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Abstract. Entropy-regularized quadratic optimization problems are a special class of optimization prob-
lems with wide applications in various fields, such as transportation and machine learning. In this paper, we
apply the augmented Lagrangian method to this problem with its subproblem solved by the block coordi-
nate descent method. Under certain mild conditions, we analyze the global convergence of this algorithm.
Numerical experiments demonstrate the effectiveness of this algorithm.
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1. INTRODUCTION

In this paper, we focus on the entropy-regularized quadratic optimization problem

(P) minx∈Rn
{ 1

2〈x,Qx〉+ 〈c,x〉+µ ∑i xi(logxi−1)
∣∣A x = a, x≥ 0

}
,

where Q ∈ Sn is a positive semi-definite matrix, A : Rn→ Rm is a linear operator, and its adjoint
operator is denoted as A ∗, and µ > 0 is the entropy regularization parameter. Here, we define
0log0 := 0.

This model finds widespread applications in practice. In the field of transportation, it is known
as the self-penalization gravity model [1]. The introduction of the quadratic term in the objective
function allows this model to capture the nonlinear characteristics of cost in transportation pro-
cesses and simulate real-world traffic congestion. An extended application of the self-penalization
gravity model is its incorporation into the framework of combined network equilibrium models,
which encompasses the mode choice and trip distribution, and adapts to spatial correlations during
calibration [2, 3]. Furthermore, in other areas of relevant modeling, the model structure of (P) is
also involved. For instance, in the field of machine learning, this model can be used in probabilistic
kernel regression. It is a probability extension form based on the kernel functions of support vector
machines. Hence, it is sometimes referred to as a kernel extension of the probability regression
model. Many existing models, such as generalized linear models and support vector machines, fall
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into this category, and it is widely applied to classification and regression problems in the field of
machine learning. Additionally, it finds numerous applications in recognition tasks, such as the se-
quence estimation [4] and pattern recognition. Meanwhile, some optimization problems introduce
entropy terms as barrier functions in algorithm design; see, e.g., [5].

As mentioned in [4], due to the entropy regularization term, this problem cannot be simply
solved by using standard quadratic programming solvers. Hence, alternative nonlinear optimiza-
tion techniques need to be explored. This makes the design of the algorithm more complicated.
Recently, Fang and Tsao [1] proposed the curved search method (CSM) to solve problem (P), but
this algorithm is limited to the case that Q is diagonal. The alternating direction method of multi-
pliers (ADMM) can also be used to solve this problem. For the general case of problem (P), we
propose the block coordinate descent (BCD) method based on the augmented Lagrangian method
(ALM) to solve it.

In Section 2, we present the notations and fundamental background knowledge. In Section 3,
we present the details of the algorithm. In Section 4, we provide the convergence analysis. In
Section 5, we present the results of numerical experiments. In Section 6, the last section, we give
the concluding conclusion.

2. PRELIMINARIES

In this section, we provide some necessary background knowledge. For detailed contents, we
refer to [6].

For a given function f : Rn→ [−∞,+∞], the effective domain of f is

dom f := {x ∈ Rn | f (x)<+∞}.

If dom f is non-empty, for any x ∈ dom f , we have f (x)>−∞. Then f is called proper. f is lower
semicontinuous at x̄ if liminfx→x̄ = f (x̄). In general, if f is lower semicontinuous at every point,
it is called a lower semicontinuous function. For a convex function f : Rn→ (−∞,+∞], for any
x̂ ∈ Rn, its subdifferential set ∂ f (x̂) is defined as

∂ f (x̂) := {v ∈ Rn |∀x ∈ dom f , f (x)≥ f (x̂)+ 〈v,x− x̂〉}.

For any set C ⊆ Rn, its relative interior is defined as

riC := {x ∈ affC |∃ε > 0,(x+ εB)∩ affC ⊂C}.

affC denotes the affine hull of the set C [6], and B is the unit ball in the n-dimensional Euclidean
space.

Let X and Y be finite-dimensional Euclidean spaces, and let Γ : X ⇒Y be a given set-valued
function. If

〈x− x′,w−w′〉 ≥ 0, ∀x,x′ ∈X , w ∈ Γ(x), w′ ∈ Γ(x′),

then Γ is called a monotone operator. If the graph of Γ

graph(Γ) := {(x,y) ∈X ×Y |y ∈ Γ(x)}

cannot be contained in the graph of any other monotone operator Γ′ : X → Y , then Γ is called a
maximal monotone operator.
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3. ALGORITHM

In this section, we present the details of the algorithm. For the convenience of the computation,
we introduce an auxiliary variable y ∈ Rn. Then problem (P) can be reformulated as

(P′) min
x,y∈Rn

{1
2
〈x,Qx〉+ 〈c,x〉+µ

n

∑
i=1

yi(logyi−1)
∣∣∣A x = a, x− y = 0, y≥ 0

}
.

For problem (P′), its Lagrangian function is given by

l(x,y;u,v,z) =
1
2
〈x,Qx〉+ 〈c,x〉+µ ∑

i
yi(logyi−1)−〈u,A x−a〉−〈v,x− y〉−〈z,y〉.

The corresponding dual problem is

max
u∈Rm,v,x,y,z∈Rn

{
− 1

2
〈x,Qx〉+ 〈a,u〉−µ

n

∑
i=1

yi

∣∣∣Qx+ c−A ∗u− v = 0,µ logy+ v− z = 0,y,z≥ 0
}
.

The Karush-Kuhn-Tucker (KKT) condition for problem (P′) is

Qx+ c−A ∗u− v = 0,
µ logy+ v− z = 0,
A x−a = 0,
x− y = 0,
y,z ∈ Rn

+.

(3.1)

For problem (P′), given a parameter σ > 0, the augmented Lagrangian function is

Lσ (x,y;u,v) =
1
2
〈x,Qx〉+ 〈c,x〉+µ

n

∑
i=1

yi(logyi−1)−〈u,A x−a〉

−〈v,x− y〉+ σ

2
‖A x−a‖2 +

σ

2
‖x− y‖2 +δRn

+
(y).

The fundamental framework of the augmented Lagrangian method is as follows.

Algorithm 1 (ALM):
Given a parameter σ0 > 0, select an initial point (x0,y0,u0,v0) ∈ Rn×Rn

+×Rm×Rn, let k = 0,1, · · · , and
perform the following iterations:
Step 1: Call Algorithm 2 to compute an approximate solution

(xk+1,yk+1)≈ argmin
x∈Rn,y∈Rn

+

Lσk(x,y;uk,vk). (3.2)

Step 2: Update

uk+1 = uk−σk(A xk+1−a),

vk+1 = vk−σk(xk+1− yk+1),

zk+1 = µ logyk+1 + vk+1.

Step 3: If the convergence criterion is satisfied, then terminate the iteration; otherwise, update σk+1 and return
to Step 1.
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Algorithm 2 (BCD):
Select an initial point (x0,y0) ∈ Rn×Rn

+, let j = 0,1, · · · , and perform the following iterations:
Step 1: Compute an approximate solution

x j+1 ≈ argmin
x∈Rn

Lσk(x,y
j;uk,vk). (3.3)

Step 2: Compute an approximate solution

y j+1 ≈ argmin
y∈Rn

+

Lσk(x
j+1,y;uk,vk). (3.4)

Step 3: If the convergence criterion is satisfied, then terminate the iteration; otherwise, return to Step 1.

Next, we discuss the details of the above algorithm.
Firstly, for subproblem (3.3), let ∇xLσk(x,y

j;uk,vk) = 0. Then

(Q+σkA
∗A +σkI)x = σky j +σkA

∗a+ vk +A ∗uk− c. (3.5)

The linear system of equations (3.5) can be solved by a direct method or the conjugate gradient
method. When Q is a diagonal matrix and m� n, the inverse of its coefficient matrix can be
computed using the Sherman-Morrison-Woodbury formula [7]

(Q+σkA
∗A +σkI)−1

= (Q+σkI)−1− (Q+σkI)−1
σkA

∗ (I +σkA (Q+σkI)−1A ∗)−1
A ∗(Q+σkI)−1.

This approach can significantly improve the computational efficiency.
Secondly, for subproblem (3.4), letting ∇yLσk(x

j+1,y;uk,vk) = 0, we have

µlogyi + vk
i +σk(yi− x j+1

i ) = 0, i = 1, . . . ,n. (3.6)

Notice that, for given vk and x j+1, equation (3.6) always has a solution in [ε,∞). It can be easily
verified that the unique solution yi must satisfy the following condition

yi ∈

{
[1,x j+1

i − 1
σk

vk
i ], if vk

i +σk(1− x j+1
i )≤ 0,

[max{ε,exp((σk(x
j+1
i −1)− vk

i )/µ)},1], otherwise.

In practical computations, we may set ε = 10−10 since x and y cannot be zeros, and a lower bound
must be provided. We can use a binary search method to find an approximate solution to problem
(3.6). Given an error tolerance ε , the binary search method has a maximum number of iterations:

max
1≤i≤n

dmax{log2(
x j+1

i − 1
σk

vk
i −1

ε
)−1, log2(

1− (exp((σk(x
j+1
i −1)− vk

i )/µ))

ε
)−1}e.

4. CONVERGENCE ANALYSIS OF ALM

In this section, we provide an analysis of the convergence and convergence rate of Algorithm 1.
Let {εk} and {δk} be two sequences that can be summed, εk ≥ 0, 0≤ δk < 1, and 0≤ δ ′k→ 0 for
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all k ≥ 0. For inner subproblem (3.2), we have the following three stopping criteria:

(A) φk(xk+1,yk+1)− infφk(x,y)≤
ε2

k
2σk

,

(B) φk(xk+1,yk+1)− infφk(x,y)≤
δ 2

k
2σk
‖(uk+1,vk+1)− (uk,vk)‖2,

(C) ‖∇φk(xk+1,yk+1)‖ ≤
δ ′k
σk
‖(uk+1,vk+1)− (uk,vk)‖,

where φk(x,y) := Lσk(x,y;uk,vk). However, infφk(x,y) is unknown, so such stopping criteria are
practically infeasible. To obtain the implementable stopping criteria, we need to estimate an upper
bound on φk(xk+1,yk+1)− infφk(x,y). Since

infφk(x,y) = supψk(u,v)≥ ψk(uk+1,vk+1),

where ψk(u,v) := infx,y{L(x,y;u,v)− 1
2σk
‖(u,v)− (uk,vk)‖}, we have

φk(xk+1,yk+1)− infφk(x,y)≤ φk(xk+1,yk+1)−ψk(uk+1,vk+1).

where

ψk(uk+1,vk+1) =−1
2
〈x,Qx〉+ 〈a,uk+1〉−µ

n

∑
i=1

yi−
1

2σk
|(uk+1,vk+1)− (uk,vk)|,

and x and y are the solutions of the equations Qx+ c−A ∗uk+1− vk+1 = 0 and µ logy+ vk+1 = 0,
respectively. Therefore, we can use the following three stopping criteria

(A′) φk(xk+1,yk+1)−ψk(uk+1,vk+1)≤
ε2

k
2σk

,

(B′) φk(xk+1,yk+1)−ψk(uk+1,vk+1)≤
δ 2

k
2σk
‖(uk+1,vk+1)− (uk,vk)‖2,

(C′) ‖∇φk(xk+1,yk+1)‖ ≤
δ ′k
σk
‖(uk+1,vk+1)− (uk,vk)‖.

Next, we present the convergence result based on the theory from [8] and [9].

Theorem 4.1. Assume that the solution set of the KKT system (3.1) is non-empty. Then, under the
stopping criterion (A′), the sequence of points {(xk,yk,uk,vk)} generated by the ALM is bounded,
and (xk,yk) converges to the optimal solution (x̄, ȳ) of the original problem (P′), while (uk,vk)
converges to the optimal solution (ū, v̄) of its dual problem.

For the convenience of later discussions, we define the maximal monotone operator Tl and Tg
as follows

Tg(u,v) :=
{
(u′,v′)

∣∣∣ (−u′,−v′) ∈ ∂g(u,v)
}
.

Tl(x,y,u,v) :=
{
(x′,y′,u′,v′)

∣∣∣ (x′,y′,−u′,−v′) ∈ ∂ l(x,y,u,v)
}
.

Based on the theory from [9] and [10], we can provide the following conclusion regarding the
convergence rate.
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Theorem 4.2. Assume that there exists κ1 > 0 such that, for any (u,v) satisfying dist(0,Tg(u,v))<
δ , dist((u,v),T −1

g (0))≤ κ1dist(0,Tg(u,v)). Let δ be a positive real number. Under the stopping
criterion (B′), for sufficiently large k, let {(uk,vk)} be generated by Algorithm 1 with

dist((uk+1,vk+1),T −1
g (0))≤ µkdist((uk,vk),T −1

g (0)),

where µk = [κ1(κ
2
1 +σ2

k )
− 1

2 + 2δk](1− δk)
−1→ µ∞ = κ1(κ

2
1 +σ2

∞)
− 1

2 < 1. Moreover, under the
stopping criterion (C′), assume that there exists κ2 > 0 such that, for any (x,y,u,v) satisfying
dist(0,Tl(x,y,u,v)) < δ ′, where δ ′ > 0, dist((x,y,u,v),T −1

l (0)) ≤ κ2dist(0,Tl(x,y,u,v)). Then,
for the sequence {(xk,yk,uk,vk)} generated by Algorithm 1,

dist((xk+1,yk+1,uk+1,vk+1),T −1
l (0))≤ θk|(uk+1,vk+1)− (uk,vk)|,

where θk = κ2(1+δ ′2k )
1
2 σ
−1
k → θ∞ = κ2σ−1

∞ .

5. NUMERICAL EXPERIMENT

In this section, we compare the performance of ALM, CSM, and ADMM (where the inner loop
of Algorithm 1 iterates only once) in solving problem (P). All numerical experiments in this
paper are conducted on a 64-bit Windows 10 laptop with the following specifications: Intel(R)
Core(TM) i5-4210M CPU @2.60GHz 2.60GHz, 8GB RAM, and the operating environment ss
MATLAB 2016a.

In our experiments, we measure the quality of computed solutions by using the relative primal
infeasibility RP, dual infeasibility RD, and relative duality gap RG as follows

RP =
‖A x−a‖+‖x− y‖

1+‖a‖+‖x‖
,

RD =
‖Qx+ c−A ∗u− z+µ logx‖

1+‖x‖+‖u‖
,

RG =
|pobj−dobj|

1+ |pobj|+ |dobj|
,

where

pobj =
1
2
〈x,Qx〉+ 〈c,x〉+µ

n

∑
i=1

xi(logxi−1),

dobj = −1
2
〈x,Qx〉+ 〈a,u〉−µ

n

∑
i=1

xi.

We stop the iteration of the algorithm when the following conditions are satisfied

ηkkt := max{RP,RG,RD}< Tol,

where Tol = 10−5 is the default value. Additionally, when the number of iterations of ALM and
CSM reaches 200, the number of iterations of ADMM reaches 10,000, or the running time exceeds
6 hours, we terminate the iteration.
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5.1. CSM. In this subsection, we briefly introduce the details of CSM. Consider the following
optimization problem

min
x∈Rn

{
1
2

n

∑
i=1

dix2
i + 〈c,x〉+µ

n

∑
i=1

xi(logxi−1), |Ax = a, x≥ 0

}
, (5.1)

where c∈R+n, di≥ 0 for i= 1,2, · · · ,n, A∈Rm×n, a∈Rm are given, and µ > 0 is a regularization
parameter derived from the real problem. Note that this problem is actually a special form of (P)
with Q = diag(d), where d := (d1,d2, · · · ,dn).

The Lagrangian function for problem (5.1) is given by

L(x;u) =
1
2

n

∑
i=1

dix2
i + 〈c,x〉+µ

n

∑
i=1

xi(logxi−1)−〈u,A x−a〉+δRn
+
(x).

Its dual problem is defined as

min
u∈Rm

{
f (u) :=

1
2

n

∑
i=1

dihi(u)2 +µ

n

∑
i=1

hi(u)−〈a,u〉

}
. (5.2)

This is an unconstrained optimization problem, where h(u) = (h1(u),h2(u), · · · ,hn(u))T is ex-
pressed implicitly as follows

µlogh(u)+Qh(u) = AT u− c.

Note that the objective function of problem (5.2) is twice continuously differentiable with respect
to the optimization variable u, and therefore, it can be solved using CSM [11]. The solution
framework is as follows.

Algorithm 3 (CSM):
Given parameters ε ≥ 0, σ ≥ 0, γ > 0, two selected sequence of {αk} and {βk} satisfying
ᾱ ≥ αk ≥ 0 and β̄ ≥ βk ≥ β , where ᾱ > 0 and β̄ ≥ β > 0, we start with an initial point
u0 ∈ Rm, and iterate as follows:
Step 1: Compute the gradient gk and the Hessian matrix Hk

gk = ∇ f (uk) and Hk = ∇2 f (uk).
If ‖gk‖ ≤ ε , terminate the iteration; otherwise, proceed with the following steps.
Step 2: Solve Hkvk = gk for vk, and calculate

Gk = gT
k vk, γk =

|Gk|
‖vk‖‖gk‖2 , σk = (detHk)

2.

Step 3: If σk > σ and γk > γ , then

dk =−βk
‖gk‖2

Gk
vk, zk =−αk‖gk‖gk;

otherwise,
dk =−gk, zk = 0.

Step 4: Calculate the step length
tk ∈ argmint>0 f

(
uk + tdk +

1
2t2zk

)
.

Step 5: Update uk+1:
uk+1 = uk + tkdk +

1
2t2

k zk.
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5.2. Numerical Results. In this subsection, we perform numerical computations for both the gen-
eral entropy-regularized quadratic optimization problem and the trip assignment problem.
I: The general entropy-regularized quadratic optimization problem. Let us first consider the fol-
lowing problem, which is derived from [4].

min
λ 1

1 ,λ
2
1 ,··· ,λ

N
S

{
S

∑
k=1

[
N

∑
i=1

(
1
2

N

∑
j=1

λ
i
kQi jλ

j
k +C

(
yi

k−
λ i

k
C

)
log
(

yi
k−

λ i
k

C

))]}

s.t.
N

∑
i=1

λ
i
k = 0, k = 1,2, · · · ,S,

S

∑
k=1

λ
i
k = 0, i = 1,2, · · · ,N,

Cyi
k ≥ λ

i
k,k = 1,2, · · · ,S, i = 1,2, · · · ,N,

(5.3)

where Qi j = K(xi,x j), and the function K(., .) is the Gaussian kernel function, and S and N are
given constants. For each i ∈ 1,2, · · · ,N, xi ∈ Rd , and yi ∈ RS with the probabilities for the k-th
class denoted as yi

k satisfying ∑
S
k=1 yi

k = 1. Also, C > 0 is a regularization parameter.

Let w = (w1
1,w

2
1, · · · ,wN

S )
T with wi

k = yi
k−

λ i
k

C for k = 1,2, · · · ,S and i = 1,2, · · · ,N, and y =

(y1
1,y

2
1, · · · ,yN

S )
T . Let Q = diag(Q0, · · · ,Q0) be an S-block diagonal matrix, where Q0 is a positive

semi-definite matrix with its (i, j)-th element being Q0
i j = K(xi,x j). It is evident that problem (5.3)

can be written in the following form

min
w,λ

{
C
2
〈w,Qw〉−C〈w,Qy〉+

N

∑
i=1

wilogwi

}
s.t. A (y−w) = 0,

B(y−w) = 0,

λ − c(y−w) = 0,

w≥ 0,

(5.4)

where A (y−w) = 0 and B(y−w) = 0 represent the constraints ∑
N
i=1 λ i

k = 0 and ∑
S
k=1 λ i

k = 0,
respectively, in their equivalent linear transformation form.

In problem (5.3), for each column attribute xk,k ∈ 1,2, · · · ,d, they are a set of random vectors
following a normal distribution with mean 0 and variance 1. For each i ∈ 1,2, · · · ,N, yi ∈ RS is
a set of random vectors uniformly distributed in an S-dimensional probability density space. The
parameter S is set to be 3, the bandwidth of the Gaussian kernel function K(., .) is chosen from the
set {0.01,0.1,1}, and d is set to be 10.

For problem (5.3), we only use ALM and ADMM since Q is not a diagonal matrix, and CSM
cannot be used as it cannot compute the curved directions. The results are demonstrated in Table
1. To compare different algorithms, we record the objective value (obj), the number of iterations
(iter), accuracy (ηkkt), and computational time (time) in different node sizes.

From Table 1, we can see that both ALM and ADMM can achieve the required accuracy for
small scaled problems. However, for larger problems, ADMM fails to reach the desired accuracy.
ALM is more efficient compared to ADMM, especially for larger problems. The computational
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TABLE 1. Numerical results for problem (5.3) solved by ALM and ADMM

N (C,width) method iter ηkkt obj time

1000 (0.1, 0.01) ALM 18 5.87e-06 -1.9650e+03 00:00:04
ADMM 28 2.18e-06 -1.9651e+03 00:00:05

1000 (10, 0.01) ALM 55 7.42e-06 -6.2111e+03 00:00:11
ADMM 126 1.18e-05 -6.2115e+03 00:00:24

1000 (0.1, 0.01) ALM 54 8.57e-06 -8.5907e+03 00:00:37
ADMM 151 1.36e-05 -8.5910e+03 00:01:45

3000 (0.1, 0.01) ALM 18 5.85e-06 -5.8957e+03 00:01:03
ADMM 28 1.24e-06 -5.8959e+03 00:01:37

3000 (0.1, 1) ALM 17 9.66e-06 -5.7980e+03 00:03:15
ADMM 28 1.38e-06 -5.7982e+03 00:05:24

3000 (1, 0.01) ALM 22 8.52e-06 -6.8320e+03 00:01:17
ADMM 29 1.33e-06 -6.8322e+03 00:01:55

3000 (10, 0.01) ALM 55 7.63e-06 -1.8704e+04 00:03:18
ADMM 156 1.24e-05 -1.8706e+04 00:09:26

6000 (0.1, 0.01) ALM 18 5.88e-06 -1.1792e+04 00:08:37
ADMM 28 8.57e-07 -1.1793e+04 00:13:54

6000 (0.1, 0.1) ALM 18 5.91e-06 -1.1792e+04 00:33:06
ADMM 28 8.55e-07 -1.1793e+04 00:54:48

6000 (10, 0.01) ALM 55 7.46e-06 -3.7333e+04 00:35:53
ADMM 159 1.26e-05 -3.7339e+04 01:05:05

6000 (10, 0.1) ALM 55 7.39e-06 -3.7452e+04 01:30:42
ADMM 159 1.27e-05 -3.7459e+04 05:14:27

6000 (10, 1) ALM 54 8.87e-06 -4.6714e+04 01:44:21
ADMM 149 1.33e-05 -4.6721e+04 05:11:51

time is positively correlated with the dimension N and the parameter C. Additionally, the perfor-
mance of the algorithm is influenced by the parameter “width”. Figure 1 illustrates the influence
of different “width” values on ALM. The figure shows the relationship between ηkkt and the com-
putational time for different “width” values. It is evident from the figure that the ’width’ value has
a noticeable impact on the overall convergence of the algorithm. A smaller ’width’ value makes
the matrix Q more close to an identity matrix, which leads to the faster convergence.
II: Trip assignment problems. This problem originates from [1], and its formulation is as follows

min
x∈Rn

{
1
2
〈x,Qx〉+ 〈c,x〉+µ

n

∑
i=1

xi(logxi−1)
∣∣∣Ax = a, x≥ 0

}
, (5.5)

where A∈Rm×n is a matrix derived from the trip distribution problem, with elements consisting of
0s and 1s (see [1]). Additionally, Q ∈ Sn

+ is a diagonal matrix, c ∈ Rn
+, a ∈ Rm are given vectors,

and µ > 0 is the regularization parameter.
For problem (5.5), we compare three algorithms: ALM, CSM, and ADMM. The parameter set-

tings follow from those in [1]. The diagonal elements of the matrix Q are obtained by multiplying
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FIGURE 1. The impact of different “width” values on ALM.

random numbers which are uniformly distributed in the interval (0,1) by corresponding scaling
factors, denoted as “scale”.

The computing results are presented in the Table 2 and Figure 2. In Table 2, we use “O” to rep-
resent the number of origins and “D” to represent the number of destinations. From the results in
the table, it can be seen that ALM, CSM, and ADMM are all capable of solving the trip distribution
problem effectively. But ALM is obviously more efficient than the other two algorithms. Addi-
tionally, Figure 2 provides a representation of the convergence curves for the three algorithms. It is
evident from the figure that CSM requires fewest iterations (as it can be understood as a modified
Newton method). However, CSM takes much more time at each iteration compared to ALM and
ADMM since when applying CSM, we need to compute the values of the gradient and Hessian
matrix of the implicit function, which, in turn, requires solving a system of nonlinear equations.
Moreover, ALM exhibits more stable and efficient compared to ADMM.

FIGURE 2. Comparison of ALM, CSM, and ADMM

6. CONCLUSION

In this paper, we applied the BCD based ALM to the entropy-regularized quadratic optimization
problems. We presented the convergence results of the algorithm under mild conditions. The
numerical experiments demonstrate the superiority of ALM compared with CSM and ADMM.
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TABLE 2. Numerical results for problem (5.5) solved by ALM, CSM, and ADMM

(O,D) (scale,µ) method iter ηkkt obj time

ALM 163 9.15e-06 4.7740e+05 00:00:33
(200,20) (0.01,0.05) CSM 8 1.09e-06 4.7740e+05 00:01:11

ADMM 10000 2.40e-05 4.7740e+05 00:07:26
ALM 131 9.33e-06 5.0841e+05 00:00:26

(200,20) (1, 0.05) CSM 7 3.75e-06 5.0841e+05 00:00:45
ADMM 1612 1.34e-05 5.0841e+05 00:01:11
ALM 164 8.13e-06 3.6663e+04 00:01:43

(300,30) (0.01, 0.05) CSM 9 3.72e-08 3.6663e+04 00:05:11
ADMM 10000 2.36e-05 3.6662e+04 00:25:00
ALM 200 1.26e-05 1.6030e+05 00:02:10

(300,30) (0.1, 0.5) CSM 7 8.19e-06 1.6030e+05 00:03:22
ADMM 5278 1.34e-05 1.6030e+05 00:13:25
ALM 158 7.28e-06 2.7393e+04 00:06:45

(500,40) (0.01, 0.05) CSM 8 2.40e-08 2.7393e+04 00:25:13
ADMM 5323 1.22e-05 2.7394e+04 00:55:11
ALM 65 9.82e-06 4.8971e+05 00:02:42

(500,40) (0.01, 5) CSM 7 4.19e-06 4.8971e+05 00:18:49
ADMM 4268 1.28e-05 4.8969e+05 00:44:30
ALM 145 9.41e-06 5.0022e+04 00:06:04

(500,40) (0.1, 0.05) CSM 8 3.31e-07 5.0022e+04 00:26:29
ADMM 176 1.19e-05 5.0018e+04 00:01:44
ALM 77 9.11e-06 4.9780e+05 00:03:05

(500,40) (0.1, 5) CSM 7 4.02e-06 4.9780e+05 00:18:59
ADMM 3758 1.32e-05 4.9780e+05 00:37:32
ALM 143 8.59e-06 1.2991e+05 00:05:44

(500,40) (1, 0.05) CSM 10 3.20e-07 1.2991e+05 00:26:08
ADMM 3531 1.35e-05 1.2991e+05 00:35:16
ALM 116 9.53e-06 2.0210e+05 00:04:45

(500,40) (1, 0.5) CSM 6 1.34e-06 2.0210e+05 00:15:06
ADMM 401 1.42e-05 2.0220e+05 00:03:55
ALM 66 9.06e-06 6.3330e+05 00:02:41

(500,40) (1,5) CSM 6 2.61e-06 6.3330e+05 00:15:40
ADMM 2396 1.27e-05 6.3330e+05 00:24:00
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