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Abstract. The paper proposes an iterative method for solving a variational inclusion with the sum of two
operators in a Hilbert space. The method can be considered as a combination of the proximal contraction
method, the regularization method, and the multi-step inertial technique. Theorem of strong convergence is
established under mild conditions imposed on cost operators and control parameters.
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1. INTRODUCTION

The main purpose of the paper is to introduce a numerical approach for finding a solution of the
following variational inclusion (VI) in a real Hilbert space H , namely

Find u∗ ∈H such that 0 ∈A u∗+ f u∗, (1.1)

where A : H → 2H is a maximally monotone multi-valued operator and f : H →H is a L-
Lipschitz continuous, monotone, and single-valued operator. Throughout this paper, we denote
Ω = (A + f )−1(0) the solution set of the VI and assume that it is nonempty.

The VI (for the case f = 0) was early studied by Rockafellar [1] with the celebrated proximal
point algorithm. This problem plays a central role in optimization field as well as nonlinear analysis.
It involves some known problems such as variational inequality problems, fixed point problems,
operator equations, and equilibrium problems [1, 2], and it has received a lot of attention from
mathematicians because of its broad application in applied sciences such as image recovery, deep
learning, and data analysis; see, e.g., [3, 4, 5, 6, 7].

Consider the following optimization problem (OP),

min
u∈H

(Γ(u)+Θ(u)),

where Γ : H →R is a subdifferentiable convex function with the subdifferential ∂Γ, and Θ : H →R
is a differentiable convex function with the gradient ∇Θ. The problem OP can be reformulated under
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the problem VI with A = ∂Γ and f = ∇Θ. Another example is for the constraint optimization
problem (COP),

min
u∈C

Θ(u),

where C is a nonempty, closed, and convex subset of H and, Θ : H → R is a function which is
convex on C and differentiable on a neighborhood of C . In this case, the COP is a special case of
the VI with A = NC and f = ∇Θ (the detail of this claim is analyzed in Section 5), where NC is
the normal cone of C , given by

NC (u) = {w ∈H : 〈w,v−u〉 ≤ 0, ∀v ∈ C } .

Some notable methods were proposed for solving problem VI (1.1) such as the forward-backward
splitting method [6, 8], the modified forward-backward method [7], the proximal contraction method
[9], the forward-reflected-backward splitting method [10], and the others [5, 11, 12, 13]. In Hilbert
spaces, without such an additional condition, these methods in general only provide the weak
convergence, while the strong convergence is more desirable, especially in infinite dimensional
spaces. In order to get this aim, the methods are often combined with one or more techniques
as the viscosity method, the Halpern method, the hybrid (shrinking) projection method or the
regularization method.

In 2018, Zhang and Wang [9] proposed the following proximal contraction methods (PCM) for
solving problem VI (1.1): 

vn = JA
λn
(un−λn f (un)),

d(un,vn) = un− vn−λn( f (un)− f (vn)),
un+1 = un− γβnd(un,vn),

(1.2)

where γ ∈ (0,2),

βn =
φ(un,vn)

||d(un,vn)||2
,

φ(un,vn) = 〈un− vn,d(un,vn)〉 ,
{λn} satisfies prediction step-size conditions and liminf

n→∞
λn ≥ λ > 0, and JA

λn
= (I +λnA )−1 is the

resolvent of A associated with the parameter λn. Zhang and Wang [9] proved the weak convergence
of their proposed method.

Let F : H →H be a strongly monotone and Lipschitz continuous operator. In 2021, the
authors in [14] introduced the regularization proximal contraction method (RPCM) for solving
problem VI (1.1) in Hilbert spaces:{

vn = JA
λn
(un−λn( f (un)+αnF (un))),

un+1 = un− rβnd(un,vn),
(1.3)

where r ∈ (0,2) and

βn = min
{

β ,
φ(un,vn)

||d(un,vn)||2

}
,

where β > 0. Method RPCM (1.3) is a combination between method PCM (1.2) and the regular-
ization technique [14, Lemma 3]. Thanks to the incorporated regularization, the method RPCM
provides the strong convergence [14, Theorem 1].
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One notable aspect, which draws our attention to the acceleration of the original method, is
the role of inertial-type technique. Alvarez and Attouch in [15] pointed out that it is from the so-
called “heavy ball with friction” second order dynamical system. The method was intensively and
widely utilized for the purpose of speeding up the convergence rate of various iterative algorithms
[15, 16, 17, 18].

The main purpose of this paper is to introduce a new numerical method for solving problem VI
(1.1) in Hilbert spaces. The method is developed from method RPCM (1.3) incorporated with the
multi-step inertial effect. More precisely, let N be a given natural number and the previous iterates
u0,u1, · · · ,un be known. We use an intermediate combination

wn = un +
min{n,N}

∑
i=1

θi,n(un−i+1−un−i),

to find the next iterate un+1 based on the computations of method RPCM (1.3), where the parameter
θi,n ≥ 0 is suitably chosen. The next iterate un+1 is computed from the information of N previous
iterates. In the case when θi,n = 0, the new method is reduced to the original method RPCM (1.3).
Some one-step inertial methods (N = 1) can be found in [15, 16, 17] and multi-step inertial methods
(N > 1) are in [19, 20, 21]. Almost these methods provide the weak convergence and/or for the
special cases of problem VI (1.1). In this paper, we establish the strong convergence of the new
method under mild conditions imposed on cost operators and control parameters.

The paper is organized as follows: Section 2 supplies basic notions and lemmas used in latter
parts. Section 3 presents some results regarding the regularization technique. Section 4 introduces
our main algorithm and proves the strong convergence of the method. Section 5 discusses the
application of our method to solve a couple of optimization problems.

2. PRELIMINARIES

We take the following concepts in a real Hilbert space H . Let 〈·, ·〉 and ‖·‖ denote the inner
product of H and the norm generated by 〈·, ·〉, respectively. In any Hilbert space, we have the
equality

2〈u,v〉= ||u||2 + ||v||2−||u− v||2, ∀u, v ∈H ,

and the inequality

2||u|| ||v|| ≤ ν ||u||2 + 1
ν
||v||2, ∀ν > 0, ∀u, v ∈H .

Let un→ x stand for the fact that un is convergent in norm (or strongly converges) to x while un ⇀ x
means that un converges weakly to x as n→ ∞.

An multi-valued operator A : H → 2H is called:
(i) monotone if 〈u− v,x− y〉 ≥ 0 for all x, y ∈H and u ∈A x, v ∈A y;
(ii) strongly monotone if there exists a number γ > 0 such that 〈u− v,x− y〉 ≥ γ||x− y||2 for all

x, y ∈H and u ∈A x, v ∈A y;
(iii) inverse strongly monotone if there exists c > 0 such that 〈u− v,x− y〉 ≥ c||u− v||2 for all

x, y ∈H and u ∈A x, v ∈A y. If c = 1, then A is called firmly-nonexpansive.

An operator f : H →H is called Lipschitz continuous if there exists a number L > 0 such that
|| f (u)− f (v)|| ≤ L||u− v|| for all u, v ∈H . f is called nonexpansive if L = 1, and contractive if
0≤ L < 1.
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The graph of an operator A : H → 2H is defined by

Graph(A ) = {(x,u) ∈H ×H : u ∈A x} .
A multi-valued operator A : H → 2H is called maximally monotone if it is monotone and

its graph is not properly contained in the graph of any other monotone operator. It follows from
the maximal monotonicity of A that, for each pair (x,u) ∈H ×H , 〈x− y,u− v〉 ≥ 0 for all
(y,v) ∈ Graph(A ), one has v ∈A y. Let A : H → 2H be maximally monotone. The resolvent of
A associated with a number λ > 0 is defined by

JA
λ
(u) = (I +λA )−1(u), u ∈H .

The resolvent operator JA
λ

is single-valued, nonexpansive, and firmly-nonexpansive.

Lemma 2.1. [22, Lemma 2.4] Let A : H → 2H be a maximally monotone operator, and let
f : H →H be a monotone Lipschitz continuous operator. Then, B = A + f is maximally
monotone.

Lemma 2.2. [23, Sect. 4] Let A : H → 2H be a maximally monotone operator, and let f : H →
H be an operator. For each λ > 0, define the mapping

Tλ (u) := JA
λ
(u−λ f (u))

for all u ∈H . Then
u∗ ∈ (A + f )−1(0)⇔ u∗ ∈ Fix(Tλ ),

where Fix(Tλ ) is the fixed point set of Tλ .

For solving problem VI (1.1), we consider the following assumptions:
(A1) A is maximally monotone;
(A2) f is monotone and Lipschitz continuous;
(A3) The solution set Ω := (A + f )−1(0) of problem VI (1.1) is nonempty.
Let F : H →H be a γ - strongly monotone and L - Lipschitz continuous operator. In order to

solve problem VI (1.1), i.e., to select an element in Ω, we are interested in solving the following
variational inequality (VIP):

Find u† ∈Ω such that
〈
Fu†,u∗−u†

〉
≥ 0, ∀u∗ ∈Ω. (2.1)

Thanks to the given properties of F and the fact that Ω is convex, closed, and nonempty (assumed),
problem VIP (2.1) has a unique solution u†. The iterative sequence {un} generated by our proposed
method is proved to be convergent to the solution u† of problem VIP (2.1). If Fu = u, then u† is
the smallest norm solution of problem VI (1.1), while if Fu = u−ug, where ug is a suggested point
in H , the solution u† of (2.1) is u† = PΩ(ug), the point in Ω is the nearest to ug. Considering the
operator F as in problem (2.1) helps us to find a solution of problem VI with a desired property.
Problem (2.1) can be considered as a bilevel problem that the constraint is the solution set to problem
VI (1.1).

Finally, we need the following technical lemma.

Lemma 2.3. [24] Let {Ψn} be a sequence of nonnegative real numbers. Suppose that

Ψn+1 ≤ (1− pn)Ψn +qn

for all n≥ 0, where the sequences {pn} in (0,1) and {qn} in ℜ satisfy the conditions:
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(i) limn→∞ pn = 0,
(ii) ∑

∞
n=1 pn = ∞, and

(iii) limsupn→∞

qn
pn
≤ 0.

Then limn→∞ Ψn = 0.

3. REGULARIZATION

In this section, we recall the Tikhonov-type regularization to the class of monotone variational
inclusion problem [14]. For each α > 0, we associate our problem VI (1.1) with the following
regularized variational inclusion (RVI) problem:

Find u ∈H such that 0 ∈A u+ f u+αFu, (3.1)

where F : H →H is a γ-strongly monotone and L-Lipschitz continuous operator Under our
assumptions, problem RVI (3.1) has a unique solution for each α > 0, denoted by uα . Furthermore,
we remark that, for each λ > 0, the point uα is a solution to problem RVI (3.1) if and only if it is a
fixed point of the mapping JA

λ
(I−λ ( f +αF )), i.e.,

uα = JA
λ
(uα −λ ( f uα +αFuα)).

This can follow directly from Lemma 2.2. We have the following result.

Lemma 3.1. [14, Lemma 3] (i) The sequence {uα} is bounded.

(ii) There exists a number M > 0 such that, for all α1 > 0 and α2 > 0,

||uα1−uα2|| ≤
|α2−α1|

α1
M.

(iii) ω(uα)⊂Ω, where ω(uα) is the set of weak cluster points of the sequence {uα}.

(iv) lim
α→0+

uα = u† ∈Ω, the unique solution of problem VIP (2.1).

We remark that if {αn} is a sequence of positive real numbers such that lim
n→∞

αn = 0, then we

have by Lemma 3.1(iv) that limn→∞ uαn = u†. However, in practice, finding uαn for each n≥ 1 can
be expansive and time-consuming. In the next section, we introduce an iterative-regularization
procedure which generates a sequence {un} ⊂H satisfying ||un−uαn|| → 0 as n→ ∞.

4. REGULARIZATION MULTI-STEP INERTIAL PROXIMAL METHOD

In this section, we introduce an iterative-regularization method with multi-step inertial effect. In
order to design the method, we need an operator F : H →H being γ-strongly monotone and
k-Lipschitz continuous. In addition, we take the sequence {αn} ⊂ (0,+∞) such that

(C1) : lim
n→∞

αn = 0,

(C2) :
∞

∑
n=1

αn =+∞,and

(C3) : lim
n→∞

(αn−αn+1)α
−2
n = 0.

Conditions (C1)-(C3) hold for sequences such as αn =
1

np with 0 < p < 1. For simplicity, we
employ the following conventions: 0

0 =+∞ and 1
0 =+∞.
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Algorithm 1 Regularization Multi-Step Inertial Proximal Method - RMSIPM

Initialization: Take u0, u1 ∈H arbitrarily, r ∈ (0,2), θ0 > 0, σ > 0, and a positive integer
N > 0. For each i = 1,2, . . . ,N, choose a sequence µi,n of positive numbers such that

(C4) : lim
n→∞

µi,n

αn
= 0 and

+∞

∑
n=1

µi,n <+∞.

Iterative Steps: Compute un+1 for n≥ 1 as follows
Step 1. Compute

wn = un +
min{n,N}

∑
i=1

θi,n(un−i+1−un−i),

where

θi,n =


µi,n

||un−i+1−un−i||
if un−i+1 6= un−i

θ0 otherwise.

Step 2. Compute vn = JA
λn
(wn−λn( f wn +αnFwn)), where λn > 0.

Step 3. Compute un+1 = wn + rσnq(vn,wn), where
q(vn,wn) = vn−wn−λn( f vn− f wn)

D(vn,wn) = 〈vn−wn,q(vn,wn)〉

σn = min
{

σ ,
D(vn,wn)

||q(vn,wn)||2

}
.

As in [14], we say that the sequence {λn} in Algorithm 1 satisfies Predicted Stepsize Conditions
(PSC) if there exist four positive numbers c1, c2, λ , and λ̄ and an integer n0 > 0 such that the
following inequalities hold

D(vn,wn)≥ c1||vn−wn||2 and σn ≥ c2 (4.1)

and

0 < λ ≤ λn ≤ λ̄ <+∞ (4.2)

for all n≥ n0.
The following lemma gives some cases where condition PSC holds.

Lemma 4.1. The condition PSC is satisfied if one of the following cases holds:

(i) {λn} ⊂ [a,b]⊂
(
0, 1

L

)
, where L is the Lipschitz constant of f .

(ii) Let σ > 0, l ∈ (0,1), µ ∈ (0,1). For each n≥ 0, λn is the largest λ ∈
{

σ ,σ l,σ l2, · · ·
}

such
that

λn|| f (vn)− f (wn)|| ≤ µ||vn−wn||.

(iii) Let λ0 > 0, µ ∈ (0,1), {κn} ⊂ [0,+∞) be a summable sequence. For each n≥ 0, we take

λn+1 = min
{

λn +κn,
µ||vn−wn||

|| f (vn)− f (wn)||

}
. (4.3)
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Proof. The proof of items (i) and (ii) can be found, for example, in [14, Lemmas 5 and 6]. We
give a proof for item (iii). First, since 0 < µ < 1, we are able to choose a number ξ > 0 such that
(1+ξ )µ < 1. Since ∑

∞
n=1 κn <+∞, we have limn→∞ κn = 0, which implies from (4.3) that{

λ1 ≤ λ0 +κ0,

λn+1 ≤ λn +κn.
(4.4)

Thus it inductively follows that

λn+1 ≤ λ0 +
n

∑
i=0

κi, ∀n. (4.5)

It follows from (4.5) that

λn ≤ λ0 +
∞

∑
i=0

κi (4.6)

for every n. Besides, the Lipschitz continuity of f results in

µ||vn−wn||
|| f (vn)− f (wn)||

≥ µ||vn−wn||
L||vn−wn||

=
µ

L
.

It is obvious that

λ1 = min
{

λ0 +κ0,
µ||y0− z0||

|| f (y0)− f (z0)||

}
,

≥min
{

λ0 +κ0,
µ

L

}
.

Hence, we once again use induction to obtain

λn+1 ≥min
{

λn +κn,
µ

L

}
≥min

{
λn,

µ

L

}
≥min

{
λ0 +κ0,

µ

L

}
(4.7)

for each n≥ 0. Now, we let

λ̄ := λ0 +
+∞

∑
n=0

κn and λ := min
{

λ0 +κ0,
µ

L

}
.

Thus condition (4.2) is directly achieved from (4.6) and (4.7).
Next, it is necessary to indicate that {λn} converges to some number λ . We take a sequence
{sn}∞

n=1 defined by

sn+1 := λn+1−
n

∑
i=0

κi

for each n≥ 0. We see that {sn} is non-increasing. Indeed, due to (4.4), we have

sn+1− sn = λn+1− (λn +κn)≤ 0.

Moreover, {sn} is lower bounded since

sn = λn−
n−1

∑
i=0

κi ≥ λ −
∞

∑
i=0

κi



104 N.H. HA, D.V. HIEU, L.D. MUU

for each n≥ 1. The fact that {sn} is non-increasing and lower bounded implies that it converges.
The convergence of two sequences {sn} and {∑n−1

i=0 κi}∞
n=1 simultaneously infers that {λn} also

converge. Moreover, from the definition of D(vn,wn), we have

D(vn,wn) = 〈vn−wn,vn−wn−λn( f vn− f wn)〉

= ||vn−wn||2−λn〈vn−wn, f vn− f wn〉

= ||vn−wn||2−
λn

λn+1
λn+1〈vn−wn, f vn− f wn〉

≥ ||vn−wn||2−
λn

λn+1
·λn+1|| f vn− f wn||.||vn−wn||. (4.8)

It is obvious from the definition of {λn} that

λn+1|| f vn− f wn|| ≤ µ||vn−wn||. (4.9)

On the other hand, since limn→∞ λn = λ ≥ λ , we easily see that

lim
n→∞

λn

λn+1
= 1.

Consequently, there exists a positive integer n0 large enough such that, for all n≥ n0,

λn

λn+1
< 1+ξ . (4.10)

We combine inequalities (4.8), (4.9), and (4.10) to reach

D(vn,wn)≥ ||vn−wn||2− (1+ξ )µ||vn−wn||2

= c1||vn−wn||2 (4.11)

for all n≥ n0, where c1 := 1− (1+ξ )µ , which is already shown to be positive by (1+ξ )µ < 1..
Let c2 := min{σ ,c1}. Using (4.11), one sees that

σn = min
{

σ ,
D(vn,wn)

||q(vn,wn)||2

}
≥min{σ ,

c1

1+λL
}= c2 (4.12)

for each n ≥ n0. Finally, for each n ≥ n0, we derive (4.1) from (4.11) and (4.12). The lemma is
proved. �

Theorem 4.1. Assume that the assumptions (C1)-(C4) hold and {λn} satisfies condition PSC. Then
the sequence {un} generated by Algorithm 1 converges strongly to a solution u† ∈Ω of problem VI
(1.1), which uniquely solves problem VIP (2.1).

Proof. First of all, condition (4.1) ensures that D(vn,wn) and σn are positive numbers for every n.
Next, because γ > 0 and k > 0, we are able to find the (enough small) numbers ε1,ε2,ε3 > 0

which satisfy 2γ− kε1 > 0 and

2γrc2− kε1rσ − ε2− ε3 > 0. (4.13)
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From now on, let uαn denote the solution of problem RVI (3.1) with α = αn. We have

||un+1−uαn ||2 = ||wn−uαn||2 +2rσn〈wn−uαn,q(vn,wn)〉+ r2
σ

2
n ||q(vn,wn)||2

= ||wn−uαn||2 +2rσn〈vn−uαn,q(vn,wn)〉+2rσn〈wn− vn,q(vn,wn)〉
+r2

σ
2
n ||q(vn,wn)||2

= ||wn−uαn||2 +2rσn〈vn−uαn,q(vn,wn)〉−2rσnD(vn,wn)

+r2
σ

2
n ||q(vn,wn)||2. (4.14)

Next, it follows from the establishment of σn that

σn ≤
D(vn,wn)

||vn−wn||2
,

or equivalently,

σn||vn−wn||2 ≤ D(vn,wn). (4.15)

We combine (4.14) and (4.15) to find that

||un+1−uαn ||2

≤ ||wn−uαn||2 +2rσn〈vn−uαn,q(vn,wn)〉−2rσnD(vn,wn)+ r2
σnD(vn,wn)

= ||wn−uαn ||2 +2rσn〈vn−uαn,q(vn,wn)〉− rσn(2− r)D(vn,wn).

On the other hand, since uαn is the solution to problem RVI (3.1), then 0∈A xαn + f xαn +αnF xαn ,
which immediately leads to

−αnFuαn ∈ (A + f )xαn. (4.16)

Furthermore, by vn = JA
λn
(wn−λn( f wn +αnFwn)), we obtain

wn−λn( f wn +αnFwn)− vn ∈ λnA vn,

or equivalently,

wn− vn−λn( f wn− f vn)−λnαnFwn ∈ λn(A + f )vn.

Consequently, we deduce

−q(vn,wn)−λnαnFwn ∈ λn(A + f )vn. (4.17)

We combine (4.16), (4.17), and the monotonicity of A + f to arrive at

〈vn− xαn,−q(vn,wn)−λnαnFwn +λnαnFuαn〉 ≥ 0,

which can be rewritten as

〈vn−uαn,q(vn,wn)〉 ≤ −λnαn〈vn−uαn,Fwn−Fuαn〉. (4.18)
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Besides, we use the Lipschitz continuity and the γ-strong monotinicity of F , as well as the inequality
ab≤ ε1

2
a2 + 1

2ε1
b2 to obtain

〈Fwn−Fuαn,vn−uαn〉 = 〈Fwn−Fuαn ,vn−wn〉+ 〈Fwn−Fuαn ,wn−uαn〉
≥ −k||wn−uαn||||vn−wn||+ γ||wn−uαn||2

≥ −kε1

2
||wn−uαn||2−

k
2ε1
||vn−wn||2 + γ||wn−uαn ||2

=
2γ− kε1

2
||wn−uαn ||2−

k
2ε1
||vn−wn||2. (4.19)

The inequality (4.18) together with (4.19) yields that

〈vn−uαn,q(vn,wn)〉 ≤ −λnαn

(
2γ− kε1

2
||wn−uαn ||2−

k
2ε1
||vn−wn||2

)
. (4.20)

Substituting (4.20) into (4.16), we obtain that

||un+1−uαn||2 ≤ ||wn−uαn||2−2rσnλnαn

(
2γ− kε1

2
||wn−uαn||2−

k
2ε1
||vn−wn||2

)
−rσn(2− r)D(vn,wn)

= (1− rσnλnαn(2γ− kε1)) ||wn−uαn||2 +
krσnλnαn

ε1
||vn−wn||2

−rσn(2− r)D(vn,wn). (4.21)

We combine (4.21) and the condition (4.1) to reach

||un+1−uαn ||2 ≤ (1− rσnλnαn(2γ− kε1)) ||wn−uαn||2 +
krσnλnαn

ε1
||vn−wn||2

−rσn(2− r)c1||vn−wn||2

= (1− rσnλnαn(2γ− kε1)) ||wn−uαn ||2

−σn

(
r(2− r)c1−

krλnαn

ε1

)
||vn−wn||2. (4.22)

From the definition of {σn} and (4.1), it is easy to see that

c2 ≤ σn ≤ σ ∀n. (4.23)

Next, since limn→∞

µi,n
αn

= 0 for i = 1,2, . . . ,N, lim
n→∞

αn = 0, {λn} ⊂ [λ , λ̄ ] by (4.2), and {σn} ⊂
[c2,σ ] as seen in (4.23), there exists a number K large enough such that, for every n > K,

N

∑
i=1

µi,n < ε2λnαn,

1−λnαn(2γrσn− kε1)> 0,
1− rσnλnαn(2γ− kε1)> 0,

r(2− r)c1−
krλnαn

ε1
> 0.

(4.24)
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Therefore, by the definiton of {θi,n}, we observe that, for all n > max{K,N},

||wn−uαn||2

=

∥∥∥∥∥(un−uαn)+
min{n,N}

∑
i=1

θi,n(un−i+1−un−i)

∥∥∥∥∥
2

≤

(
||un−uαn||+

N

∑
i=1

θi,n||un−i+1−un−i||

)2

= ||un−uαn ||2 +2
N

∑
i=1

θi,n||un−uαn||||un−i+1−un−i||

+ 2 ∑
1<i< j<N

θi,nθ j,n||un−i+1−un−i||||un− j+1−un− j||+
N

∑
i=1

θ
2
i,n||un−i−un−i+1||2

≤ ||un−uαn||2 +2
N

∑
i=1

µi,n||un−uαn||+2 ∑
1<i< j<N

µi,nµ j,n +
N

∑
i=1

µ
2
i,n

≤ ||un−uαn||2 +
N

∑
i=1

(µi,n||un−uαn||2 +µi,n)+2 ∑
1<i< j<N

µi,nµ j,n +
N

∑
i=1

µ
2
i,n

≤ ||un−uαn ||2 + ε2λnαn||un−uαn||2 +
N

∑
i=1

µi,n +2 ∑
1<i< j<N

µi,nµ j,n +
N

∑
i=1

µ
2
i,n

= (1+ ε2λnαn)||un−uαn||2 + µ̃n,

where

µ̃n =
N

∑
i=1

µi,n +2 ∑
1<i< j<N

µi,nµ j,n +
N

∑
i=1

µ
2
i,n.

Combining the above relation and (4.22), we obtain

||un+1−uαn ||2

≤ (1− rσnλnαn(2γ− kε1))(1+ ε2λnαn)||un−uαn||2 +(1− rσnλnαn(2γ− kε1))µ̃n

−σn

(
r(2− r)c1−

krλnαn

ε1

)
||vn−wn||2

≤ (1− rσnλnαn(2γ− kε1))(1+ ε2λnαn)||un−uαn||2

+(1− rσnλnαn(2γ− kε1))µ̃n

(4.25)

for all n > max{K,N}.
On the other hand, using the inequality

ab≤ ε3

2
a2 +

1
2ε3

b2
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and the result from Lemma 3.1(ii), we have, for all n > max{K,N},

||un+1−uαn+1||
2

= ||un+1−uαn||2 + ||uαn+1−uαn||2 +2
〈
un+1−uαn,uαn−uαn+1

〉
≤ ||un+1−uαn||2 + ||uαn+1−uαn||2 +2||un+1−uαn|| ||uαn+1−uαn ||

≤ ||un+1−uαn||2 + ||uαn+1−uαn||2 + ε3αnλn||un+1−uαn ||2

+
1

ε3αnλn
||uαn+1−uαn||2

= (1+ ε3αnλn)||un+1−uαn ||2 +
(

1
ε3αnλn

+1
)
||uαn+1−uαn||2

≤ (1+ ε3αnλn)||un+1−uαn ||2 +
(1+ ε3αnλn)M2

ε3αnλn

(αn+1−αn)
2

α2
n

= (1+ ε3αnλn)||un+1−uαn||2 +
(1+ ε3αnλn)M2

ε3λn

(αn+1−αn)
2

α3
n

.

(4.26)

We deduce from (4.25) and (4.26) that, for all n > max{K,N},

||un+1−uαn+1 ||
2

≤ (1− rσnλnαn(2γ− kε1))(1+ ε2λnαn)(1+ ε3λnαn)||un−uαn||2

+(1− rσnλnαn(2γ− kε1))(1+ ε3λnαn)µ̃n

+
M2(1+ ε3λnαn)(αn+1−αn)

2

ε3λnα3
n

.

(4.27)

Furthermore, by a simple calculation, we easily find that, for every n > max{K,N},

(1− rσnλnαn(2γ− kε1))(1+ ε3λnαn)

= 1−λnαn(2γrσn− kε1rσn− ε3)− rσnλ
2
n α

2
n ε3(2γ− kε1)

< 1−λnαn(2γrσn− kε1rσn− ε3)< 1,

(4.28)

where 2γrσn− kε1rσn− ε2 > 0 results from (4.13) and (4.23) as

2γrσn− kε1rσn− ε2 ≥ 2γrc2− kε1rσ − ε2

≥ 2γrc2− kε1rσ − ε2− ε3 > 0.

Similarly, we have, for every n > max{K,N},

(1−λnαn(2γ− kε1))(1+ ε2λnαn)(1+ ε3λnαn)

< (1−λnαn(2γrσn− kε1rσn− ε3))(1+ ε2λnαn)

< 1−λnαn(2γrσn− kε1rσn− ε2− ε3).

(4.29)
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It follows from (4.27), (4.28) and (4.29) that

||un+1−uαn+1 ||
2 ≤ (1−λnαn(2γrσn− kε1rσn− ε2− ε3))||un−uαn||2

+ (1−λnαn(2γrσn− kε1rσn− ε3))µ̃

+
M2(1+ ε3λnαn)

ε3λn
· (αn+1−αn)

2

α3
n

≤ (1−λnαn(2γrσn− kε1rσn− ε2− ε3))||un−uαn||2 + µ̃

+
M2(1+ ε3λnαn)

ε3λn
· (αn+1−αn)

2

α3
n

. (4.30)

for all n > max{M,N}. Set Ψn = ||un−uαn||2, pn = (2γrσn− kε1rσn− ε2− ε3)λnαn, and

qn = µ̃n +
M2(1+ ε3λnαn)

ε3λn
· (αn+1−αn)

2

α3
n

.

Then, relation (4.30) can be rewritten as follows:

Ψn+1 ≤ (1− pn)Ψn +qn, ∀n > max{M,N}. (4.31)

It implies from condition (C1) and relations (4.2), (4.23) that

pn→ 0 as n→ ∞. (4.32)

Indeed, for n > max{M,N},

pn = (2γrσn− kε1rσn− ε2− ε3)λnαn

≤ (2γrσ − kε1rc2− ε2− ε3)λ̄αn→ 0

since αn→ 0. Besides, from conditions (C2) and (C4) and relations (4.2) and (4.23), we see that,
for some positive number N > max{M,N}

∞

∑
n=N

pn =
∞

∑
n=N

λnαn(2γrσn− kε1rσn− ε2− ε3)

≥ (2γrc2− kε1rσ − ε2− ε3)λ
∞

∑
n=N

αn =+∞

and hence,
∞

∑
n=N

pn =+∞. (4.33)

It can be seen that limn→∞
µ̃n
αn

= 0. Moreover, by conditions (C3) and (C4), one has

limsup
n→∞

qn

pn

= limsup
n→∞

1
2γrσn− kε1rσn− ε2− ε3

(
M2(1+ ε2λnαn)

ε2λn

(αn+1−αn)
2

α4
n

+
µ̃n

αn

)
≤ 1

2γrc2− kε1rσ − ε2− ε3
limsup

n→∞

(
M2(1+ ε2λnαn)

ε2λn

(αn+1−αn)
2

α4
n

+
µ̃n

αn

)
= 0.

(4.34)
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We use the combination of inequality (4.31), relations (4.32)-(4.34), and Lemma 2.3 to conclude
that Ψn = ||un−uαn||2→ 0 as n→ ∞. By Lemma 3.1(iv) and condition (C1), we obtain uαn → u†.
Thus un→ u† as n→ ∞, which completes the proof. �

5. APPLICATIONS

5.1. Optimization problem. Let Γ : H → R be a subdifferentiable function on H , i.e, for each
u ∈H , the subdifferential of Γ at u,

∂Γ(u) = {w ∈H : 〈v−u,w〉+Γ(u)≤ Γ(v)}

is nonempty. According to [25, Theorem 20.40], ∂Γ is maximally monotone.
Let proxΓ denote the proximal mapping of Γ, which is defined by

proxΓ(u) = arg min
v∈H

{
Γ(v)+

1
2
||v−u||2

}
for each u ∈H .

By Fermat’s rule [25, Theorem 16.2], s = proxλΓ(u) if and only if

0 ∈ ∂

(
λΓ(·)+ 1

2
|| ·−u||2

)
(s) = λ∂Γ(s)+ s−u,

or equivalenty, s = (I +λ∂Γ)−1 (u) = J∂Γ

λ
, where λ > 0. Thus, we have that

proxλΓ = J∂Γ

λ
.

Also, let Θ : H → R be a differentiable function with its gradient ∇Θ being Lipschitz continuous.
Evidently, ∂Θ is single-valued and ∂Θ = ∇Θ. Recall the convex optimization problem (OP)
mentioned in Section 1

Find u∗ ∈H such that u∗ ∈ arg min
u∈H

(Γ(u)+Θ(u)). (5.1)

Applying Fermat’s rule, we see that the OP (5.1) can be equivalently written as

Find u∗ ∈H such that 0 ∈ ∂Γ(u∗)+∇Θ(u∗).

Thus optimization problem (5.1) is reformulated to the problem VI (1.1) with A = ∂Γ and f = ∇Θ.
The following theorem follows directly from Theorem 4.1.

Theorem 5.1. Let Γ: H →R be a subdifferential function and Θ : H →R be differentiable with a
Lipschitz continuous gradient. Furthermore, assume that the solution set Ω = argminH (Γ+Θ) is
nonempty. Let positive numbers r ∈ (0,2), θ0, σ , N arbitrarily and the sequences {αn}, {µi,n} for
i = 1,2, . . . ,N satisfy conditions (C1)-(C4). Choose a γ-strongly monotone and Lipschitz continuous
operator F : H →H and two starting points u0, u1 ∈H . Let {un} be a sequence in H generated
by the following procedure

wn = un +∑
min{n,N}
i=1 θi,n(un−i+1−un−i),

vn = proxλnΓ(wn−λn(∇Θwn +αnFwn)),

un+1 = wn + rσnq(vn,wn),



AN ACCELERATED REGULARIZATION METHOD 111

where 
q(vn,wn) = vn−wn−λn(∇Θvn−∇Θwn),

D(vn,wn) = 〈vn−wn,q(vn,wn)〉,

σn = min
{

σ ,
D(vn,wn)

||q(vn,wn)||2

}
,

where λn > 0 and satisfies the condition PSC and θi,n is taken exactly the same as Algorithm
1. Then, sequence {un} converges in norm to u† ∈ Ω which satisfies the variational inequality
〈F (u†),u∗−u†〉 ≥ 0, ∀u∗ ∈Ω.

5.2. Bilevel optimization problem. Let C be a nonempty, closed, and convex subset of a Hilbert
space H . Let g : H →R be a function, which is convex on C and differentiable on a neighborhood
of C with ∇g being Lipschitz continuous. Let h : H → R be a strongly convex and differentiable
function such that ∇h is Lipschitz continuous. We are interested in the following bilevel optimization
problem (BOP):

min
u∈S

h(u), (5.2)

where S = argminu∈C g(u) which is assumed to be nonempty. Let ιC be the indicator function of
C , i.e.,

ιC : H → (−∞,+∞]

u 7→

{
0, if u ∈ C ,

+∞ otherwise.

Therefore, S is the solution to the optimization problem

min
u∈H

(ιC (u)+g(u)) .

Problem (5.2) can be reformulated as

Find u† ∈ S such that
〈

∇h(u†),u∗−u†
〉
≥ 0, ∀u∗ ∈ S, (5.3)

where S is the solution to the variational inclusion problem: Find u∗ ∈H such that

0 ∈ ∂ (ιC (u∗)+g(u∗)) = NC (u∗)+∇g(u∗). (5.4)

We are now ready to solve problems (5.3) and (5.4) by applying Algorithm 1 with A = NC , f = ∇g
and F = ∇h. Note that, for every λ > 0, JNC

λ
= proxλιC

= PC , where PC is the metric projection
from H onto C . We have the following result which follows from Theorem 4.1.

Theorem 5.2. Let g: H → R be a function, which is convex on C and differentiable on a neigh-
borhood of C such that ∇g is Lipschitz continuous. Let h : H → R be a strongly convex and
differentiable function with ∇h being Lipschitz continuous. Furthermore, assume that the solution
set S = argminC g is nonempty. Choose positive numbers r ∈ (0,2), θ0, σ , N arbitrarily and the
sequences {αn}, {µi,n} for i = 1,2, . . . ,N satisfying conditions (C1)-(C4). Choose two certain
starting points u0, u1 ∈H . Let {un} be a sequence in H generated by the following procedure

wn = un +∑
min{n,N}
i=1 θi,n(un−i+1−un−i),

vn = PC (wn−λn(∇gwn +αn∇hwn)),

un+1 = wn + rσnq(vn,wn),
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where 
q(vn,wn) = vn−wn−λn(∇gvn−∇gwn),

D(vn,wn) = 〈vn−wn,q(vn,wn)〉,

σn = min
{

σ ,
D(vn,wn)

||q(vn,wn)||2

}
,

where λn > 0 and satisfies the condition PSC and θi,n is taken exactly the same as Algorithm 1.
Then, {un} converges in norm to u† ∈ S, which is the unique solution to problem (5.2).
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