
J. Appl. Numer. Optim. 6 (2024), No. 1, pp. 83-96
Available online at http://jano.biemdas.com
https://doi.org/10.23952/jano.6.2024.1.05

SOLVING SPLIT FEASIBILITY PROBLEMS VIA BLOCK-WISE FORMULATION

ZHOU WANG, HONGJIN HE∗

School of Mathematics and Statistics, Ningbo University, Ningbo, 315211, China

Abstract. The split feasibility problem (SFP), which provides a unified framework to model a wide
range of inverse problems, has received much considerable attention in the literature. However, how to
efficiently solve SFPs is still an interesting topic. In this paper, we introduce a block-wise formulation
for algorithmic design. Specifically, we first introduce an auxiliary variable to formulate the original
SFP as a constrained minimization problem with a block structure, which paves a new way to find
solutions of SFPs. Then, we show that the employments of some classical gradient-type optimization
algorithms produce very simple, yet quite efficient iterative schemes to find a solution of SFPs when
the underlying block structure could be exploited. The parallel iterative schemes of the proposed block-
wise algorithms are not only efficient to deal with the case that the projections onto the convex sets
have explicit representations, but also are possibly valuable for solving large-scale SFPs without explicit
projections onto the underlying sets. Some numerical results on synthetic examples support the idea of
this paper.

Keywords. CQ algorithm; Convergence rate; Gradient method; Heavy-ball method; Split feasibility
problem.

1. INTRODUCTION

The classical Split Feasibility Problem (SFP) was first introduced by Censor and Elfving
[1] in 1994, which has been widely used in areas of image reconstructions, intensity-modulated
radiation therapy, and statistical learning; see, e.g., [2, 3, 4], to name just a few. Mathematically,
the SFP refers to the task of finding a point x∗ such that

x∗ ∈CCC and Ax∗ ∈ QQQ, (1.1)

where CCC ⊆ Rn and QQQ ⊆ Rm are two nonempty, closed, and convex sets, respectively, and A is
assumed to be an m × n real matrix. More generally, such a problem has also been studied
in Hilbert spaces [5, 6]. Actually, the SFP can be regarded as a natural generalization of the
classical Linear Inverse Problem (LIP):

Ax = b, (1.2)

when CCC and QQQ in (1.1) are specified as CCC = Rn and QQQ = {b} (b ∈ Rm), respectively. Compara-
tively, solving the SFP (1.1) is more difficult than the LIP (1.2) due to the possibly complicated

∗Corresponding author.
E-mail address: wangzhmath@163.com (Z. Wang), hehongjin@nbu.edu.cn (H. He).
Received 31 December 2023; Accepted 16 February 2024; Published online 5 March 2024.

c©2024 Journal of Applied and Numerical Optimization

83

84 Z. WANG, H. HE

convex sets CCC and QQQ. However, the SFP (1.1) provides a unified treatment framework, which is
helpful for us to design customized algorithms for solving some real-world problems [4, 7].

In the literature, one of the most popular solvers is the so-named CQ algorithm, which was
originally introduced by Byrne [8, 9]. Specifically, the iterative scheme of the CQ algorithm
reads as

xk+1 = PCCC

(
xk−θA>(I−PQQQ)Axk

)
, (1.3)

where θ is an appropriate stepsize satisfying θ ∈
(
0, 2

L

)
with L being the largest eigenvalue of

matrix A>A, and both PCCC(·) and PQQQ(·) denote the projections onto the convex sets CCC and QQQ,
respectively. It is interesting that iterative scheme (1.3) can be understood as a specific applica-
tion of the classical gradient-projection method [6] to the following equivalent formulation of
(1.1), i.e.,

min
x

{
f (x) :=

1
2

∥∥Ax−PQQQ(Ax)
∥∥2 | x ∈CCC

}
. (1.4)

To improve the efficiency of solving (1.1), we here refer the reader to [10, 11, 12, 13] for some
classical variants of the CQ algorithm based on (1.4). Actually, as shown in [14], the CQ algo-
rithm can also be interpreted as specific applications of some other optimization algorithms,
such as partially linearized alternating minimization algorithms, DC (Difference-of-Convex
functions) algorithms, fixed-point methods, and majorization-minimization algorithms, when
reformulating the SFP (1.1) as different types of minimization problems. With the help of these
optimization forms, some regularized SFPs promoting structured (e.g., sparse or low-rank) so-
lutions can be efficiently solved; see, e.g., [4, 7, 15]. Roughly speaking, when taking a revisit
on those existing algorithms tailored for SFPs, they can be grouped into two model-based algo-
rithms. The first group is based on one single variable x such as (1.4), and these single-variable
model-based algorithms usually enjoy quite simple iterative schemes and run fast as long as
the projections onto CCC and QQQ are simple. The other group is developed by the model with two
variables, where one auxiliary variable y is introduced for the purpose of separating Ax and
QQQ. Such two-variable model-based algorithms usually update two variables in an alternating
(Gauss-Seidel) way so that they usually perform well in practice. Overall, the aforementioned
algorithms can be regarded as alternating projection algorithms since they must calculate the
projections onto CCC and QQQ in a sequential order. Consequently, those algorithms possibly take
much computing time to find a solution when the projections onto CCC and QQQ are not easy. There-
fore, two natural questions are raised naturally. The first one is that can we combine the ideas
of these two groups? If yes, what will be produced by the resulting algorithms? The second
one is that can we devise parallel projection algorithms in the sense that we can simultaneously
calculate the projections onto CCC and QQQ? In this paper, our main goal is to answer the above
questions.

When introducing an auxiliary variable y to split Ax and QQQ, we accordingly obtain an equality
constraint Ax− y = 0. In this way, we immediately obtain an equivalent formulation of (1.1) as
follows:

min
u

{
ϕ(u) :=

1
2
‖Ax− y‖2 ≡ 1

2
‖Bu‖2 | u ∈Ω :=CCC×QQQ

}
, (1.5)

where B := (A,−I) is a block matrix, and u := (x>,y>)>, which will be denoted by u = (x,y)
for notional simplicity. Clearly, the ϕ(u) given in (1.5) is a standard quadratic function and
the set Ω enjoys a Cartesian structure. In this situation, we can gainfully employ the classical

SOLVING SPLIT FEASIBILITY PROBLEMS VIA BLOCK-WISE FORMULATION 85

gradient-type methods to solve (1.1), thereby possibly producing some more efficient algo-
rithms. Therefore, we first apply the classical gradient-projection method to (1.5) and obtain a
block-wise CQ algorithm (see Algorithm 1, denoted by BCQ). Moreover, inspired by [16], we
can employ the popular Nesterov acceleration technique [17] to derive an accelerated block-
wise CQ algorithm (see Algorithm 2, denoted by ABCQ). Considering the case where CCC and/or
QQQ is nonconvex, we further employ the well-known heavy-ball acceleration strategy [18, 19] to
develop a fast heavy-ball block-wise CQ algorithm (see Algorithm 3, denoted by HBCQ). It is
interesting that the proposed three algorithms not only enjoy quite simple iterative schemes, but
also are able to calculate the projections onto CCC and QQQ in a parallel way due to the Cartesian
structure of Ω. Comparatively, our proposed algorithms are more suitable to implement the
code on parallel machines for dealing with the case where the projections onto CCC and QQQ have no
explicit forms. Some preliminary computational results on synthetic datasets demonstrate that
the proposed algorithms work well in practice.

The rest of this paper is organized as follows. In Section 2, we recall some notations and
definitions that are used in this paper. In Section 3, we propose the BCQ and ABCQ algorithms
to deal with convex SFPs. In Section 4, we first propose an HBCQ algorithm to solve nonconvex
SFPs. Then, we show that the sequence generated by the HBCQ algorithm converges to a
critical point of the problem under consideration. In Section 5, we report some preliminary
numerical results to support our idea. Finally, we give some concluding remarks to complete
this paper in Section 6.

2. PRELIMINARIES

Let Rn be an n-dimensional Euclidean space. For any two vectors x,y ∈ Rn, let 〈x,y〉= x>y
represent the standard inner product, where the superscript > stands for the transpose of a
vector or matrix. For a given x ∈Rn, we denote by ‖x‖p the standard `p-norm of x whose value

is ‖x‖p = (∑n
i=1 |xi|p)

1
p for 1 ≤ p < ∞. Particularly, we use ‖x‖ = ‖x‖2 for simplicity. For a

matrix A ∈ Rm×n, let ‖A‖ denote the spectral norm. Additionally, we let ‖ · ‖0 represent the
number of nonzero components.

The projection from Rn onto a nonempty subset K of Rn, denoted by PK(·), is defined by

PK(x) = argmin{‖y− x‖ | y ∈K} . (2.1)

When K is further assumed to be closed and convex, projection mapping (2.1) is a singleton for
any x ∈ Rn. Moreover, for a nonempty set K ⊂ Rn, the distance from a point x ∈ Rn to K is
defined by

dist(x,K) := inf{‖x− z‖ | z ∈K}.

Definition 2.1. Let h(·) : Rn→ R be a lower semicontinuous convex function. The subdiffer-
ential of h is the set of all subgradients of h at x ∈ Rn, and is denoted by ∂h(x):

∂h(x) := {ξ ∈ Rn | h(y)≥ h(x)+ 〈ξ ,y− x〉 , ∀y ∈ Rn} .

Definition 2.2. Let g(·) : Rn→ R be a differentiable function. Its gradient ∇g(·) is said to be
Lipschitz continuous with constant Lg > 0 if

‖∇g(x)−∇g(y)‖ ≤ Lg ‖x− y‖ , ∀x,y ∈ Rn.

86 Z. WANG, H. HE

Clearly, the function f (x) defined in (1.4) and the function ϕ(u) given in (1.5) are Lipschitz
continuous with Lipschitz constants ‖A‖2 and ‖B‖2 = ‖A‖2 +1, respectively. In this sense, we
say that (1.4) and (1.5) are well-defined problems, and the Lipschitz continuity is of benefit for
algorithmic design. Moreover, for a general Lipschitz continuous function f (x), we have the
following well-known descent lemma.

Lemma 2.1. Let f (·) : Rn → R be a differentiable function, and its gradient ∇f be Lipschitz
continuous with constant L > 0. Then,

f (y)≤ f (x)+∇f (x)>(y− x)+
L
2
‖y− x‖2 , ∀x,y ∈ Rn. (2.2)

To end this section, we recall the Kurdyka-Łojasiewicz (KŁ) property [20, 21, 22], which is
a fundamental tool for dealing with nonconvex optimization problems.

Definition 2.3 (KŁ property and KŁ function). We say that a proper closed function h satisfies
the KŁ property at x̃∈ dom ∂h := {x∈Rn | ∂h(x) 6= /0} if there exist η ∈ (0,∞], a neighborhood
U of x̃, and a function Γ ∈ Ξη such that, for all x in the intersection

U
⋂
{x ∈ Rn : h(x̃)< h(x)< h(x̃)+η},

it holds that
Γ
′(h(x)−h(x̃))dist(0,∂h(x))≥ 1,

where Ξη is the set of all concave continuous functions Γ : [0,η)→ [0,∞) being continuously
differentiable over (0,η) with positive derivatives and satisfying Γ(0) = 0. Accordingly, if h
satisfies the KŁ property at any point of dom∂h, then h is called KŁ function.

3. THE BCQ AND ABCQ ALGORITHMS FOR CONVEX SFP

In this section, we show concrete iterative schemes of the block-wise CQ (BCQ) algorithm
and the accelerated block-wise CQ (ABCQ) algorithm. Then, we present the iteration complex-
ity of both algorithms in accordance with the results in [16].

As mentioned in Section 1, the traditional CQ algorithm is indeed an application of the
gradient-projection method to (1.4). So, we similarly apply the gradient-projection method
to (1.5), thereby immediately resulting in the following iterative scheme:

uk+1 = PΩ

(
uk− 1

α
B>Buk

)
, (3.1)

where α is an appropriate positive parameter. Note that there are many choices on α to improve
the performance of (3.1) in the literature. However, the main purpose of this paper is to show
that our block-wise formulation (1.5) is helpful to produce more efficient algorithm than the
formulation (1.4). Therefore, we here just consider constant stepsizes for (3.1), and further
require α ≥ ‖B‖2 ≡ ‖A‖2 +1 to ensure the global convergence due to the fact BB> = AA>+ I
and ‖B‖2 = ‖BB>‖ (see [23]), where I is an identity matrix.

By recalling the notation u and B and invoking the Cartesian structure of Ω in (1.5), we
immediately obtain a new block-wise CQ algorithm for (1.1), which is called BCQ algorithm
and is shown in Algorithm 1.

Since Algorithm 1 is an application of the gradient-projection method, and can also be re-
garded as a special case of [16, Algorithm 1], we immediately establish the O(1/k) convergence

SOLVING SPLIT FEASIBILITY PROBLEMS VIA BLOCK-WISE FORMULATION 87

Algorithm 1 The block-wise CQ (BCQ) algorithm for (1.1).

1: Take starting points x0 ∈CCC and y0 ∈ QQQ. Set α ≥ ‖A‖2 +1.
2: for k = 1,2, · · · do
3: xk+1 = PCCC

(
xk− 1

α
(A>Axk−A>yk)

)
.

4: yk+1 = PQQQ
(
yk− 1

α
(yk−Axk)

)
.

5: end for

rate of Algorithm 1. For sake of conciseness of this paper, we here skip the detailed proof. The
reader is referred to [16, Theorem 4.3] for details.

Theorem 3.1. Suppose that α ≥ ‖A‖2 + 1. Let u∗ be an arbitrary solution of (1.5), and let{
uk} be a sequence generated by Algorithm 1 (BCQ algorithm). Then, for any k ≥ 1,

ϕ(uk)−ϕ(u∗)≤
α
∥∥u0−u∗

∥∥2

2k
.

Obviously, the above theorem means that obtaining an ε-optimal solution u? takes the number
of iterations at most dς/εe such that ϕ(u?)−ϕ(u∗) ≤ ε , where ς := α‖u0−u∗‖2

2 . Therefore, we
know that Algorithm 1 has the O(1/k) iteration complexity. As shown in [16], the CQ algorithm
can be accelerated via the well-known Nesterov acceleration technique [17]. Therefore, we
also propose an accelerated variant of Algorithm 1 based upon the block-wise model (1.5).
Specifically, the accelerated block-wise CQ (ABCQ) algorithm is described in Algorithm 2.

Algorithm 2 The accelerated block-wise CQ (ABCQ) algorithm for (1.1).

1: Take starting points x0, p1 ∈CCC and y0,q1 ∈ QQQ. Set t1 = 1 and α ≥ ‖A‖2 +1.
2: for k = 1,2, · · · do
3: xk = PCCC

(
pk− 1

α
(A>Apk−A>qk)

)
.

4: yk = PQQQ
(
qk− 1

α
(qk−Apk)

)
.

5: tk+1 =
1+
√

1+4t2
k

2
.

6: pk+1 = xk +
tk−1
tk+1

(
xk− xk−1).

7: qk+1 = yk +
tk−1
tk+1

(
yk− yk−1).

8: end for

Like Theorem 3.1, we can establish its O(1/k2) convergence rate from [16, Theorem 4.8].
Also, we skip the proof here for the simplicity of this paper.

Theorem 3.2. Suppose that α ≥ ‖A‖2 + 1. Let u∗ be an arbitrary solution of (1.5), and let{
uk} be a sequence generated by Algorithm 2 (ABCQ algorithm). Then, for any k ≥ 1,

ϕ(uk)−ϕ(u∗)≤
2α
∥∥u0−u∗

∥∥2

(k+1)2 .

88 Z. WANG, H. HE

The above theorem shows that if we would like to obtain an ε-optimal solution u? satisfying
ϕ(u?)−ϕ(u∗)≤ ε , then the number of iterations required by Algorithm 2 is at most dς̂/

√
ε−1e,

where ς̂ :=
√

2α‖u0−u∗‖2. In other words, Algorithm 1 has the O(1/k2) iteration complexity.

Remark 3.1. Many real-world problems often pursue some structured (e.g., sparse and low-
rank) solutions. Then, attaching an appropriate (possibly nonsmooth) regularization term to
(1.1) is a natural way. Accordingly, the regularized SFP is modelled as

min
x
{φ(x) | x ∈CCC and Ax ∈ QQQ} . (3.2)

Recently, closely related problems of (3.2) were studied in [4, 7, 16, 24, 25, 26]. Interestingly,
we do not worry about the applicability of our algorithms (Algorithms 1 and 2) to (3.2), since
we can easily follow the block-wise formulation of (1.5) to transform (3.2) into the following
one:

min
u

{
ϕ(u) := φ(x)+

λ

2
‖Ax− y‖2 ≡ φ(x)+

λ

2
‖Bu‖2 | u ∈Ω

}
, (3.3)

where u, B, and Ω are given in (1.5), and λ > 0 is a regularization parameter. In this case, the
update of xk+1 and yk+1 in Algorithm 1 are modified as

xk+1 = argmin
x∈CCC

{
φ(x)+

α

2

∥∥∥∥x−
(

xk− λ

α

(
A>Axk−A>yk

))∥∥∥∥2
}
,

yk+1 = PQQQ

(
yk− λ

α

(
yk−Axk

))
,

and Algorithm 2 updates xk and yk via
xk = argmin

x∈CCC

{
φ(x)+

α

2

∥∥∥∥x−
(

pk− λ

α

(
A>Apk−A>qk

))∥∥∥∥2
}
,

yk = PQQQ

(
qk− λ

α

(
qk−Apk

))
for solving (3.3).

4. THE HBCQ ALGORITHM FOR NONCONVEX SFP

Considering that nonconvex sets, e.g., S := {x∈Rn | ‖x‖0≤ s }with s being a positive integer
to control the sparsity of x, frequently appear in many real-world problems, in this section, we
further introduce a heavy-ball block-wise CQ algorithm for nonconvex SFPs, where CCC and QQQ
are allowed to be nonconvex sets.

The classical heavy-ball method [18, 19] was originally designed for unconstrained optimiza-
tion problems. Recently, Ochs [27] extended the heavy-ball method to composite optimization
problems, where the objective function is the sum of two (not necessarily) convex functions.
Accordingly, by reformulating (1.5) as a composite optimization problem with the help of the
indicator function associated to Ω, i.e.,

min{F(u) := δΩ(u)+ϕ(u)} , (4.1)

SOLVING SPLIT FEASIBILITY PROBLEMS VIA BLOCK-WISE FORMULATION 89

where δΩ(·) is the indicator function. Then, by setting the g(x) in [27] as an indicator function,
a customized application of the heavy-ball method to (1.5) immediately yields the following
iterative scheme:

uk+1 = PΩ

(
uk−µB>Buk + τ(uk−uk−1)

)
, (4.2)

where µ and τ are appropriate parameters. More concretely, by using the notations of u and B,
and invoking the Cartesian structure of Ω, the iterative scheme can be described in Algorithm
3, which is called heavy-ball block-wise CQ algorithm.

Algorithm 3 The heavy-ball block-wise CQ (HBCQ) algorithm for (1.1).

1: Take x0,x1 ∈CCC and y0,y1 ∈ QQQ. Set τ ∈ [0,1/2) and µ ∈
(
0,(1−2τ)/(‖A‖2 +1)

)
.

2: for k = 1,2, · · · do
3: xk+1 = PCCC

(
xk−µ

(
A>Axk−A>yk)+ τ

(
xk− xk−1)).

4: yk+1 = PQQQ
(
yk−µ

(
yk−Axk)+ τ

(
yk− yk−1)).

5: end for

Remark 4.1. The parameter τ is indeed an extrapolation parameter. Clearly, when taking τ = 0,
Algorithm 3 immediately reduces to Algorithm 1. On the other hand, according to [27], the
extrapolation parameter τ can be further relaxed to [0,1) for the case where CCC and QQQ are convex
sets. Additionally, as discussed in Remark 3.1, Algorithm 3 is also applicable to the regularized
SFPs (3.2) based on block-wise formulation (3.3).

Below, we give the convergence result of Algorithm 3 according to [27, 28]. Since our model
is a special case of the problem considered in [28], we just prove the descent property of the
sequence generated by Algorithm 3, and omit the proof of the main theorem, which can be
referred to [28].

Before the proof, we first define an auxiliary function

Hσ (u,v) := δΩ(u)+ϕ(u)+σ‖u− v‖2, (4.3)

where σ > 0 and v is a given vector. Clearly, when u = v, it is clear that Hσ (u,v) = F(u).

Lemma 4.1. Let {uk} be a sequence generated by Algorithm 3. Then, for any k > 1, there exists
a constant γ > 0 such that

γ

∥∥∥uk−uk−1
∥∥∥2
≤ Hσ (uk,uk−1)−Hσ (uk+1,uk).

Proof. The iterative scheme (4.2) can be written as

uk+1 ∈ argmin
u

{
δΩ(u)+

〈
µB>Buk− τ(uk−uk−1),u−uk

〉
+

1
2
‖u−uk‖2

}
, (4.4)

which implies that

δΩ(uk+1)+

〈
B>Buk− τ

µ
(uk−uk−1),uk+1−uk

〉
+

1
2µ
‖uk+1−uk‖2 ≤ δΩ(uk). (4.5)

On the other hand, applying Lemma 2.1 to ϕ(u) yields

ϕ(uk+1)≤ ϕ(uk)+
〈

B>Buk,uk+1−uk
〉
+

L
2
‖uk+1−uk‖2, (4.6)

90 Z. WANG, H. HE

where L := ‖A‖2 +1. Consequently, combining (4.5) and (4.6) yields

ϕ(uk+1)+δΩ(uk+1)

≤ ϕ(uk)+δΩ(uk)+

〈
τ

µ
(uk−uk−1),uk+1−uk

〉
+

Lµ−1
2µ

‖uk+1−uk‖2

≤ ϕ(uk)+δΩ(uk)+
τ

2µ
‖uk−uk−1‖2 +

τ

2µ
‖uk+1−uk‖2 +

Lµ−1
2µ

‖uk+1−uk‖2

= ϕ(uk)+δΩ(uk)+

(
τ

2µ
+ γ

)
‖uk−uk−1‖2− γ‖uk−uk−1‖2 +

τ +Lµ−1
2µ

‖uk+1−uk‖2

= ϕ(uk)+δΩ(uk)+σ‖uk−uk−1‖2− γ‖uk−uk−1‖2−σ‖uk+1−uk‖2 (4.7)

where the second inequality comes from the fact 〈a,b〉 ≤ 1
2

(
‖a‖2 +‖b‖2) and the last equality

follows from the notations σ = τ

2µ
+ γ with γ = 1−2τ−Lµ

2µ
. Noting that τ ∈ [0,1) and µ ∈(

0,(1−2τ)/(‖A‖2 +1)
)
, it is easy to verify γ > 0 with L := ‖A‖2 + 1. As a result, rewriting

(4.7) immediately leads to

ϕ(uk+1)+δΩ(uk+1)+σ‖uk+1−uk‖2 ≤ ϕ(uk)+δΩ(uk)+σ‖uk−uk−1‖2− γ‖uk−uk−1‖2,

which, together with (4.3), concludes

γ

∥∥∥uk−uk−1
∥∥∥2
≤ Hσ (uk,uk−1)−Hσ (uk+1,uk). (4.8)

Therefore, we complete the proof. �

For simplicity, we denote w := (wu,wv)
> ∈ ∂Hσ (u,v), where

wu ∈ ∂δΩ(u)+∇ϕ(u)+2σ(u− v) and wv ∈ −2σ(u− v). (4.9)

Lemma 4.2. Let {uk} be a sequence generated by Algorithm 3. Then, for any k > 1, there exists
a constant c such that

‖wk+1‖ ≤ c
(
‖uk−uk−1‖+‖uk+1−uk‖

)
.

Proof. Recalling the notation in (4.9), we have

wk+1 := (wk+1
u ,wk+1

v)> ∈ ∂Hσ (uk+1,uk), (4.10)

where wk+1
u ∈ ∂δΩ(uk+1)+∇ϕ(uk+1)+ 2σ(uk+1− uk) and wk+1

v ∈ −2σ(uk+1− uk). Writing
the optimality condition of (4.4) yields that

0 ∈ ∂δΩ(uk+1)+∇ϕ(uk)− τ

µ
(uk−uk−1)+

1
µ
(uk+1−uk). (4.11)

Combining (4.10) and (4.11) leads to

‖wk+1‖ ≤ ‖wk+1
u ‖+‖wk+1

v ‖

≤ ‖∇ϕ(uk+1)−∇ϕ(uk)‖+
(

1
µ
+4σ

)
‖uk+1−uk‖+ τ

µ
‖uk−uk−1‖

≤ µL+1+4µσ

µ
‖uk+1−uk‖+ τ

µ
‖uk−uk−1‖, (4.12)

SOLVING SPLIT FEASIBILITY PROBLEMS VIA BLOCK-WISE FORMULATION 91

where the last inequality follows from the Lipschitz continuous of ∇ϕ with Lipschitz con-
stant L = ‖A‖2 + 1. Therefore, we conclude from (4.12) that there exists a constant c :=
min

{
µL+1+4µσ

µ
, τ

µ

}
such that

‖wk+1‖ ≤ c(‖uk−uk−1‖+‖uk+1−uk‖).

Therefore, we complete the proof. �

Lemma 4.3. Assume that the sequence {uk} generated by Algorithm 3 is bounded. Then, there
exists a subsequence {uk j} j∈N such that, as j→ ∞,

(uk j+1,uk j)→ (u∗,u∗), Hσ (uk j+1,uk j)→ Hσ (u∗,u∗),

where u∗ is a critical point of (4.1).

Proof. Note that {uk} is assumed to be bounded. Therefore, there exist a subsequence {uk j+1} j∈N

of {uk} and a cluster point u∗ such that lim j→∞ uk j = u∗. Now, we show that u∗ is a critical point
of (4.1). We first define

V j =−∇ϕ(uk j−1)+
τ

µ
(uk j−1−uk j−2)+

1
2µ

(uk j−1−uk j)+∇ϕ(uk j).

By (4.5), we have

δΩ(uk j)+

〈
B>Buk j−1− τ

µ
(uk j−1−uk j−2),uk j −uk j−1

〉
+

1
2µ
‖uk j −uk j−1‖2 ≤ δΩ(uk j−1),

or equivalently,

δΩ(uk j)+

〈
−B>Buk j−1 +

τ

µ
(uk j−1−uk j−2)+

1
2µ

(uk j−1−uk j),uk j−1−uk j

〉
≤ δΩ(uk j−1),

which, together with Definition 2.1 and the notion of ϕ(u), implies

−∇ϕ(uk j−1)+
τ

µ
(uk j−1−uk j−2)+

1
2µ

(uk j−1−uk j) ∈ ∂δΩ(uk j).

Consequently, we obtain

(uk j ,Vj) ∈ Graph(∂F) := {(u, t) ∈ Rn×Rn|t ∈ ∂F(u)}.

Furthermore, it holds that lim j→∞ uk j = u∗. Due to the Lipschitz continuity of ∇ϕ and

‖Vj−0‖ ≤ τ

µ
‖uk j−1−uk j−2‖+ 1

2µ
‖uk j−1−uk j‖+‖∇ϕ(uk j)−∇ϕ(uk j−1)‖,

we have lim j→∞Vj = 0. By the closure property of the subdifferential ∂F , we have (u∗,0) ∈
Graph(∂F), which means that u∗ is a critical point of F . The closeness of Ω also implies
u∗ ∈ Ω. Thus we can obtain lim j→∞ δΩ(uk j) = δΩ(u∗). Moreover, since ϕ is continuous, we
have lim j→∞ ϕ(uk j) = ϕ(u∗). Then lim j→∞ F(uk j) = F(u∗). Summing inequality (4.8) from
k = 1 to n, we obtain

n

∑
k=1

γ‖uk−uk−1‖2 ≤
n

∑
k=1

(
Hσ (uk,uk−1)−Hσ (uk+1,uk)

)
= Hσ (u1,u0)−Hσ (un+1,un)≤ Hσ (u1,u0)< ∞,

92 Z. WANG, H. HE

where the second inequality follows from the nonnegativity of Hσ (u,v), and the last one holds
by u0 and u1 belonging to Ω. It follows that ‖uk−uk−1‖→ 0 as k→∞. Consequently, we arrive
at

lim
j→∞

Hσ (uk j+1,uk j) = lim
j→∞

(F(uk j+1)+σ‖uk j+1−uk j‖) = Hσ (u∗,u∗) = F(u∗).

The proof is complete. �

With the preparation of Lemmas 4.1-4.3, we have the following main convergence theorem
of Algorithm 3, which can be proved by [28, Theorem 5.4], and its detailed proof is skipped
here for the conciseness of this paper.

Theorem 4.1. Let both CCC and QQQ be nonempty, closed, and semi-algebraic sets, and suppose
that the sequence {uk} generated by Algorithm 3 is bounded. Then, {uk} has finite length, i.e.,
∑

∞
k=1

∥∥uk−uk−1
∥∥ < ∞, and converges to a critical point u∗ of (4.1).

Proof. Note that CCC and QQQ are assumed to be semi-algebraic sets. Then, we have that the indi-
cator function δΩ associated to Ω in (4.1) is semi-algebraic, which naturally implies that F(u)
and Hσ (u,v) satisfy the KŁ property. Therefore, with the help of Lemmas 4.1-4.3, we can fol-
low the proof of [28, Theorem 5.4] to show that the sequence {uk} generated by Algorithm 3
converges to a critical point of (4.1). Here, we skip the remainder proof for simplicity. �

5. NUMERICAL EXPERIMENTS

In this section, we report some numerical results to support the idea of this paper. Note that
Algorithm 3 is also applicable to convex SFPs, we here only conduct the numerical perfor-
mance of our proposed block-wise algorithms on solving convex SFPs. For notational conve-
nience, we denote Algorithms 1, 2, and 3 by BCQ, ABCQ, and HBCQ, respectively. We also
compare them with the original CQ algorithm (CQ for short, see (1.3)) and the accelerated CQ
algorithm (ACQ for short, see [16]). All algorithms are implemented in MATLAB 2021a and
all experiments are conducted on a 64-bit Windows personal computer with Intel(R) Core(TM)
i5-10210U CPU@2.11GHz and 8GB of RAM.

We consider a synthetic SFP studied in [16]. Here, the problem is constructed by setting
CCC := {x ∈ Rn|‖x‖ ≤ 50} and QQQ := {z ∈ Rm|li ≤ zi ≤ ui, i = 1,2, . . . ,m}, where li and ui are
uniformly distributed in (−20,−10) and (50,100), respectively. The matrix A is also randomly
generated by the following MATLAB scripts:

A = rand(m,n); [Q,∼] = qr(A); S = 2000*rand(n,1); A = Q*diag(S)*Q’.

For the algorithmic parameters, we set θ = 1.8/‖A‖2 for CQ, β = ‖A‖2 for ACQ as the default
value in [16], α = ‖A‖2 +1 for BCQ and ABCQ, τ = 0.85 and µ = 1/(‖A‖2 +1) for HBCQ.
In our experiments, we consider two cases on the setting of matrix A. The first one corresponds
to the case where A is a square matrix, i.e., A ∈ Rn×n. The other one is that A is a rectangle
matrix, i.e., A ∈ Rm×n. For each case, we further consider six scenarios with different sizes.
Specifically, when A is a square matrix, we consider n = {500, 800, 1000, 1500, 2000, 2500}.
When A is a rectangle matrix, we consider (m,n) = (512i,1024i) with i = 1,2, . . . ,6. For the
sake of fairness, we take

max
{∥∥∥xk−PCCC(x

k)
∥∥∥ ,∥∥∥Axk−PQQQ(Axk)

∥∥∥}≤ 10−6

SOLVING SPLIT FEASIBILITY PROBLEMS VIA BLOCK-WISE FORMULATION 93

as the termination rule for all algorithms. Besides, considering the randomness of the data,
we report the averaged performance of 10 random trails for each problem. All results are
summarized in Table 1 and 2, where ‘Iter’ represents the number of iterations and ‘Time’ stands
for the computing time in seconds. Clearly, we can see from Tables 1 and 2 that the proposed
block-wise algorithms (BCQ, ABCQ, and HBCQ) perform well in practice. In particular, BCQ
runs much faster than the original CQ algorithm, even we take a smaller step size for BCQ. On
the other hand, ABCQ also performs better than ACQ. Although the HBCQ is an accelerated
algorithm, it requires a little more iterations than the ABCQ. In our opinion, the main reason
is that the Nesterov acceleration is an optimal accelerated strategy. However, the HBCQ still
works better than the original ACQ for the case where A is a square matrix, while it has almost
the same results for the case where A is a rectangle matrix. From these computational results,
we can see that our block-wise algorithms are beneficial for improving the efficiency of solving
SFPs.

TABLE 1. Numerical results for synthetic example with square matrix A.

CQ ACQ BCQ ABCQ HBCQ
(m,n) Iter / Time Iter / Time Iter / Time Iter / Time Iter / Time

(500,500) 486.2 / 0.025 81.1 / 0.007 382.1 / 0.019 50.5 /0.004 69.6 / 0.009
(800,800) 697.4 / 0.135 103.3 / 0.030 455.8 / 0.098 55.0 / 0.018 71.1 / 0.024
(1000,1000) 611.4 / 0.450 121.7 / 0.136 371.8 / 0.288 51.0 / 0.056 82.2 / 0.093
(1500,1500) 974.2 / 2.098 196.6 / 0.638 536.9 / 1.157 63.6 / 0.203 75.0 / 0.244
(2000,2000) 786.6 / 3.025 170.1 / 0.987 388.0 / 1.503 50.5 / 0.296 76.8 / 0.450
(2500,2500) 918.5 / 6.084 131.1 / 1.324 559.8 / 3.638 61.6 / 0.602 89.6 / 0.886

TABLE 2. Numerical results for synthetic example with rectangle matrix A.

CQ ACQ BCQ ABCQ HBCQ
(m,n) Iter / Time Iter / Time Iter / Time Iter / Time Iter / Time

(512,1024) 43.1 / 0.006 17.4 / 0.004 9.3 / 0.002 6.0 / 0.002 20.0 / 0.004
(1024,2048) 51.2 / 0.061 22.0 / 0.039 13.3 / 0.015 7.1 / 0.012 25.1 / 0.045
(1536,3072) 57.9 / 0.189 28.9 / 0.142 16.6 / 0.056 8.7 / 0.045 27.9 / 0.140
(2048,4096) 58.3 / 0.367 28.6 / 0.269 16.8 / 0.107 8.3 / 0.079 30.7 / 0.289
(2560,5120) 57.6 / 0.649 31.7 / 0.522 18.0 / 0.188 8.7 / 0.141 32.7 / 0.520
(3072,6144) 57.6 / 1.120 30.7/ 0.907 19.0 / 0.362 9.1 / 0.265 34.8 / 1.027

To see more detailed performance of our proposed algorithms on these random datasets, we
further report the maximum, minimum and averaged iterations and computing time in Figures
1 and 2. It can be easily seen from these plots in Figures 1 and 2 that our block-wise algorithms
(BCQ, ABCQ, and HBCQ) runs more stable than the original CQ and ACQ. Therefore, these
results demonstrate that our block-wise formulation is helpful for solving SFPs, which also
provides a new insight to solve some structured optimization problems.

94 Z. WANG, H. HE

1 2 3 4 5 6

The i-th group problem

0

500

1000

1500

2000

2500

3000

M
a

x
im

u
m

,
m

in
im

u
m

 a
n

d
 a

v
e

ra
g

e
d

 i
te

ra
ti
o

n

CQ

ACQ

BCQ

ABCQ

HBCQ

1 2 3 4 5 6

The i-th group problem

0

5

10

15

M
a

x
im

u
m

,
m

in
im

u
m

 a
n

d
 a

v
e

ra
g

e
d

 t
im

e

CQ

ACQ

BCQ

ABCQ

HBCQ

FIGURE 1. The maximum, minimum and averaged iterations and computing
time for synthetic example with square matrix A.

1 2 3 4 5 6

The i-th group problem

0

10

20

30

40

50

60

70

M
a

x
im

u
m

,
m

in
im

u
m

 a
n

d
 a

v
e

ra
g

e
d

 i
te

ra
ti
o

n

CQ

ACQ

BCQ

ABCQ

HBCQ

1 2 3 4 5 6

The i-th group problem

0

0.5

1

1.5

M
a

x
im

u
m

,
m

in
im

u
m

 a
n

d
 a

v
e

ra
g

e
d

 t
im

e

CQ

ACQ

BCQ

ABCQ

HBCQ

FIGURE 2. The maximum, minimum and averaged iterations and computing
time for synthetic example with rectangle matrix A.

6. CONCLUSIONS

We considered the classical split feasibility problem (SFP), which is widely used in mod-
eling inverse problems. In the past decades, many solvers have been developed, and most of
them can be regarded as sequential (Gauss-Seidel) algorithms, which perform well on the cases
where CCC and QQQ have explicit projections. In this paper, we introduced three new parallel (Ja-
cobian) algorithm from a block-wise insight. Comparatively, our algorithms are able to exploit
the advantages of modern parallel machines, which possibly are of benefit to improving the
efficiency of solving large-scale SFPs with complicate structure. As an extension, we also stud-
ied a general accelerated algorithm, named by heavy-ball block-wise CQ algorithm, for solving
nonconvex split feasibility problems. Some preliminary numerical results demonstrated that
the proposed block-wise algorithms are efficient, which support the numerical improvements
brought by the block-wise formulation for solving SFPs.

Acknowledgments

SOLVING SPLIT FEASIBILITY PROBLEMS VIA BLOCK-WISE FORMULATION 95

This research was supported in part by Zhejiang Provincial Natural Science Foundation of China
(No. LZ24A010001), and Ningbo Natural Science Foundation (No. 2023J014).

REFERENCES

[1] Y. Censor, T. Elfving, A multiprojection algorithm using Bregman projections in a product space, Numer.
Algorithms 8 (1994), 221-239.

[2] Y. Censor, T. Bortfeld, B. Martin, A. Trofimov, A unified approach for inversion problems in intensity-
modulated radiation therapy, Phys. Med. Biol. 51 (2006), 2353-2365.

[3] Y. Censor, T. Elfving, N. Kopf, T. Bortfeld, The multiple-sets split feasibility problem and its applications for
inverse problems, Inverse Probl. 21 (2005), 2071-2084.

[4] H.J. He, H.-K. Xu, Splitting methods for split feasibility problems with application to Dantzig selectors,
Inverse Probl. 33 (2017), 055003.

[5] X. Qin, A. Petrusel, J.-C. Yao, CQ iterative algorithms for fixed points of nonexpansive mappings and split
feasibility problems in Hilbert spaces, J. Nonlinear Convex Anal. 19 (2018), 157-165.

[6] H.-K. Xu, Iterative methods for the split feasibility problem in infinite-dimensional Hilbert spaces, Inverse
Probl. 26 (2010), 105018.

[7] H.J. He, C. Ling, H.-K. Xu, An implementable splitting algorithm for the `1-norm regularized split feasibility
problem, J. Sci. Comput. 67 (2016), 281-298.

[8] C.L. Byrne, A unified treatment of some iterative algorithms in signal processing and image reconstruction,
Inverse Probl. 20 (2004), 103-120.

[9] C.L. Byrne, Iterative oblique projection onto convex sets and the split feasibility problem, Inverse Probl. 18
(2002), 441-453.

[10] G. López, V. Martin-Marquez, F.H. Wang, H.K. Xu, Solving the split feasibility problem without prior knowl-
edge of matrix norms, Inverse Probl. 28 (2012), 085004.

[11] B. Qu, N.-H. Xiu, A note on the CQ algorithm for the split feasibility problem, Inverse Probl. 21 (2005),
1655-1665.

[12] Q.Z. Yang, The relaxed CQ algorithm solving the split feasibility problem, Inverse Probl. 20 (2004), 1261-
1266.

[13] H. Zhang, Y. Wang, A new CQ method for solving split feasibility problem, Front. Math. China 5 (2010),
37-46.

[14] T. Lu, L. Zhao, H. He, A multi-view on the CQ algorithm for split feasibility problems: from optimization
lens, J. Appl. Numer. Optim. 2 (2020), 387-399.

[15] X. Mao, H.J. He, H.K. Xu, A partially proximal linearized alternating minimization method for finding
Dantzig selectors, Comput. Appl. Math. 40 (2021), Article No. 62.

[16] P. Chen, H.J. He, Y.-C. Liou, C.-F. Wen, Convergence rate of the CQ algorithm for split feasibility problems,
J. Nonlinear Convex Anal. 19 (2018), 381-395.

[17] Y. Nesterov, A method of solving a convex programming problem with convergence rate O(1/k2), Soviet
Mathematics Doklady, 27 (1983), 372-376.

[18] B.T. Polyak, Some methods of speeding up the convergence of iteration methods, USSR Comput. Math.
Math. Phys. 4 (1964), 1-17.

[19] S. Zavriev, F. Kostyuk, Heavy-ball method in nonconvex optimization problems, Comput. Math. Model. 4
(1993), 336-341.

[20] H. Attouch, J. Bolte, On the convergence of the proximal algorithm for nonsmooth functions involving ana-
lytic features, Math. Program. 116 (2009), 5-16.

[21] H. Attouch, J. Bolte, B.F. Svaiter, Convergence of descent methods for semi-algebraic and tame problems:
proximal algorithms, forward-backward splitting, and regularized gauss-seidel methods, Math. Program. 137
(2013), 91-129.

[22] J. Bolte, A. Daniilidis, A. Lewis, The łojasiewicz inequality for nonsmooth subanalytic functions with appli-
cations to subgradient dynamical systems, SIAM J. Optim. 17 (2007), 1205-1223.

[23] R.A. Horn, C.R. Johnson, Matrix Analysis, Cambridge University Press, Cambridge, 2012.

96 Z. WANG, H. HE

[24] H.K. Xu, Iterative methods for the split feasibility problem in infinite dimensional Hilbert spaces, Inverse
Probl. 26 (2010), 105018.

[25] L.C. Ceng, Q.H. Ansari, J.C. Yao, Relaxed extragradient methods for finding minimum-norm solutions of
the split feasibility problem, Nonlinear Anal. 75 (2012), 2116-2125.

[26] Y. Censor, A. Gibali, S. Reich, Algorithms for the split variational inequality problem, Numer. Algorithms
59 (2012), 301-323.

[27] P. Ochs, Local convergence of the heavy-ball method and iPiano for non-convex optimization, J. Optim.
Theory Appl. 177 (2018), 153-180.

[28] P. Ochs, Long term motion analysis for object level grouping and nonsmooth optimization methods, PhD
thesis, Albert-Ludwigs-Universität Freiburg, 2015.

	1. Introduction
	2. Preliminaries
	3. The BCQ and ABCQ Algorithms for Convex SFP
	4. The HBCQ Algorithm for Nonconvex SFP
	5. Numerical Experiments
	6. Conclusions
	References

