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Abstract. In this paper, we propose a hybrid Halpern-based extragradient algorithm for finding a common
solution of a pseudomonotone equilibrium problem and a fixed point problem of a nonexpansive mapping.
We prove the strong convergence of the proposed algorithm under some mixed conditions. Some numerical
examples are provided to illustrate the effectiveness of the proposed algorithm.
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1. INTRODUCTION

Let C be a nonempty, convex, and closed subset of a Hilbert space H, and let T : C→ C be a
nonexpansive mapping, i.e., ‖T x−Ty‖ ≤ ‖x− y‖ for all x,y ∈C. Denote the set of fixed points of
T by Fix(T ). Fixed point problem is an important branch in the nonlinear functional field and is
widely studied by numerous scholars due to its variational real applications. For the approximation
of fixed points of nonexpansive mappings, Halpern [1] first investigated the following iteration,
which is now called Halpern iteration in the literature:

x0 ∈C, xn+1 = αnu+(1−αn)T xn, n≥ 0,

where u is a fixed vector in set C and {αn} ⊂ (0,1) is a real sequence. Halpern pointed out that the
following conditions (C1) limn→∞ αn = 0 and (C2) ∑

∞
n=1 αn = ∞ are necessary conditions for the

convergence of iterative sequences generated in Halpern iteration. Recently, Halpern iteration has
been extensively studied; see, e.g., [2, 3, 4, 5] and the references therein.
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It is believe that Halpern iteration converges slowly due to (C2). In 2004, Martinez-Yanes and
Xu [2] proposed a modification, which is called a hybrid Halpern iteration as follows:

x0 ∈C,

yn = αnx0 +(1−αn)T xn,

Cn = {z ∈C : ‖yn− z‖2 ≤ ‖xn− z‖2−αn(‖x0‖2 +2〈xn− x0,z〉)},
Qn = {z ∈C : 〈xn− z,x0− xn〉 ≥ 0},
xn+1 = ΠCn∩Qnx0, n≥ 0.

The authors proved that if {αn} ⊂ (0,1) satisfies limn→∞ αn = 0, then {xn} converges strongly to
the element PFix(T )x0, where P is the projection from H onto C.

It is known that the strong convergence the algorithm above holds only in Hilbert spaces. For
approximating the fixed point of a nonexpansive mapping in Banach spaces, Xu [6] introduced the
following iterative algorithm: x0 = x ∈C and

Cn = co{z ∈C : ‖z−T z‖ ≤ tn‖xn−T xn‖},
Qn = {z ∈C : 〈xn− z,Jx− Jxn〉 ≥ 0},
xn+1 = ΠCn∩Qnx, n≥ 0,

where C is a nonempty, closed, and convex subset of a smooth and uniformly convex Banach
space, T : C→C is a nonexpansive mapping, coD denotes the convex closure of the set D, {tn} is
a sequence in (0,1) with tn→ 0, and ΠCn∩Qn is the generalized projection from E onto Cn ∩Qn.
The author proved that the sequence {xn} generated in algorithm converges strongly to the element
ΠFix(T )x0.

Later on, Matsushita and Takahashi [7] also proposed a modification by replacing the general-
ized projection ΠCn∩Qn with the metric projection PCn∩Qn . It is worth noting that the subset C is
assumed to be bounded in [7].

On the other hand, let f : C×C→ R be a bifunction with f (x,x) = 0 for all x ∈C. The equilib-
rium problem in the sense of [8] is to find z ∈C such that

f (z,y)≥ 0, ∀y ∈C.

The set of solutions of the equilibrium problem is denoted by EP( f ,C) from now on. The equilib-
rium problem has a mass of applications in economics, management and others, and many efficient
algorithms for solving the problem have been introduced; see, e.g., [9, 10, 11, 12, 13, 14, 15] and
the references therein.

An interesting problem is to find a common solution the fixed point problem of a nonexpansive
mapping and the equilibrium problem from viewpoint of multi-constraints. Takahashi and Taka-
hashi [16] introduced the following iterative algorithm for finding a common solution problem in
Hilbert space: 

x0 ∈C,

find un ∈C such that f (un,y)+
1
rn
〈y−un,un− xn〉 ≥ 0,∀y ∈C,

xn+1 = αn f (xn)+(1−αn)Tun, n≥ 0,

where f : C → C is a contraction. The authors proved that, under some mixed conditions, the
sequence {xn} generated in their algorithm converges strongly to an element in Fix(T )∩EP( f ,C).
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For more iteration algorithms on common solution problems in Hilbert spaces and Banach spaces,
we refer the readers to [9, 10, 17, 18, 19].

It needs to point out that the spaces considered in [9, 10, 17, 18, 19] are Banach spaces and the
involved mappings are relatively nonexpansive mappings or quasi-φ -nonexpansive mappings. To
the best of our knowledge, until now the solution algorithm for the common solution problems in
Banach spaces where the nonlinear mapping is the nonexpansive mapping has not been introduced
yet in the literature. In this paper, inspired by [2, 3, 6, 17], we propose a new hybrid Halpern-
baesd extragradient algorithm for finding a common solution of an equilibrium problem and the
fixed point problem of a nonexpansive mapping in a Banach space. The strong convergence for the
proposed algorithm is proved under some mixed conditions. Our results improves and develops
the results [6, 20, 21, 22, 23] and many others. Finally, some numerical examples are given to
illustrate the convergence of the proposed algorithm.

2. PRELIMINARIES

Let E be a Banach space, and let S(E) = {z ∈ E : ‖z‖= 1} be the unit sphere of space E. Recall
that E is said to be smooth provided, for each x,y ∈ S(E),

lim
t→0

‖x+ ty‖−‖x‖
t

exists. Let ρE : [0,∞)→ [0,∞) be the f smooth modulus of E defined by

ρE(t) = sup
{

1
2
(‖x+ y‖+‖x− y‖)−1 : x ∈ S(E),‖y‖ ≤ t

}
.

If ρE(t)
t → 0 as t→ 0, E is said to be uniformly smooth. For q > 1, one knows that Lq is a uniformly

smooth Banach space. Furthermore, any Hilbert space H is uniformly smooth.
A Banach space E is said to be strictly convex if, for all x,y ∈ S(E), ‖x+y‖

2 < 1. The convex
modulus of E is the function δE : [0,2]→ [0,1] defined by

δE(ε) = inf
{

1− ‖x+ y‖
2

: ‖x‖= ‖y‖= 1,‖x− y‖= ε

}
, ∀ε ∈ [0,2].

E is uniformly convex if and only if δE(ε) > 0 for all 0 < ε ≤ 2 and δE(0) = 0. Let q > 1. A
uniformly convex Banach space E is said to be q-uniformly convex if there exists some constant
c > 0 such that δE(ε)≥ cεq. It is known that Lq is q-uniformly convex when q > 2 and 2-uniformly
convex when 1 < q≤ 2. Furthermore, any Hilbert space is 2-uniformly convex.

Let E∗ be the duality space of a Banach space E. For all x ∈ E and x̄ ∈ E∗, we denote the value
of x̄ at x by 〈x, x̄〉. The normalized duality mapping J on E is defined by

J(x) = {x̄ ∈ E∗ : 〈x, x̄〉= ‖x‖2 = ‖x̄‖2}, ∀x ∈ E.

It is known that if E is smooth, then J is single-valued and if E∗ is uniformly convex, then J is
uniformly continuous on bounded subsets of E. Also, if E is uniformly smooth, then J is uniformly
norm-to-norm continuous on each bounded subset of E.

Let E be a smooth, strictly convex, and reflexive Banach space, and let C be a nonempty, closed,
and convex subset of E. The Lyapunov function φ : E×E→ [0,∞) is defined by

φ(x,y) = ‖x‖2−2〈x,Jy〉+‖y‖2, ∀x,y ∈ E.
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The mapping ΠC : E →C is called the generalized projection [24] if it assigns any point x ∈ E to
the minimum point of the functional φ(x,y); that is, ΠCx = argminy∈C φ(y,x).

Lemma 2.1. [24] Let E be a smooth, strictly convex, and reflexive Banach space, and let C be a
nonempty, closed, and convex subset of E. Then the following conclusions holds:

(a) φ(x,ΠCy)+φ(ΠCy,y)≤ φ(x,y) for all x ∈C, ∀y ∈ E;
(b) φ(x,J−1(λJy+(1−λ )Jz))≤ λφ(x,y)+(1−λ )φ(x,z) for all x,y,z ∈ E and λ ∈ [0,1];
(c) for {xn},{yn} ⊂ E, if either {xn} or {yn} is bounded, and φ(xn,yn)→ 0, then ‖xn−yn‖→ 0 as
n→ ∞;
(d) for x ∈ E and z ∈C, z = ΠCx if and only if 〈y− z,Jx− Jz〉 ≤ 0 for all y ∈C.

Let E be a Banach space and define the function V : E×E∗→ R [24] by

V (x,z) = ‖x‖2−2〈x,z〉+‖z‖2, ∀x ∈ E,∀z ∈ E∗.

From the definitions of φ and V , it follows that

V (x,z) = φ(x,J−1z), ∀x ∈ E,∀z ∈ E∗.

The following result characters the property of the function V .

Lemma 2.2. [24] Let E be a reflexive, strictly convex, and smooth Banach space with its dual E∗.
Then V (x,x∗)+2〈J−1x− x∗,y∗〉 ≤V (x,x∗+ y∗) for all x ∈ E and for all x∗,y∗ ∈ E∗.

Lemma 2.3. [25] Let C be a nonempty, bounded, closed, and convex subset of a uniformly con-
vex Banach space E. Then there exists a strictly increasing, convex, and continuous function
γ : [0,∞)→ [0,∞)with γ(0) = 0 such that, for a nonexpansive mapping S : C→C, and any finite
many element {z j}m

j=1 in C, the following inequality holds:

γ

(∥∥∥∥∥S

(
m

∑
j=1

η jz j

)
−

m

∑
j=1

η jSz j

∥∥∥∥∥
)
≤ γ
−1
(

max
1≤ j,k≤m

(‖z j− zk‖−‖Sz j−Szk‖)
)
,

where {η j}m
j=1 ⊂ [0,1] with ∑

m
j=1 η j = 1.

Lemma 2.4. [26] Let C be a nonempty, closed, and convex subset of a uniformly convex Banach
space E, and let T : C→C be a nonexpansive mapping. Then the mapping I−T is demi-closed at
zero, i.e., for any sequence {xn} ⊂C, if xn ⇀ x and xn−T xn→ 0, then x = T x.

Lemma 2.5. [27] Let {an} be a nonnegative real sequence such that an+1 ≤ (1− bn)an + bncn
for all n ≥ 1, where {bn} is a real sequence in (0,1) and {cn} is a real sequence satisfy that
limn→∞ bn = 0, ∑

∞
n=1 bn = ∞, and limsupn→∞ cn ≤ 0. Then limn→∞ an = 0.

Lemma 2.6. [28] Let {kn} be a nonnegative real sequence. Suppose that, for any integer m, there
exists an integer j such that j≥m and k j ≤ k j+1. Let n0 be an integer such that kn0 ≤ kn0+1 and for
all integer n≥ n0, and define τ(n) = max{l ∈N : n0 ≤ l ≤ n,kl ≤ kl+1}. Then 0≤ kn ≤ kτ(n)+1 for
all n≥ n0. Furthermore, the sequence {τ(n)}n≥n0 is non-decreasing and tends to +∞ as n→ ∞.
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3. MAIN RESULTS

In this section, let N denote the positive integer set, E a uniformly convex and uniformly smooth
Banach space, and C a nonempty, convex, and closed subset of E. Let T : C→C be a nonexpansive
mapping, and let f : C×C→ R be a bifunction with Ω 6= /0, where Ω = EP( f ,C)∩Fix(T ). For
the desired result, we assume that f satisfies the following conditions:

(A0) Either int(C) 6= /0, or, for each x ∈C, f (x, ·) is continuous at a point in C.
(A1) f is pseudomonotone on C, i.e., f (x,y)≥ 0 =⇒ f (y,x)≤ 0 for all x,y ∈C.
(A2) f is Lipschitz-type continuous with the positive constants c1 and c2, i.e.,

f (x,y)+ f (y,z)≥ f (x,z)− c1‖x− y‖2− c2‖y− z‖2, ∀x,y,z ∈C.

(A3) limsupn→∞ f (un,y)≤ f (x,y) for each sequence un weakly converging to q ∈C and y ∈C.
(A4) f (x, ·) is convex and subdifferentiable on C for each x ∈C.

For finding a point x̄ ∈ Ω, we present the hybrid Halpern-based extragradient algorithm as fol-
lows.

Algorithm 1. Hybrid Halpern-based Extragradient Algorithm

Initialization: Choose the initial points x1 = x ∈ C, the sequences {αn} ⊂ (0,1) with αn → 0
and ∑

∞
n=1 αn = ∞, {tn} ⊂ (0,∞) with tn → 0, and {λn} ⊂ [λ ′,λ ′′] with 0 < λ ′ < λn < λ ′′ <

min
{

1
2c1

, 1
2c2

}
.

Iteration Step Compute
yn = arg min

{
y ∈C : λn f (xn,y)+

1
2

φ(y,xn)

}
,

zn = arg min
{

y ∈C : λn f (yn,y)+
1
2

φ(y,xn)

}
,

xn+1 = ΠCn∩Qn(J
−1(αnJx+(1−αn)Jzn)),

where

Cn = co{z ∈C : ‖z−T z‖ ≤ tn‖xn−T xn‖} and Qn = {z ∈C : 〈xn− z,Jx− Jxn〉 ≥ 0}.

Stop Criterion If xn = yn = T xn, then stop and xn ∈Ω.

Remark 3.1. Conditions (A1) and (A2) imply that f (x,x) = 0 for all x ∈C; see [23].

Remark 3.2. Although f is required to satisfy condition (A3), Lipschitz constants c1 and c2 need
not to be known because they are not used as the input parameters in the proposed algorithm.

Remark 3.3. Condition (A0) guarantees that sequences {yn} and {zn} are well defined; see [17].

Remark 3.4. It is known that Fix(T ) is closed and convex. Set EP( f ,C) is also closed convex
under the conditions (A1), (A3), and (A4). Thus Ω is closed and convex.

The following remark demonstrates that the stop criterion can well work.
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Remark 3.5. From [17, Lemma 3.1 (ii)], it follows that

λn( f (xn,y)− f (xn,yn))≥ 〈yn− y,Jyn− Jxn〉, ∀y ∈C.

If xn = yn for some n ∈ N, we have f (xn,y) ≥ 0 for all y ∈ C. It follows that xn ∈ EP( f ,C).
Furthermore, if xn = T xn, one has xn ∈ Fix(T ). Therefore, the stop criterion can well work.

To prove the convergence of Algorithm 1, we assume that the stop criterion is not satisfied for
all n ∈ N and hence {xn} is an infinite sequence.

Lemma 3.1. The sequence {xn} generated by Algorithm 1 is bounded.

Proof. For any x∗ ∈Ω, by [17, Lemma 3.1 (ii)] we have

φ(x∗,zn)≤ φ(x∗,xn)− (1−2λnc1)φ(yn,xn)− (1−2λnc2)φ(zn,yn). (3.1)

On account of λn < min
{

1
2c1

, 1
2c2

}
, (3.1), and Lemma 2.1 (a) and (b), we have

φ(x∗,xn+1)≤ φ(x∗,J−1(αnJx+(1−αn)Jzn))

≤ αnφ(x∗,x)+(1−αn)φ(x∗,zn)

≤ αnφ(x∗,x)+(1−αn)[φ(x∗,xn)− (1−2λnc1)φ(yn,xn)

− (1−2λnc2)φ(zn,yn)]

≤ αnφ(x∗,x)+(1−αn)φ(x∗,xn)

≤max{φ(x∗,x),φ(x∗,xn)}
≤ · · · ≤max{φ(x∗,x),φ(x∗,x1)}.

(3.2)

It follows that {φ(x∗,xn)} is bounded. Furthermore, (3.1) implies that {φ(x∗,zn)} is also bounded.
Since ‖xn‖≤

√
φ(x∗,xn)+‖x∗‖, {xn} is bounded. Similarly, {zn} is also bounded from the bound-

edness of {φ(x∗,zn)}. This completes the proof. �

Now we give the convergence result for Algorithm 1 as follows.

Theorem 3.1. The sequence {xn} generated by Algorithm 1 converges strongly to x̄ = ΠΩx.

Proof. Set un = J−1(αnJx+(1−αn)Jzn). By Lemma 2.1 (a) and (b), Lemma 2.2, and (3.2), we
obtain

φ(x̄,xn+1)≤ φ(x̄,J−1(αnJx+(1−αn)Jzn)

≤V (x̄,αnJx+(1−αn)Jzn−αn(Jx− Jx̄))

−2〈J−1(αnJx+(1−αn)Jzn)− x̄,−αn(Jx− Jx̄)〉
=V (x̄,αnJx̄+(1−αn)Jzn)+2αn〈xn+1− x̄,Jx− Jx̄〉

= φ(x̄,J−1(αnJx̄+(1−αn)Jzn))+2αn〈un− x̄,Jx− Jx̄〉
≤ φ(x̄, x̄)+(1−αn)φ(x̄,zn)+2αn〈un− x̄,Jx− Jx̄〉
≤ (1−αn)φ(x̄,xn)+2αn〈un− x̄,Jx− Jx̄〉.

(3.3)

Now we give the further proof by the following two cases:
Case 1. Assume that there exists n0 > 1 such that {φ(x̄,xn)} is deceasing. It follows that
{φ(x̄,xn)} is convergent and

φ(x̄,xn)−φ(x̄,xn+1)→ 0 as n→ ∞. (3.4)
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Since αn→ 0 and {φ(x̄,xn)} is bounded, we obtain by (3.2) and (3.4) that

(1−αn)[(1−2λnc1)φ(yn,xn)+(1−2λnc2)φ(zn,yn)]

≤ αn(φ(x̄,x)−φ(x̄,xn))+φ(x̄,xn)−φ(x̄,xn+1)

→ 0, as n→ ∞.

(3.5)

From λn < λ ′′ ≤ min
{

1
2c1

, 1
2c2

}
, αn → 0, (3.4), and (3.5), we assert that limn→∞ φ(yn,xn) =

limn→∞ φ(zn,yn) = 0, which together with Lemma 2.1 (c) implies that

lim
n→∞
‖yn− xn‖= lim

n→∞
‖zn− yn‖= 0. (3.6)

From the definition of un, it follows that ‖Jun− Jzn‖ = αn‖Jx− Jzn‖ → 0 as n→ ∞. Since J−1

is uniformly continuous on each bounded subset of E∗, we deduce that ‖un− zn‖ → 0 as n→ ∞,
which together with (3.6) yields that

‖xn−un‖ ≤ ‖xn− yn‖+‖yn− zn‖+‖zn−un‖→ 0 as n→ ∞. (3.9)

On the other hand, from the definition of Qn, we have xn = ΠQnx. Hence, Lemma 2.1 (a) implies
φ(y,xn)+ φ(xn,x) ≤ φ(y,x) for all y ∈ Qn. Since xn+1 ∈ Qn, we have φ(xn+1,xn) ≤ φ(xn+1,x)−
φ(xn,x), which implies that {φ(xn,x)} is increasing and thus limn→∞ φ(xn,x) exists. It follows that
φ(xn+1,xn)→ 0. It follows from Lemma 2.1 (c) that ‖xn+1− xn‖ → 0 as n→ ∞. Since {un} is
bounded, there exists a subsequence {un j} of {un} such that un j weakly converges to q ∈C and

limsup
n→∞

〈un− x̄,Jx− Jx̄〉= lim
j→∞
〈un j − x̄,Jx− Jx̄〉.

It follows from (A3) that 0≤ limsupn→∞ f (un,y)≤ f (q,y), ∀y ∈C. Thus q ∈ EP( f ,C).
Next, we prove that q ∈ Fix(T ). From the boundedness of {xn}, it follows that there exists a

bounded closed convex subset D of C with r = diam(D) such that {xn} ⊂D and {T xn} ⊂D. Since
xn+1 ∈Cn, we see that there exists {vi}m

i=1 ⊂C such that∥∥∥∥∥xn+1−
m

∑
i=1

ηivi

∥∥∥∥∥< tn (3.7)

and
‖vi−T vi‖ ≤ tn‖xn−T xn‖ ≤ rtn, ∀i ∈ {1, · · · ,m}, (3.8)

where {ηi}m
i=1 ⊂ [0,1] with ∑

m
i=1 ηi = 1. By Lemma 2.3, (3.7), and (3.8), we have

‖xn+1−T xn+1‖

≤
∥∥∥xn+1−

m

∑
i=1

ηivi

∥∥∥+∥∥∥ m

∑
i=1

ηi(vi−T vi)
∥∥∥+∥∥∥ m

∑
i=1

ηiT vi−T
( m

∑
i=1

ηivi

)∥∥∥
+
∥∥∥T
( m

∑
i=1

ηivi

)
−T xn+1

∥∥∥
≤ (2+ r)tn + γ

−1(max(‖vi− v j‖−‖T vi−T v j‖ : 1≤ i, j ≤ m)
)

≤ (2+ r)tn + γ
−1(max(‖vi−T vi‖+‖v j−T v j‖ : 1≤ i, j ≤ m)

)
≤ (2+ r)tn + γ

−1(2rtn)→ 0 as n→ ∞.
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Note that {xn j} is also converges weakly to q. By using Lemma 2.4, we see that q ∈ Fix(T ). It
follows that q ∈Ω. Therefore, from Lemma 2.1 (d), it follows that

limsup
n→∞

〈un− x̄,Jx− Jx̄〉 ≤ lim
j→∞
〈q− x̄,Jx− Jx̄〉 ≤ 0.

Applying Lemma 2.5 to (3.3), we have φ(x̄,xn)→ 0, which together with Lemma 3.1 and Lemma
2.1 (c) implies that {xn} strongly converges to q.

Case 2 Assume that there exists a subsequence {xn j} of {xn} such that φ(x̄,xn j) ≤ φ(x̄,xn j+1)
for all j ≥ 1. In that case, it follows from Lemma 2.6 that

φ(x̄,xτ(n))≤ φ(x̄,xτ(n)+1),φ(x̄,xn)≤ φ(x̄,xτ(n)+1), ∀n≥ n0. (3.9)

where τ(n) = {maxk ∈ N : n0 ≤ k ≤ n,φ(x̄,xk)≤ φ(x̄,xk+1)}. Furthermore, sequence {τ(n)}n≥n0

is non-decreasing and τ(n)→+∞ as n→ ∞. Since ατ(n)→ 0 and {φ(x̄,xn)} is bounded, by (3.2)
and (3.9), we have

(1−ατ(n))[(1−2λτ(n)c1)φ(yτ(n),xτ(n))+(1−2λτ(n)c2)φ(zτ(n),yτ(n))]

≤ ατ(n)(φ(x̄,x)−φ(x̄,xτ(n)))+φ(x̄,xτ(n))−φ(x̄,xτ(n)+1)

≤ ατ(n)(φ(x̄,x)−φ(x̄,xτ(n)))→ 0 as n→ ∞.

Note that λτ(n) < λ ′′ ≤min{ 1
2c1

, 1
2c2
}. It follows that

lim
n→∞

φ(yτ(n),xτ(n)) = lim
n→∞

φ(zτ(n),yτ(n)) = 0,

which in turn implies that ‖yτ(n)− xτ(n)‖→ 0 and ‖zτ(n)− yτ(n)‖→ 0 as n→ ∞, so

‖xτ(n)− zτ(n)‖ ≤ ‖xτ(n)− yτ(n)‖+‖yτ(n)− zτ(n)‖→ 0, as n→ ∞.

From the definition of un, it follows that ‖Juτ(n)− Jzτ(n)‖ = ατ(n)‖Jx− Jzτ(n)‖ → 0 as n→ ∞.

Since J and J−1 is uniformly continuous on each bounded subset of E and E∗(resp.), we deduce
that ‖Jyτ(n)−Jxτ(n)‖→ 0, ‖Jxτ(n)−Jzτ(n)‖→ 0, and ‖uτ(n)− zτ(n)‖→ 0 as n→∞. Then ‖xτ(n)−
uτ(n)‖→ 0 as n→ ∞. Since {uτ(n)} ⊂C is bounded, there exists a subsequence {uτ(ni)} of {uτ(n)}
converging weakly to q ∈C such that

limsup
n→∞

〈uτ(n)− x̄,Jx− Jx̄〉= lim
i→∞
〈uτ(ni)− x̄,Jx− Jx̄〉.

By a similar arguing as in Case 1, we can obtain q ∈Ω and

limsup
n→∞

〈uτ(n)− x̄,Jx− Jx̄〉 ≤ 0. (3.10)

It follows from (3.3) that

φ(x̄,xτ(n)+1)≤ (1−ατ(n))φ(x̄,xτ(n))+2ατ(n)〈uτ(n)− x̄,Jx− Jx̄〉. (3.11)

On account of (3.9) and (3.11), we have
ατ(n)φ(x̄,xτ(n))≤ φ(x̄,xτ(n))−φ(x̄,xτ(n)+1)+2ατ(n)〈uτ(n)− x̄,Jx− Jx̄〉

≤ 2ατ(n)〈uτ(n)− x̄,Jx− Jx̄〉,
which together with ατ(n) > 0 leads to φ(x̄,xτ(n)) ≤ 2〈uτ(n)− x̄,Jx− Jx̄〉. This fact with (3.10)
implies that limsupn→∞ φ(x̄,xτ(n)) ≤ 0 and hence limn→∞ φ(x̄,xτ(n)) = 0. Thus it follows from
(3.11) and ατ(n)→ 0 that φ(x̄,xτ(n)+1)→ 0 as n→ ∞. Since φ(x̄,xn)≤ φ(x̄,xτ(n)+1) for all n≥ n0
by (3.9), we have φ(x̄,xn)→ 0 as n→ ∞. It follows from Lemma 3.1 that xn→ x̄ as n→ ∞. This
completes the proof. �
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Remark 3.6. Let {Ti}l
i=1 : C→C be a family of nonexpansive mappings with ∩l

i=1Fix(Ti) 6= /0, and
let T = ∑

l
i=1 βiTi, where {βi}l

i=1 ⊂ [0,1] with ∑
l
i=1 βi = 1. Obviously, T : C→C is a nonexpansive

mapping from C into itself. From [29, Lemma 3], it follows that Fix(T ) = ∩l
i=1Fix(Ti). Thus one

can extend the results above from a nonexpansive mapping to a family of nonexpansive mappings.

4. NUMERICAL EXAMPLES

In this section, we present two numerical examples to illustrate the convergence of Algorithm
1. The codes were written by Matlab 2016b and conducted on a PC Intel(R) Core (TM) i5-4260U
CPU, 2.00 GHz, Ram 4.00 GB.

Example 4.1. Let E =Rm and C = {(x1, · · · ,xm) : x1 ≥−1,xi ≥ 1, i = 2, · · · ,m}. Define a bifunc-
tion f : E×E→ R by

f (x,y) =
m

∑
i=2

(yi− xi)‖x‖, ∀x = (x1, · · · ,xm),y = (y1, · · · ,ym) ∈C,

where ‖ · ‖ is the standard norm in Euclidean space. It is known that f satisfies the conditions
(A1)-(A4) and the Lipschitz-type constants in (A2) are c1 = c2 = 2; see [12] for details. Define a
nonexpansive mapping T : C→C by

T x =
(

x1,
1+ x2

2
, · · · , 1+ xm

2

)
, ∀x = (x1, · · · ,xm) ∈C.

It is easy to see that Ω = {(x1,1, · · · ,1) : x1 ≥−1}.
In this example, we choose the parameter sequences αn = tn = 1

n , and λn = n+1
12n . Set u =

(1, · · · ,1) ∈ Rm−1 and un = (x2, · · · ,xm) ∈ Rm−1 with xn = (x1,x2, · · · ,xm) ∈ Rm, where xn is the
nth iteration point generated by Algorithm 1. If x1 ≥−1 and ‖un−u‖= 0, then xn ∈Ω. Hence we
illustrate the convergence of Algorithm 1 by the convergence of {‖un−u‖} for this example. We
choose the initial point x and use Dn = ‖un−u‖< 10−6 as the stopping criterion. The convergence
of {Dn} with the different dimension m and initial point x is demonstrated in Figures 1. In the
figure, the x-axis represents for the number of iterations while the y-axis represents for the value of
Dn. From the figure we can see that sequence {Dn} has the better convergence for each different
dimension m and initial point x.
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FIGURE 1. Numerical results for Example 4.1 with different dimension m and ini-
tial point x

Example 4.2. Let E = l3(R), which is defined by l3(R) = {x = (x1,x2, · · ·) : xi ∈R,∑∞
i=1 |xi|3 <∞}

with norm ‖x‖ = (∑∞
i=1 |xi|3)

1
3 for each x ∈ E. E is a uniformly convex and uniformly smooth

Banach space. For each x = (x1,x2, · · ·) ∈ E with x 6= 0, the normalized duality mapping

Jx =
1
‖x‖

(x2
1sgn(x1),x2

2sgn(x2), · · ·).

For each z = (z1,z2, · · ·) ∈ E∗, let x = (x1,x2, · · ·) ∈ E such that z = Jx. That is,

(z1,z2, · · ·) =
1
‖x‖

(x2
1sgn(x1),x2

2sgn(x2), · · ·).

Note that ‖x‖= ‖z‖. It follows that

xi = ‖x‖
√
|zi|sgn(zi) = ‖z‖

√
|zi|sgn(zi), i = 1,2, · · · .

Hence, for each z = (z1,z2, · · ·) ∈ E∗,

J−1z = J−1Jx = x = ‖z‖(
√
|z1|sgn(z1),

√
|z2|sgn(z2), · · ·).

Let u = (u1,u2, · · · ,um,0,0, · · ·), where u1 = u2 = · · ·= um = 1 with m ∈ N, and

C = {x ∈ E : ‖x‖ ≤ 1,xi ≥ 0, i = 1,2, · · ·}.
Define the bifunction f : C×C→ R by

f (x,y) = 〈y− x,Ju〉, ∀x,y ∈C.

It is obvious that conditions (A0)-(A4) are satisfied. Define the mapping T : C→C by

T x =
(x1

2
,
x2

2
,0,0, · · ·

)
, ∀x = (x1,x2, · · ·) ∈C.

It is easy to see that T is a nonexpansive mapping on C. Moreover, Ω = Fix(T )∩EP( f ,C) = {x∗}
with x∗ = (0,0, · · ·).

In this example, we choose the parameter sequences

αn = tn =
1
n
,λn =

n+1
4n

,
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and the initial point x1 = (0.1,0.1, · · · ,0.1,0,0, · · ·), where the number of 0.1 is m. We perform
Algorithm 1 for this example and compute the values of {‖xn‖}100

n=1 with the different m. These
values are drawn in Figures 2. The curves of these values in Figure 2 demonstrate the convergence
of the sequence {xn} generated by Algorithm 1.
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FIGURE 2. Numerical results for Example 4.2 with different m

5. CONCLUSION

In this paper, we presented a hybrid Halpern-based extragradient algorithm for finding a com-
mon solution of a pseudomonotone equilibrium problem and a fixed point problem of a nonexpan-
sive mapping in a uniformly convex and uniformly smooth Banach space. The strong convergence
of the proposed algorithm is proved. Some numerical examples are given to support the conver-
gence of the proposed algorithm.
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