e

]
= σρ

(
A ∗yk+1

e +B∗zk+1
e

)
. (3.6)

Subsequently, using the relation (3.6) and the elementary equality (3.1), we know that the equal-
ity (3.3) holds.

Finally, according to (3.6), we can deduce that

A ∗yk+1
e =

(
A ∗yk+1

e +B∗zk+1
e

)
−B∗zk+1

e

= (σρ)−1
[
xk

e− xk+1
e +σ (1−ρ)

(
B∗zk

e−B∗zk+1
e

)]
−B∗zk+1

e .

Combining this equality with (3.1), we obtain that〈
B∗
(

zk+1
e − zk

e

)
,A ∗yk+1

e

〉
=(σρ)−1

〈
B∗
(

zk+1
e − zk

e

)
,xk

e− xk+1
e

〉
−
〈
B∗
(

zk+1
e − zk

e

)
,B∗zk+1

e

〉
+ρ

−1 (1−ρ)
〈
B∗
(

zk+1
e − zk

e

)
,B∗

(
zk

e− zk+1
e

)〉
=(σρ)−1

〈
B∗
(

zk+1
e − zk

e

)
,xk

e− xk+1
e

〉
+

1
2

(∥∥∥B∗zk
e

∥∥∥2
−
∥∥∥B∗zk+1

e

∥∥∥2
)
− (2ρ)−1 (2−ρ)

∥∥∥B∗(zk+1
e − zk

e

)∥∥∥2
,

which, together with (3.2), implies the inequality (3.4). �

Utilizing Lemma 3.1, we can establish the difference of the distance to Ω̄ for two consecutive
points of the sequence

{
uk}.

Lemma 3.2. Let the sequence
{

uk} be generated by sPGADMM (1.6a)-(1.6c). For any k ≥ 0,
define 

φk+1 := (σρ)−1∥∥xk+1
e +σ (1−ρ)B∗zk+1

e
∥∥2

+
∥∥yk+1

e
∥∥2

S
+
∥∥zk+1

e
∥∥2

T

+σ (2−ρ)
∥∥B∗zk+1

e
∥∥2

+(2−ρ)ρ−1
∥∥zk+1

e − zk
e
∥∥2

T
,

tk+1 := 2
∥∥yk+1

e
∥∥2

Σ f
+2
∥∥zk+1

e
∥∥2

Σg
+
∥∥yk+1− yk

∥∥2
S
+
∥∥zk+1− zk

∥∥2
T

+σ (2−ρ)2
ρ−1

∥∥B∗ (zk+1− zk)∥∥2
.

(3.7)
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Then, it holds that

φk−φk+1 ≥ tk+1 +(2−ρ)σ
∥∥∥A ∗yk+1

e +B∗zk+1
e

∥∥∥2
. (3.8)

Proof. Notice that (1.6a) can be rewritten as

A
[
xk−σ

(
A ∗yk+1 +B∗zk+1− c

)
+σB∗

(
zk+1− zk

)]
−S

(
yk+1− yk

)
∈ ∂ f (yk+1).

It follows from (1.6c) that

A
[
xk+1−σ (1−ρ)

(
A ∗yk+1 +B∗zk+1− c

)
+σ (2−ρ)B∗

(
zk+1− zk

)]
−S

(
yk+1− yk

)
∈ ∂ f (yk+1).

(3.9)

Combining (2.1) and (2.2) with (3.5) and (3.9), we have〈
xk+1

e ,A ∗yk+1
e

〉
−σ (1−ρ)

〈
A ∗yk+1

e +B∗zk+1
e ,A ∗yk+1

e

〉
−
〈
S
(

yk+1
e − yk

e

)
,yk+1

e

〉
+σ (2−ρ)

〈
B∗
(

zk+1
e − zk

e

)
,A ∗yk+1

e

〉
≥
∥∥∥yk+1

e

∥∥∥2

Σ f
,

and 〈
xk+1

e ,B∗zk+1
e

〉
−
〈
T
(

zk+1
e − zk

e

)
,zk+1

e

〉
≥
∥∥∥zk+1

e

∥∥∥2

Σg
.

Adding both sides of the inequalities, we have〈
xk+1

e ,A ∗yk+1
e +B∗zk+1

e

〉
−σ (1−ρ)

〈
A ∗yk+1

e +B∗zk+1
e ,A ∗yk+1

e

〉
+σ (2−ρ)

〈
B∗
(

zk+1
e − zk

e

)
,A ∗yk+1

e

〉
−
〈
S
(

yk+1
e − yk

e

)
,yk+1

e

〉
−
〈
T
(

zk+1
e − zk

e

)
,zk+1

e

〉
≥
∥∥∥yk+1

e

∥∥∥2

Σ f
+
∥∥∥zk+1

e

∥∥∥2

Σg
,

(3.10)

which can be reformulated as〈
xk+1

e +σ (1−ρ)B∗zk+1
e ,A ∗yk+1

e +B∗zk+1
e

〉
−σ (1−ρ)

∥∥∥A ∗yk+1
e +B∗zk+1

e

∥∥∥2

+σ (2−ρ)
〈
B∗
(

zk+1
e − zk

e

)
,A ∗yk+1

e

〉
−
〈
S
(

yk+1
e − yk

e

)
,yk+1

e

〉
−
〈
T
(

zk+1
e − zk

e

)
,zk+1

e

〉
≥
∥∥∥yk+1

e

∥∥∥2

Σ f
+
∥∥∥zk+1

e

∥∥∥2

Σg
.

(3.11)

Next, we analyze the left-hand-side of (3.11). Using the elementary equality (3.1), it is easy
to see that 〈

S
(

yk+1
e − yk

e

)
,yk+1

e

〉
=

1
2

(∥∥∥yk+1
e − yk

e

∥∥∥2

S
+
∥∥∥yk+1

e

∥∥∥2

S
−
∥∥∥yk

e

∥∥∥2

S

)
, (3.12)
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and 〈
T
(

zk+1
e − zk

e

)
,zk+1

e

〉
=

1
2

(∥∥∥zk+1
e − zk

e

∥∥∥2

T
+
∥∥∥zk+1

e

∥∥∥2

T
−
∥∥∥zk

e

∥∥∥2

T

)
. (3.13)

Substituting (3.3), (3.4), (3.12), and (3.13) into (3.11), we have

(σρ)−1
∥∥∥xk

e +σ (1−ρ)B∗zk
e

∥∥∥2
+
∥∥∥yk

e

∥∥∥2

S
+
∥∥∥zk

e

∥∥∥2

T
+σ (2−ρ)

∥∥∥B∗zk
e

∥∥∥2

+ρ
−1 (2−ρ)

∥∥∥zk− zk−1
∥∥∥2

T

≥ (σρ)−1
∥∥∥xk+1

e +σ (1−ρ)B∗zk+1
e

∥∥∥2
+
∥∥∥yk+1

e

∥∥∥2

S
+
∥∥∥zk+1

e

∥∥∥2

T
+σ (2−ρ)

∥∥∥B∗zk+1
e

∥∥∥2

+ρ
−1 (2−ρ)

∥∥∥zk+1− zk
∥∥∥2

T
+2
∥∥∥yk+1

e

∥∥∥2

Σ f
+2
∥∥∥zk+1

e

∥∥∥2

Σg

+(2−ρ)σ
∥∥∥A ∗yk+1

e +B∗zk+1
e

∥∥∥2
+
∥∥∥yk+1− yk

∥∥∥2

S
+
∥∥∥zk+1− zk

∥∥∥2

T

+σ (2−ρ)2
ρ
−1
∥∥∥B∗(zk+1− zk

)∥∥∥2
.

Therefore, (3.8) holds by recalling the definitions in (3.7). �

Inequality (3.8) is essential to establish the global convergence of sPGADMM. Although the
global convergence of sPGADMM has been well studied in the literature especially from the
respect of generalized PPA framework, we present a detailed proof for the completeness of
global convergence.

Theorem 3.1. Suppose that Assumption 2.1 holds. Assume that Σ f +S +σA A ∗ and Σg +

T +σBB∗ are positive definite. Let the sequence
{

uk} be generated by sPGADMM scheme
(1.6a)-(1.6c). Then

{
(yk,zk)

}
converges to an optimal solution of (1.2) and

{
xk} converges to

an optimal solution of the corresponding dual problem.

Proof. In view of ρ ∈ (0,2), we obtain from (3.8) that {φk} is a nonnegative and monotonically
nonincreasing sequence. Consequently, φk is bounded, so do the following sequences:{∥∥∥xk

e +σ (1−ρ)B∗zk
e

∥∥∥} , {∥∥∥zk
e

∥∥∥
σBB∗

}
,
{∥∥∥zk+1− zk

∥∥∥
T

}
,
{∥∥∥zk

e

∥∥∥
T

}
and

{∥∥∥yk
e

∥∥∥
S

}
.

(3.14)
Besides, from inequality (3.8), it is clear that

lim
k→∞

∥∥∥A ∗yk+1
e +B∗zk+1

e

∥∥∥= 0, lim
k→∞

∥∥∥zk+1− zk
∥∥∥

σBB∗
= 0, lim

k→∞

∥∥∥zk+1− zk
∥∥∥

T
= 0,

lim
k→0

∥∥∥zk+1
e

∥∥∥
Σg

= 0, lim
k→0

∥∥∥yk+1− yk
∥∥∥

S
= 0, and lim

k→0

∥∥∥yk+1
e

∥∥∥
Σ f

= 0.
(3.15)

Furthermore, by the use of∥∥∥A ∗yk+1
e

∥∥∥≤ ∥∥∥A ∗yk+1
e +B∗zk+1

e

∥∥∥+∥∥∥B∗zk+1
e

∥∥∥ , (3.16)

we know that
{∥∥yk+1

e
∥∥

σA A ∗
}

is bounded, and so do the sequence
{∥∥yk+1

e
∥∥

Σ f+S+σA A ∗

}
.

In light of the positive definiteness of Σ f +S +σA A ∗, sequence
{∥∥yk

e
∥∥} is also bounded.

Similarly, sequences
{∥∥zk

e
∥∥

σBB∗
}

,
{∥∥zk

e
∥∥

T

}
, and

{∥∥zk
e
∥∥

Σg

}
are all bounded. Then,

{∥∥zk
e
∥∥} is

also bounded because Σg+T +σBB∗ is assumed to be positive definite. The boundedness of



124 H. WANG, P. LI, Y. XIAO{∥∥xk
e +σ (1−ρ)B∗zk

e
∥∥} and

{∥∥zk
e
∥∥} further indicates that

{∥∥xk
e
∥∥} is bounded. According to

the above arguments, it yields that
{
(yk,zk,xk)

}
is bounded.

From the boundedness of
{
(yk,zk,xk)

}
, we know that there exists at lease one subsequence

which converges to a cluster point. Suppose that
{
(yki,zki,xki)

}
is a subsequence of (yk,zk,xk)

converging to (y∞,z∞,x∞) ∈ Y ×Z ×X . Taking limits on both sides of (3.5) and (3.9) along
the subsequence

{
(yki,zki,xki)

}
, using (3.14) and (3.15), and noticing the closedness of the

graphs of ∂ f and∂g [3, p.80], we can obtain that

A x∞ ∈ ∂ f (y∞), Bx∞ ∈ ∂g(z∞), A ∗y∞ +B∗z∞− c = 0,

which implies that (y∞,z∞,x∞) is a solution to the KKT system (2.3). Hence, (y∞,z∞) is an
optimal solution to problem (1.2) and that x∞ is an optimal solution to the corresponding dual
problem.

We show that (y∞,z∞,x∞) is actually the unique limit of
{
(yk,zk,xk)

}
. One can replace (ȳ, z̄, x̄)

with (y∞,z∞,x∞) in (2.3) because (y∞,z∞,x∞) is also satisfied from the above arguments. It
is obvious that for ρ ∈ (0,2) the subsequence {φki} converges to 0 as ki → ∞. Because the
subsequence comes from nonincreasing sequences, we find limk→0 φk = 0. Consequently, it
holds that

lim
k→0

(∥∥∥yk
e

∥∥∥
S
+
∥∥∥yk+1

e

∥∥∥
Σ f

)
+

(∥∥∥zk
e

∥∥∥
σBB∗

+
∥∥∥zk

e

∥∥∥
T
+
∥∥∥zk

e

∥∥∥
Σg

)
= 0.

Thus, one can get limk→∞ zk = z∞ as the operator Σg +T +σBB∗ is positive definite. This,
combines with (3.16) implies that

lim
k→∞

∥∥∥yk
e

∥∥∥
σA A ∗

+
∥∥∥yk

e

∥∥∥
S
+
∥∥∥yk+1

e

∥∥∥
Σ f

= 0,

which, from the fact that Σ f +S +σA A ∗ being positive definite, shows that limk→∞ yk = y∞.
Then, employing (3.14), we acquire that limk→∞ xk = x∞. Therefore, it gets that the whole
sequence

{
(yk,zk,xk)

}
converges to (y∞,z∞,x∞) in the case of ρ ∈ (0,2). �

4. LINEAR CONVERGENCE OF SPGADMM

This section is devoted to proving the local linear convergence rate of sPGADMM for convex
composite optimization problem (1.2). For this purpose, we list some notations which will be
used in the following analysis. First, for any ρ ∈ (0,2), we define

lρ :=


1
ρ
, ρ ∈

(
0,

1+
√

5
2

]
,

2−ρ

ρ−1
, ρ ∈

(
1+
√

5
2

,2

)
,

hρ :=


1−min

{
ρ,ρ−1} , ρ ∈

(
0,

1+
√

5
2

]
,

2−ρ, ρ ∈

(
1+
√

5
2

,2

)
,

which implies that

lρ > 0, 0 < ρ lρ < 2, and 0 < hρ < 2(2−ρ) ∀ρ ∈ (0,2) .

Secondly, we define

mρ := ρ
−1
(

2min
{

ρ,ρ−1}−min
{

1,ρ2})lρ ,
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nρ := ρ
−1 (2−ρ)

[
2(2−ρ)−hρ

]
,

and
oρ := (2−ρ)

(
2−ρlρ

)
.

Thirdly, we define

Mρ :=
(

T +Σg +ρ−1σBB∗ ρ−1 (1−ρ)B

ρ−1 (1−ρ)B∗ (σρ)−1 I

)
,

and

M :=
(

S +Σ f 0
0 Mρ

)
+

1
4

oρσεε
∗, (4.1)

and

H :=

S +Σ f 0 0
0 T +Σg +

1
2nρσBB∗ 0

0 0 (2σ)−1 mρI

+
1
8

oρσεε
∗, (4.2)

where I is an identity operator within an appropriate space, ε : X →U := Y ×Z ×X is a
linear operator such that its adjoint ε∗ satisfies

ε
∗ (y,z,x) = A ∗y+B∗z, ∀(y,z,x) ∈ Y ×Z ×X . (4.3)

Finally, we define

k1 := 3‖S ‖ , k2 := max
{
‖T ‖ ,ρ−2

(
3λmax (A

∗A )σ +2(1−ρ)2
σ
−1
)}

,

and
k3 := 3(1−ρ)2

ρ
−2

σλmax (A
∗A )+2σ

−2
ρ
−2.

Then, we let k4 := max{k1,k2,k3}. Let H0 be a block-diagonal linear operator defined by

H0 := k4

S 0 0
0 T +σBB∗ 0
0 0 (2σ)−1 I

 .

Because ρ ∈ (0,2), and Σ f +S +σA A ∗ and Σg +T +σBB∗ are assumed to be positive
definite, it is easy to see that Mρ is positive definite, M , H0 and H are positive semidefinite.

We now give a lemma to estimate the upper bound of the sequence {R(uk)}.

Lemma 4.1. Let
{

uk} be the sequence generated by sPGADMM scheme ((1.6a)-(1.6c)). Then,
for any k ≥ 0, we have ∥∥∥uk+1−uk

∥∥∥2

H0
≥
∥∥∥R(uk+1)

∥∥∥2
. (4.4)

Proof. It follows from (3.5) and (3.9) that
yk+1 = Prox f

(
yk+1 +A [xk+1− (1−ρ)σ

(
A ∗yk+1

e +B∗zk+1
e
)

+σ (2−ρ)B∗
(
zk+1− zk)]−S

(
yk+1− yk)),

zk+1 = Proxg

(
zk+1 +Bxk+1−T

(
zk+1− zk)).

(4.5)
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Then, combining (4.5) and (1.6c), and noticing the Lipschitz continuity property of Moreau-
Yosida proximal mapping, we can get from the definition of R(·) (2.4) that∥∥∥R
(

uk+1
)∥∥∥2
≤
∥∥∥S (

yk+1− yk
)
+(1−ρ)ρ

−1A
(

xk− xk+1
)
−ρ

−1
σA B∗

(
zk− zk+1

)∥∥∥2

+
∥∥∥T (

zk+1− zk
)∥∥∥2

+
∥∥∥(σρ)−1

(
xk− xk+1

)
+ρ

−1 (1−ρ)B∗
(

zk− zk+1
)∥∥∥2

≤3‖S ‖
∥∥∥yk+1− yk

∥∥∥2

S
+3(1−ρ)2

ρ
−2

λmax (A
∗A )

∥∥∥xk− xk+1
∥∥∥2

+3ρ
−2

σ
2
λmax (A

∗A )
∥∥∥B∗(zk+1− zk

)∥∥∥2
+‖T ‖

∥∥∥zk+1− zk
∥∥∥2

T

+2(σρ)−2
∥∥∥xk− xk+1

∥∥∥2
+2ρ

−2 (1−ρ)2
∥∥∥B∗(zk− zk+1

)∥∥∥2

≤k1

∥∥∥yk+1− yk
∥∥∥2

S
+ k2

∥∥∥zk+1− zk
∥∥∥2

σBB∗+T
+ k3

∥∥∥xk− xk+1
∥∥∥2

.

Recalling the definition of H0, one can readily see that inequality (4.4) holds. This completes
the proof. �

In the following analysis, the M defined in (4.1) is used to measure the distance from an
iterate to the KKT point, while the H given in (4.2) is used to serve the distance between two
consecutive iterates. The positive definiteness of the linear operators M and H are proved at
the following lemma.

Lemma 4.2. Let ρ ∈ (0,2). Then, it holds that(
Σ f +S +σA A ∗ � 0 and Σg +T +σBB∗ � 0

)
⇐⇒M � 0⇐⇒H � 0,

where the symbol ‘� 0’ means that the associated operator is positive definite.

Proof. We only prove the first equivalence because the second one can be obtained in a similar
way. Suppose on the contrary that there exists a non-zero vector d := (dy,dz,dx)∈Y ×Z ×X
such that 〈d,M d〉= 0 in the cases of Σ f +S +σA A ∗ � 0 and Σg+T +σBB∗ � 0. Using
the definition of M in (4.1), it means that

〈dy,(S+Σ f )dy〉= 0, 〈(dz,dx),Mρ(dz,dx)〉= 0, and A ∗dy +B∗dz = 0,

which, combines with the fact that Mρ � 0 and that Σ f +S+σA A ∗ � 0, it yields that d = 0.
This result contradicts to the assumption d 6= 0, and hence, M � 0. Conversely, suppose that
M � 0. Because oρ > 0 is a positive scalar, for any d := (dy,0,0) ∈Y ×Z ×X , it holds that〈
dy,
(
S +Σ f +

1
4oρσA A ∗)dy

〉
> 0, which means Σ f +S+σA A ∗ � 0. In a similar way, for

any d := (0,dz,0) ∈Y ×Z ×X , we get
〈
dz,
[
T +Σg +

(
ρ−1 + 1

4oρ

)
σBB∗

]
dz
〉
> 0, which

means that Σg +T +σBB∗ � 0. In a summary, the first equivalence is proved. �

Based on Lemmas 4.1 and 4.2, we are ready to present a key inequality required for the
coming linear convergence rate analysis.
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Lemma 4.3. Let ρ ∈ (0,2) and
{

uk} be a sequence generated by sPGADMM scheme ((1.6a)-
(1.6c)). Then, for any ū = (ȳ, z̄, x̄) ∈ Ω̄ and any k ≥ 0, we have

∥∥∥uk− ū
∥∥∥2

M
+(2−ρ)ρ

−1
∥∥∥zk− zk−1

∥∥∥2

T

≥
(∥∥∥uk+1− ū

∥∥∥2

M
+(2−ρ)ρ

−1
∥∥∥zk+1− zk

∥∥∥2

T

)
+
∥∥∥uk+1−uk

∥∥∥2

H
.

(4.6)

Consequently, it also holds for k ≥ 0 that

dist2M
(

uk,Ω̄
)
+(2−ρ)ρ

−1
∥∥∥zk− zk−1

∥∥∥2

T

≥
(

dist2M
(

uk+1,Ω̄
)
+(2−ρ)ρ

−1
∥∥∥zk+1− zk

∥∥∥2

T

)
+
∥∥∥uk+1−uk

∥∥∥2

H
.

(4.7)

Proof. From (1.6c), it holds that

∥∥∥xk+1− xk
∥∥∥2

= (σρ)2
∥∥∥A ∗yk+1

e +B∗zk+1
e

∥∥∥2
−σ

2 (1−ρ)2
∥∥∥B∗(zk+1− zk

)∥∥∥2

+2(1−ρ)
〈

xk− xk+1,σB∗
(

zk+1− zk
)〉

≤ (σρ)2
∥∥∥A ∗yk+1

e +B∗zk+1
e

∥∥∥2
−σ

2 (1−ρ)2
∥∥∥B∗(zk+1− zk

)∥∥∥2

+
(
1−min

{
ρ,ρ−1})∥∥∥xk+1− xk

∥∥∥2
+ρ

(
max

{
ρ,ρ−1}−1

)
σ

2
∥∥∥B∗(zk+1− zk

)∥∥∥2
.

Let ū = (ȳ, z̄, x̄) ∈ Ω̄. Using Lemma 3.2 and above inequality, it yields that

(σρ)−1
∥∥∥xk

e +σ (1−ρ)B∗zk
e

∥∥∥2
+
∥∥∥yk

e

∥∥∥2

S
+
∥∥∥zk

e

∥∥∥2

T
+σ (2−ρ)

∥∥∥B∗zk
e

∥∥∥2

+ρ
−1 (2−ρ)

∥∥∥zk− zk−1
∥∥∥2

T

≥(σρ)−1
∥∥∥xk+1

e +σ (1−ρ)B∗zk+1
e

∥∥∥2
+
∥∥∥yk+1

e

∥∥∥2

S
+
∥∥∥zk+1

e

∥∥∥2

T

+σ (2−ρ)
∥∥∥B∗zk+1

e

∥∥∥2
+ρ

−1 (2−ρ)
∥∥∥zk+1− zk

∥∥∥2

T

+(2σρ)−1 (2min
{

ρ,ρ−1}−min
{

1,ρ2}) lρ
∥∥∥xk+1− xk

∥∥∥2

+
∥∥∥yk+1− yk

∥∥∥2

S
+
∥∥∥zk+1− zk

∥∥∥2

T
+(2−ρ)2

ρ
−1

σ

∥∥∥B∗(zk+1− zk
)∥∥∥2
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+2
∥∥∥yk+1

e

∥∥∥2

Σ f
+2
∥∥∥zk+1

e

∥∥∥2

Σg
+(2−ρ)σ

∥∥∥ε
∗
(

yk+1,zk+1,0
)
− c
∥∥∥2

− 1
2
(2−ρ)ρσ lρ

∥∥∥ε
∗
(

yk+1,zk+1,xk+1
)
− c
∥∥∥2

− 1
2
(2−ρ)

(
1−min

{
ρ,ρ−1})

σ lρ
∥∥∥B∗(zk+1− zk

)∥∥∥2

=(σρ)−1
∥∥∥xk+1

e +σ (1−ρ)B∗zk+1
e

∥∥∥2
+
∥∥∥yk+1

e

∥∥∥2

S
+
∥∥∥zk+1

e

∥∥∥2

T
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which is equivalent to
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(4.8)

Moreover, from (4.3) we have

ε
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)
+B∗

(
zk+1− z̄
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,
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and we also have ∥∥∥yk+1− ȳ
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.

Based on the above relations, one can see from (4.8) for any ρ ∈ (0,2) that
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(4.9)

which implies inequality (4.6) holds. Because Ω̄ is assumed to be nonempty and (4.6) holds for
any ū ∈ Ω̄, we obtain the desired result (4.7) immediately. �

To prove the local linear convergence rate of sPGADMM, we need the following calmness
assumption on R−1 at the original point for a KKT point.

Assumption 4.1. The inverse mapping of KKT mapping R(·) defined in (2.4) is calm at the
origin for ū with modulus κ > 0 in the sense that there exists a constant r > 0 such that

dist
(
u,Ω̄

)
≤ κ ‖R(u)‖ , ∀u ∈ {u ∈U |‖u− ū‖ ≤ r} .

Now, we are ready to present the local linear convergence rate of sPGADMM.
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Theorem 4.1. Suppose that Assumptions 2.1 and 4.1 hold. Assume that Σ f +S +σA A ∗ � 0
and Σg+T +σBB∗� 0. Then the sequence

{
(yk,zk,xk)

}
generated by sPGADMM converges

to a KKT point ū = (ȳ, z̄, x̄) ∈ Ω̄, and there exists a k̄ ≥ 0 such that for all k ≥ k̄ it holds that
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T

]
, (4.10)

where M̄ := ρ (2−ρ)−1 M and ϑ :=
[
1+ k5ρ (ρ +(2−ρ)k5)

−1
]−1

with

k5 := min
{

1,mρ ,
1
2

nρ

}
k−1

4 ρ (2−ρ)−1
κ
−2

λmax
(
M̄
)−1

,

where λmax(·) denotes the largest eigenvalue of a given matrix. Moreover, there also exists a
positive number η ∈ [ϑ ,1) such that for all k ≥ k̄,

dist2M̄

(
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)
+
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∥∥∥2

T
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)
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T

]
. (4.11)

Proof. From Theorem 3.1, we know that the sequence
{
(yk,zk,xk)

}
generated by sPGADMM

converges to a KKT point ū = (ȳ, z̄, x̄) ∈ Ω̄, which shows that there exist k̄ ≥ 0 and r > 0 such
that, for any k ≥ k̄, ‖uk+1− ū‖ ≤ r. Subsequently, from Assumption 4.1 and Lemma 4.1, it
obtains for all k ≥ k̄ that

dist2
(

uk+1,Ω̄
)
≤ κ

2
∥∥∥R
(

uk+1
)∥∥∥2
≤ κ

2
∥∥∥uk+1−uk

∥∥∥2

H0
. (4.12)

Denoting H̄ := ρ (2−ρ)−1 H and noticing M̄ := ρ (2−ρ)−1 M , one sees that (4.7) can be
simplified as
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(4.13)
Recalling the structure of H , we know for all k ≥ 0 that∥∥∥uk+1−uk

∥∥∥2

H̄
≥ ρ (2−ρ)−1

∥∥∥zk+1− zk
∥∥∥2

T
. (4.14)

Observing the structures of H̄ and H0, it holds that

k4H̄ ≥min
{
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1
2

nρ

}
ρ (2−ρ)−1 H0+

1
8
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∗, ∀ρ ∈ (0,2) . (4.15)

Combining (4.12) and (4.15), we obtain for k ≥ k̄ that∥∥∥uk+1−uk
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)
.

(4.16)
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Let k6 := ρ (ρ +(2−ρ)k5)
−1. Accordingly, for all k ≥ k̄, it follows from (4.16), (4.14)and

(4.13) that

dist2M̄
(

uk,Ω̄
)
+
∥∥∥zk− zk−1

∥∥∥2

T

≥dist2M̄
(

uk+1,Ω̄
)
+
∥∥∥zk+1− zk

∥∥∥2

T
+ k6

∥∥∥uk+1−uk
∥∥∥2

H̄
+(1− k6)

∥∥∥uk+1−uk
∥∥∥2

H̄

≥(1+ k5k6)dist2M̄
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.

From the fact that 1+k5k6 = 1+(1− k6)ρ (2−ρ)−1, we obtain the assertion (4.10) holds with
ϑ = (1+ k5k6)

−1. Because ϑ < 1, there must exist a positive number η ∈ [ϑ ,1) such that (4.11)
holds. This completes the proof. �

From Theorem 4.1, we know that the calmness assumption on R−1 is needed to ensure the
local linear convergence rate of sPGADMM. From the preliminaries reviewed in Subsection 2.2
we know that, R−1 is calm if it is a piecewise polyhedral multivalued mapping, and particularly,
it is the subdifferential mapping of a convex piecewise linear-quadratic function. Using the fact
that R−1 is piecewise polyhedral if and only if R itself is piecewise polyhedral, we conclude that
the calmness property holds automatically for convex composite optimization problem (1.2), as
well as the following corollary.

Corollary 4.1. Let ρ ∈ (0,2). Suppose that the set Ω̄ is nonempty and that both Σ f +S +

σA A ∗ and Σg +T +σBB∗ are positive definite. Let uk =
{
(yk,zk,xk)

}
be the sequence

generated by Algorithm sPGADMM that converges to ū ∈ Ω̄. Assume that the mapping R(·) is
piecewise polyhedral. Then, there exists a constant κ̂ > 0 such that for all k ≥ 0 ,

dist
(

uk,Ω̄
)
≤ κ̂‖R

(
uk
)
‖, (4.17)

and
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where

ϑ̂ =
[
1+ k̂5ρ

(
ρ +(2−ρ) k̂5
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]−1

, and k̂5 =min
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1,mρ ,
1
2

nρ

}
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4 ρ (2−ρ)−1
κ̂
−2

λmax
(
M̄
)−1

.

Proof. Because Ω̄ is nonempty and R−1 is piecewise polyhedral, we know that there exist con-
stants κ > 0 and ζ > 0 such that

dist
(
u,Ω̄

)
≤ κ ‖R(u)‖ , ∀u ∈ {u ∈U | ‖R(u)‖ ≤ ζ} .

Besides, according to the proof of Theorem 4.1, there exists a constant r > 0 such that for all k≥
1, the sequence

{
(yk,zk,xk)

}
generated by sPGADMM converges to a KKT point ū = (ȳ, z̄, x̄)

if
∥∥uk− ū

∥∥≤ r. With these uk satisfying
∥∥R
(
uk)∥∥> ζ , we have

dist
(

uk,Ω̄
)
≤
∥∥∥uk− ū

∥∥∥≤ r < r
(
ζ
−1
∥∥∥R
(

uk
)∥∥∥).

Then (4.17) holds immediately with κ̂ := max
{

κ,rζ−1} for all k ≥ 1. The inequality (4.18)
can be proved in a similar way to the one in Theorem 4.1. �
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To end this section, we note that the Corollary 4.1 is the global linear convergence rate of
sPGADMM, and for convex composite quadratic programming, it is holds with no additional
conditions because the error bound assumption holds automatically.

5. CONCLUSIONS

The generalized ADMM for convex composite optimization problems was firstly proposed
by Eckstein & Bertsekas [12] in 1992, and has been widely analyzed and implemented over
the fast few decades. The convergence of this method can be obtained from the framework of
PPA, but the proof from the aspect of optimization is relatively fewer. This paper considered a
sPGADMM which covers almost all the existed generalized ADMMs as special cases, but im-
portantly, the subproblems would be solved more efficiently with the help of the semi-proximal
term. This paper focused on proving the linear convergence rate of sPGADMM under the con-
dition that the mapping R−1(·) is calmness at the original point for ū with a suitable modulus,
because this condition is very mild and holds automatically for the considered problem (1.2).
The required condition is same to the work of Han et al. [20] in establishing the linear con-
vergence rate of the semi-proximal ADMM of Fazel et al. [15]. To some extent, our paper
can be considered as an extension of the work of Han et al. [20] to the generalized variant of
ADMM. However, we must note that, this extension is not trivial, because the relaxation factor
has caused many obstacles for convergence analysis. Certainly, this is the motivation as well as
the contribution of this paper.
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