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SELF-ADAPTIVE INERTIAL SHRINKING TSENG’S EXTRAGRADIENT METHOD
FOR SOLVING A PSEUDOMONOTONE VARIATIONAL INEQUALITIES IN
BANACH SPACES
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Abstract. In this paper, we propose an inertial shrinking Tseng’s extragradient algorithm with a self-adaptive
step size for solving pseudomonotone variational inequality problem with non-Lipschitz operators in the
framework of 2-uniformly convex Banach spaces which are also uniformly smooth. Moreover, we prove a
strong convergence result for the proposed algorithm under mild conditions on the control parameters. The
main advantages of our algorithm are: our proposed algorithm solves the variational inequality problem with
a larger class of mappings (pseudomonotone and non-Lipschitz operators); unlike the existing results in the
literature, our algorithm does not require any linesearch technique even while the operator is non-Lipschitz;
minimized number of projections per iteration compared to related results in the literature; and the inertial
technique employed which speeds up the rate of convergence. Finally, we present some numerical examples
to illustrate the efficiency of our algorithm in comparison with related methods in the literature.
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1. INTRODUCTION

Let C be a nonempty, closed, and convex subset of a real Banach space E with induced norm
| ||, and let E* be the dual of E. Let A : C — E* be a single-valued mapping. The variational
inequality problem (VIP) is to find z € C such that (x —z,Az) > 0 for all x € C. We denote the
solution set of the VIP by VI(C,A). If A is monotone, the VIP is known as monotone variational
inequality problem, while it is known as pseudomonotone variational inequality problem if A
is pseudomonotone. It is known that the variational inequality theory has gradually become
a significant tool for solving several problems arising from sciences, engineering, economics,
minimization problems, mathematical programming, structural analysis, and optimization theory.
Due to the wide applications, several iterative algorithms have been proposed for approximating
the solutions of the VIP and related optimization problems; see, e.g., [1, 2, 3, 4, 5, 6, 7] and the
references therein.
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An iterative method for solving the VIP in a Hilbert space is the projected gradient method, which
is defined as follows:

x1€C ,

Xn+1 = Po(xp — AAx,),Vn > 1,
where Pc is the projection operator onto the closed convex subset C of H and A > 0 is a suitable step
size. It is known that the sequence generated by this method converges weakly to a solution of the
VIP if A is inverse-strongly monotone, and converges strongly under some appropriate conditions to
a solution of the VIP if A is a-strongly monotone and L-Lipschitz continuous, where A € (0, ZL—‘f)

In order to relax the strong monotonicity assumption, Korpelevich introduced the following

extragradient method (EGM) for solving the VIP in a finite dimensional Euclidean space R™:

xo €C,
Yn = PC(xn _AAxn%
Xnt1 = Pc(xp — AAy,), n>1,

where C C R™ is a nonempty, closed, and convex set, A : C — R is monotone and L-Lipschitz
continuous, and A € (0, %) Korpelevich proved that the sequence generated by (1) converges
weakly to a solution of the VIP in a finite dimensional space. The extragradient method was further
extended by Nadezhkina and Takahashi [8] to the framework of real Hilbert spaces. We note that the
EGM requires computation of two projections in every iteration. This is really difficult to calculate
in numerical simulation when set C is a general closed and convex set and the efficiency of the
method is seriously affected. In order to overcome this weakness, Censor et al. [9] (see also [10])
introduced the Subgradient Extragradient Method (SEGM) which involves the modification of one
of the projections. The SEGM is given as follows:

X0 € H,

yn = Pe(x, — AAxy),

On={2€ H: (xn — AAXy — yn,2— yn) < 0},

Xnt1 = Pg,(xn — AAyn).
Censor et al. [10] proved that provided the solution set VI(C, A) is nonempty, the sequence {x,}
generated by SEGM converges weakly to an element p € VI(C,A), where p = lim,_, Py 1(C.A)%n-

Tseng [11] also proposed the following iterative scheme known as the Tseng’s extragradient method
(TEGM) in order to overcome the drawback in EGM :

XxXo € H,
Vn = Po(x, — AAxy),
Xn+1=Yn — }L(Ayn _Axn>7

where A is a monotone and Lipschitz continuous operator and A € (0, %) Clearly, the TEGM
requires one projection to be computed per iteration and then has an advantage in computing
projection over the EGM.

In optimization theory, the inertial technique plays a vital role in speeding up the rate of conver-
gence of iterative algorithms. For recent works on this technique, we refer to [12, 13, 14, 15, 16,
17, 18, 19]. This technique originates from an implicit discretization method of the second-order
dynamical systems in solving the smooth convex minimization problem. Alvarez and Attouch [20]
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employed the idea of the heavy ball method in order to construct the following algorithm for treating
a maximal monotone operator:

Xxp,X1 € H,
Yn =X+ 6n(xn _xn—l)a
Xn+l1 = an}’m

where an is the resolvent operator of A, A, > 0, and 6,(x, —x,_1) is called the inertial extrapo-
lation with 6, € [0,1). They proved that if {A,} is increasing and 6, € [0, 1) are selected so that
Yo 6y]lxn — x4—1|* < oo, then the sequence {x,} generated by (1) converges weakly to a zero
point of A. Thong et al. [21] employed the inertial technique for solving a monotone VIP in real
Hilbert spaces. They proposed some hybrid projection methods and shrinking projection methods
for solving the problem. One of the hybrid projection methods that the authors proposed is presented
as follows:
(X(),xl eC,

Uy = Xy + en(xn _xn—l)a

Yn = PC(un - lAun)a

Zn:anun"‘(l_an)(yn_k(A n_Aun))7 (1.1)

Co=A{weH: |zn—wl < llun —wll},

On={weH:(w—x,,x1 —x,) <0},
(Xn+1 = Fc,ng,Xo,
and one of the shrinking projection algorithms that they proposed is presented as follows:

(¢ =C,

Xxo,x1 € C,

Un = Xy + O (X — Xp—1),

Vn = Pe(u, — AAuy), (1.2)

Zn = Oty + (1 — 0 (Yn — A (Ay, — Auy)),
Cir1={weC: |z —w| < |lup—w||},

( Xn+1 = Fc,, 1 %0,

where {a,} C [0,1) with 0 < o, < & < 1, and {6,} is a bounded real sequence. They proved
that the sequences {x,} generated by (1.1) and (1.2) converge strongly to an element in VI(C,A)
provided that A € (0, %) Also, Cholamjiak et al. [22] proposed an algorithm which combines
the inertial projection and contraction method with Mann-type technique for solving monotone
variational inequality problems in real Hilbert spaces. They proved strong convergence of the
proposed method under some appropriate conditions. Their proposed algorithm is presented as
follows.

Algorithm 1.1.

Initialization: Let y € (0,2),4 € (0, %),9 > 0, and xo,x; € H be chosen arbitrarily. Let {1,} €
(a,1 — B,) for some a > 0, where {B,} € (0,1) is a sequence satisfying lim, . 3, = 0 and
Yot Bn = oo

Iterative step: Calculate x,, | as follows:
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Step 1: Given x,,_; and x,, for each n > 1, choose 6, such that 0 < 6, < 6,, where

. 5, .
g — {mm{@, —len—anl\}’ if x,, # xp_1,

), =
0, otherwise.

Step 2: Compute
{Wn =Xp+ en(xn _Xn—l)a
Yn = Pc(wp—AF (wn)),
If y, = wy, or F(y,) = 0, then Stop, y, is the solution. Otherwise go to Step 3.
Step 3: Calculate z,, = w,, — YN,d,, where
== 30 = MFOn) = Fw), 1= )

Step 4: Calculate x,,. 1 = (1 — 7, — Bu)xn + Tuzn-
Step 5: Set n:=n+ 1 and return to Step 1.

To extend the subgradient extragradient method to the framework of 2-uniformly convex and
uniformly smooth Banach spaces, Chidume and Nnakwe [23] proposed the following iterative
method:

x1€C, and o >0,

Vo =~ (Jx, — 6F (x)),
Cho={weE:(w—y,,Jx,—F(x,) —Jy,) <0},
Xpr1 = e, J  (Jx, — 6F(y,)),n > 1,

(1.3)

where J : E — 2E" is the normalized duality mapping and Il is the generalized projection of the
Banach space E onto C. They proved that the sequence generated by (1.3) converges weakly to the
solution of the VIP.

Cai et al. [24] proposed the following algorithm which combines the Halpern’s technique and
the subgradient extragradient idea for solving the VIP with monotone and Lipschitz continuous
mappings in 2-uniformly convex and uniformly smooth Banach spaces:

Algorithm 1.2.
Step 0: Let x; € E be a given starting point. Set n = 1.

Step 1: Given the current iterate x,,, compute y, = I[1¢(Jx, — A,Axy). If x, —y, = 0: STOP. Else,
construct the set

T, :={z€E: (Jxp— MAx, —Jyn,z—yn) <0}
and compute w,, = Iz, (Jx, — A,Ay,) and update the next iterate via
Xup1 =J 7 (0dxy + (1= 06)Iwy).
Step 2: Set n <— n+ 1 and go to Step 1.

where A : E — E™ is monotone and Lipschitz continuous. Under some certain assumptions,
strong convergence was obtained. Furthermore, they modified the algorithm by employing the
linesearch approach, and strong convergence was also obtained for this modification.

Shehu [25] introduced the following algorithm for approximating a solution of the VIP in a
2-uniformly convex and uniformly smooth Banach space E:
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Algorithm 1.3.
x1€E,
Vo = Hed 1 (Ix, — ApAxy,),
Xt = I Iy = dn(Ayn — Axy)),

where A : E — E* is monotone and L-Lipschitz continuous, I1¢ is the generalized projection
from E onto C, J is the normalized duality mapping on E, and the sequence of step sizes satisfies

the following inequality:
1

V20KL’

where Kk > 0 is the 2-uniform smoothness constant of £*, u > 0 is the 2-uniform convexity constant
of E, and L is the Lipschitz constant of A. It was proved that the sequence {x,} generated by
Algorithm 1.3 converges weakly to a point in VI(C,A) when J is assumed to be weakly sequentially
continuous. The author further proposed a modification of Algorithm 1.3 by employing the
linesearch technique for solving the VIP. The new modification is presented as follows:

0<a<A,<b<

Algorithm 1.4.

Step 0: Give y >0,/ € (0,1) and 6 € (0, ﬁ
Step 1: Compute y,, := ITcJ ! (Jx, — A,Ax,), where A, is chosen to be the largest A € {y, v¢, y¢%,---}
satisfying A ||Ax, — Ay, || < 0||x, — yn||. If x, —y, = 0: STOP.

Step 2: Compute x,,, 1 =J ' (Jy, — A, (Ay, — Ax,)).

Step 3: Set n <—n+1, and go to Step 1.

). Let x; € E be a given starting point. Setn := 1.

In this paper, inspired and motivated by the works above, we propose and study an inertial
algorithm which combines the Tseng’s extragradient method with shrinking projection technique
for approximating a solution of the VIP with pseudomonotone operators in 2-uniformly convex and
uniformly smooth Banach spaces. We establish a strong convergence theorem for the proposed
method. Finally, we present some numerical examples to illustrate the efficacy of our algorithm
as well as compare it with some of the existing works in the literature. We highlight below the
advantages of our method over existing results in the literature.

(i) The ease in evaluating minimal number of projections onto the feasible set C per iteration
makes our method efficient for computation.

(i) Our method solves the VIP with a larger class of mappings (pseudomonotone and non-
Lipschitz mappings).

(i11) While the cost operator is non-Lipschitz, our method does not require any linesearch
technique which slows down convergence rate of algorithms. We employ a more efficient
self-adaptive step size technique.

(iv) Our method employs the inertial technique to accelerate the rate of convergence.

Subsequent sections of this paper are organised as follows: In Section 2, we recall some basic
definitions and lemmas that are relevant in establishing our main result. In Section 3, we present our
proposed method and highlight some of its important features while in Section 4, we establish some
lemmas that are useful in proving the strong convergence theorem of our proposed algorithm and
then prove the strong convergence theorem. In Section 5, we present some numerical examples to
illustrate the performance of our method and compare it with some related methods in the literature.
Finally, in Section 6, we give a concluding remark.
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2. PRELIMINARIES

In this section, we recall some useful lemmas and definitions required to establish our result. Let
C be a nonempty, closed, and convex subset of a real Banach space E. Let E* and (-, -) denote the
dual space of E and the duality pairing between elements of E and E*, respectively. We denote the
strong convergence of sequence {x,} to x by x, — x and weak convergence by x, — x. Let E be a
real Banach space and 1 < ¢ <2 < p < +oo, where Iln + é = 1. The modulus of smoothness of E

denoted by pg(€) is the function pg : [0, +o0) — [0, +c0) defined by

[lx =yl + [lx+ Il
pie(s) = sup{ =T g 1y =
lx— 7yl + [lx+ 7y
—sup { =R 1 .
lim;_,q+ 2 ET(T) =0 if and only if E is uniformly smooth, and E is said to be g-uniformly smooth if

there exists a constant D, > 0 such that pg(7) < D,7?. It is 2-uniformly smooth if there exists a
constant D > 0 such that pg(7) < D72, E is said to be smooth if

e ]
7—0 T

exists for all x,y € Sg. It is known that every 2-uniformly smooth Banach space is uniformly smooth.
The modulus of convexity of E denoted by O (€) is the function & : (0,2] — [0, 1] defined by

: x4+
ge(e) =int {1~ P2 = ) = 16— e 2 e

Og(€) > 0 for all € € (0,2] if and only if E is uniformly convex, and E is p-uniformly convex if
there exists a constant C,, > 0 such that 8¢ (&) > C,e” for all € € (0,2]. Also, E is 2-uniformly
convex if there exists a constant ¢ such that 8 (€) > ce? for any € € (0,2]. It is clear that every
2-uniformly convex Banach space is uniformly convex. The Banach space E is said to be strictly
convex if ||x+y|| < 2 for all x,y € Sg with x # y, where Sg = {x € E : ||x|| = 1} is the unit sphere
of E. Every uniformly convex Banach space is strictly convex and reflexive. It is known that if E is
p-uniformly convex and uniformly smooth, then its dual E* is g-uniformly smooth and uniformly
convex. For more details on the geometry of Banach spaces, we refer to [26, 27].
Now, we recall the normalized duality mapping J : E — 2£ defined by

J(x) = {x" € E*: (xx") = x| = [|*]|*, ¥x € E}.

Note that if £ is smooth, then J is one-to-one and single-valued. Furthermore, if E is 2-uniformly
convex and uniformly smooth, then the duality mapping J is norm-to-norm uniformly continuous
on bounded subsets of E. Consider the Lyapunov functional ¢ : E X E — R defined by

o (x,y) = ||x||> = 2(x,Jy) + [[y]|%, ¥x,y € E.

It is easy to obtain from the definition above that ¢ (x,x) = 0 for all x,y € E. If E is strictly convex,
then ¢ (x,y) = 0 < x = y. In real Hilbert spaces, ¢ (x,y) = ||x—y||* and II¢ = Pc, where Pc : H — C
is the metric projection of H onto C and Il is the generalized projection operator given by

e = inf{¢(x,y), Vx€E}.
yeC
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From the definition of @, it is clear that

0 < (Jlxll> = II¥11%) < @(xroy) < (x> + [I¥11).
For all x,y € E and o € (0, 1), the Lyapunov functional ¢ satisfies the following properties:

(P1) ¢(x,y) = ¢(x,2) + 0(2,y) +2{x —z,J2—Jy);
(P2) ¢(x,y) + 9 (3, %) = 2(x =y, Jx = Jy);
(P3) ¢(x,y) < (x,Jx—Jy) +(y —x,Jy) < |[x[|[[Jx = Ty || + [y — x[[[|y];
(P4) (I)(x,J_l(OCJZ—l—(l - )Jy)) < (X¢)(X,Z) +(1 - a)¢(x7y)'
We also consider the functional V : E X E — R which is defined by

V(x,x*) = ||x]|*> = 2(x,x") + ||x*]|?, VxeE,x* € E*.

It is clear that V (x,x*) = ¢ (x,J~'x*). Observe that if E is a reflexive, strictly convex, and smooth
Banach space, then (see [28, 29]) V (x,x*) +-2(J~'x* —x,y*) < V(x,x* +y*) for all x € E, x*,y* €
E*.
Definition 2.1. Let A : C — E™ be an operator. Then A is said to be
(i) monotone if (x —y,Ax — Ay) > 0 for all x,y € C;
(ii) pseudomonotone if (y —x,Ax) > 0= (y —x,Ay) > 0 for all x,y € C;
(iii) L-Lipschitz continuous if there exists a constant L > 0 such that ||Ax — Ay|| < L||x —y|| for
all x,y e C.
(iv) uniformly continuous if, for every € > 0, there exists 6 = §(&) > 0, such that ||[Ax—Ay|| < €
whenever ||x —y|| < 6 for all x,y, € C.

It is known that monotone mappings are pseudomonotone. However the converse is not true.
For instance, the mapping f: (0, +c0) — (0, +o0) defined by fx = 1 is pseudomonotone but not
monotone. Also, we note that uniform continuity is a weaker n0t10n than Lipschitz continuity. For
more examples on pseudomonotone operators that are not monotone, we refer to [30, 31]. Also, it
is known that if D is a convex subset of E, then A : D — range(A) is uniformly continuous if and
only if, for every € > 0, there exists a constant K < +oo such that

|Ax —Ay|| < K||x—y||+€, Vx,yeD. 2.1

Lemma 2.1. [26] Let C be a nonempty, closed, and convex subset of a reflexive, strictly convex,
and smooth Banach space E. Given that x € E and z € C, z =ex < (y —z,Jx—Jz) <0, and

0(y,2) + ¢(z,x) < ¢(y,x) forally e C,x € E.

Lemma 2.2. [32] Let C be a nonempty and convex subset of a Banach space E, and let A be a
hemicontinuous mapping of C into E. Let 7 € C such that (x —z,Ax) > 0 for all x € C. Then z is a
solution to the VIP.

Lemma 2.3. [33] Let E be a smooth and uniformly convex Banach space. Let {x,} and {y,} be
two sequences in E such that either {x,} or {y,} is bounded. If ¢(x,,y,) — 0 as n — oo, then
1% — yul| = 0 as n— oo.

Remark 2.1. It is known that the converse of Lemma 2.3 also holds if the sequences {x, } and {y,}
are bounded.

Lemma 2.4. [34] Let 1 —|— ~=1,p,q > 1. Space E is g-uniformly smooth if and only if its dual E*
is p-uniformly convex
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Lemma 2.5. [35] Let E be a 2-uniformly smooth Banach space with the best smoothness constant
k > 0. Then, the following inequality holds: ||x+y||> < ||x||* +2(y,Jx) + 2| ky||? for all x,y € E.

Lemma 2.6. [31, 36] Let E be a p-uniformly convex Banach space with p > 2. Then

: . 1 : .
x=y,Jp(x) = jp(y)) > m”x —yI7, Vx,y € E\Vjp(x) € Jp(x),jp(y) € Jp(y),
where c is the p-uniformly convexity constant.

Lemma 2.7. [37] Suppose that E is a 2-uniformly convex Banach space. Then there exists a
constant ¢ > 1 such that ¢(x,y) > %||x—y||2f0r allx,y € E.

Lemma 2.8. [38] Suppose that {A,} and {6,} are two nonnegative real sequences such that
M1 S dn+ @ foralln > 1. If Y | ¢p < +oo, then 1i_r>n A, exists.
Nn—oo

3. PROPOSED METHOD

In this section, we present our proposed algorithm. Let C be a nonempty, closed, and convex
subset of a 2-uniformly convex Banach space E which is also uniformly smooth with dual E*.
Let ¢ and x be 2-uniformly convexity constant and 2-uniformly smoothness constant of £ and
E*, respectively. We establish the convergence of our proposed algorithm under the following
conditions:

Assumption 3.1

(A1) The feasible set C is nonempty, closed, and convex.

(A2) Mapping A : C — E* is pseudomonotone and uniformly continuous on E.
(A3) Solution set of the VIP is nonempty, that is, VI(C,A) # 0.

(A4) {pn} is a nonnegative sequence such that } >, p, < H-oo.

Now, we present our proposed algorithm as follows:

Algorithm 3.1.

Step 0: Select i € (0, #27),&1 >0, and 6, € [0, 0] for some 6 > 0. Let xo,x; € E be arbitrary.
SetCi=Candn:=1.

Step 1: Compute w, = J ! (Jx, + 6, (Jx, —Jx,_1)).

Step 2: Compute y, = IcJ ' (Jw, — A,Aw,,).

Step 3: Compute z, = J ! (Jy, — A, (Ay, — Aw,)).

Step 4: Construct

2 2)’2
Crip1 = {P €Cr:9(p,zn) < 9(p,wn) — (1 - 26‘/-12#)(2)())””‘}”)},

n+1

and compute x, 1 = Il¢,, X0, where the adaptive step-size is given by

: L[ Wi —ynl| A 4 A _A 0
xnﬂ:{mm{'f‘ww*ynl’ o Paky Awn = Ay 70, (3.1)

An+ Pu, otherwise.

Setn:=n+1 and go to Step 1.
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Remark 3.1. (1) We note that the cost operator in our proposed algorithm is pseudomonotone
(a broader set of mappings than monotone mappings) and uniformly continuous (a much
weaker assumption than the Lipschitz continuity assumption used in several of the existing
results in the literature).

(i1) Unlike in several of the existing results in the literature on the VIP with non-Lipschitz
operators, our proposed method does not require any linesearch technique. Indeed, it uses a
simple step size rule which generates a non-monotonic sequence of step sizes. The step size
is constructed such that it reduces the dependence of the algorithm on the initial step size
Al

(i11) Our work is an extension and improvement on the work of [39] from the framework of
Hilbert spaces to Banach spaces.

(iv) We employ the inertial technique and self-adaptive step size to speed up the convergence

rate.

4. CONVERGENCE ANALYSIS

In this section, we prove some lemmas required to establish our strong convergence theorem.

Lemma 4.1. Let {A,} be the sequence of step sizes generated by Algorithm 3.1. Then, {A,} is well
defined and li_r>n Ap=A € min{5 A}, A1 +'P], where ¥ = Y| p, and for some N > 0.
n—o0

Proof.

Since A is uniformly continuous, then by (2.1) it follows that for any given € > 0, there exists
K < +oo such that ||Aw,, — Ay,|| < K||w, — yu|| + €. Thus, for the case Aw, — Ay, # 0 forall n > 1
we have

mlwn=yall o Blwa—=yull _ pllwa—yall _p

1Awn —Ayall = Kllwn =yl +& — (K+e0)llwa—yull ~ N’

where € = €] ||w, — yn|| for some €; € (0,1) and N = K + €. Therefore, by the definition of 4,1,

the sequence {4, } has lower bound min{%;, 4, } and has upper bound A, +¥. By Lemma 2.8, the

limit li_r>n Ay exists and denoted by A = lim 4,. Clearly, A € [min{§,A:},A; +¥]. O
n—roo n—oo

Observe that by (3.1), we have

o we =yl ][ wa = yal
= —7l }<—7
Ft m‘“{nAwn—Aynn P S A, — Ay

which implies that

[Aw,, — Ay,|| <

=l Vaz 1. (.0
n+1
Lemma 4.2. Let {w,} and {y,} be sequences generated by Algorithm 3.1, and suppose {x,} is
bounded. Let {wy, } be a subsequence of {w,} which converges weakly to some X € E as k — oo
and limy_,eo || Wy, — Y, || =0, then X € VI(C,A).
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Proof. By using the definition of {y,} and Lemma 2.1, we obtain (Jwy, — Ay Awn, —Jyn, .,y —Yn,) <
0 for all y € C. Equivalently, %(ank — IV, Y = Yn) < (Awy,,y — yp,) forall y € C. It follows that

Tk

1
;L_<ank _Jynkay _ynk> + <Awnkaynk - Wnk> < <Awnkay - Wnk>7vy eC. 4.2)
ny,

Since ||Wp, — ¥n, || = 0 as k — oo and J is norm-to-norm uniformly continuous on subsets of E, we
have ||Jw,, —Jy,, || — 0. By taking limit as k — oo in (4.2), we arrive at

ligninf(Awnk,y — wnk> >0,VyeC. 4.3)
—>00
Furthermore,

<Aynkay_ynk> - <A)’nk _Awnkay_wnk> + <Awnk7y_wnk> + <Aynk,Wnk —)’nk> (44)

Since ||y, — yn || — 0, then limy e, [| AW, — Ay || = O due to the uniform continuity of A, which
together with (4.3) and (4.4) gives

timinf(Ayy,,y —yn,) = 0, ¥y €C. 4.5)
n—oo

Now, choose a sequence {&} of positive numbers such that {&} is decreasing and & — 0 as k — oo,
Let N, represent the smallest positive integer for any k such that

<AYnj7y_)’nj>+3k207Vj2Nka (46)

where the existence of Nj follows from (4.5). Observe that {N;} is increasing since {&} is
decreasing. Moreover, since {y,, } C C for each k, we can suppose Ayy, # 0 (otherwise, yy, is a
solution). For some bounded sequence {uy, } C E with (Ayy,,uy,) = 1 for each k > 1, we deduce
from (4.6) that (Ayn,,y + &un, —yn,) > 0 for all y € C. Since A is pseudomonotone, we have
(A(y+ &un, ),y + €un, —yn,) > 0 for all y € C. Therefore, it follows from the last inequality that

(Ay,y —yN,) = (Ay —A(y + &un, ),y + &un, —yn,) — E(Ay,u,), Yy €C. 4.7)
Since {uy, } is bounded and ]}im &, = 0, it follows that klim guy, = 0. Since A is uniformly contin-
—y00 —>00

uous, {yn, } and {uy, } are bounded, together with the fact that lim_,.. &upy, = 0, it follows from
(4.7) that liminfy_,..(Ay,y —yn,) > 0 for all y € C. Hence, we obtain

(Ay,y —%) = lim (Ay,y —yn,) = liminf(Ay,y —yy,) > 0, Vy € C.
k—yo0 k—so00
Therefore, by Lemma 2.2, we obtain X € VI(C,A). O

Lemma 4.3. Let {x,} be a sequence generated by Algorithm 3.1. Then

2 2 2%2
0(przn) < O(p,wy) — (1 - %)cb(yn,wn)- (4.8)
n+1

Proof. Fix p € VI(C,A). From the definitions of z, and ¢, we have
¢ (p,zn) = ||PH2 = 2(p,Jyn = An(Ayn — Awn)) + [[Jyn — An(Ayn — Awy) ”2
= ||p||2 - 2<pa~])’n> +2)‘n<p7Ayn _AWn> + HJYn - )/n(Ayn _AWn) ||2 4.9)
By using Lemma 2.4, we see that E* is 2-uniformly smooth. It follows from Lemma 2.5 that

1Y — An(Ayp — Awp)||? < 1Ynl|> = 220 (Y, Ay — Awy) + 2K2 A2 || Ay, — Aw, |2 (4.10)
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Substituting (4.10) into (4.9), and applying (P1), we obtain
0(pz0) < |1PI1> = 2(p,Jyn) + 22 (P, Ay — Awy) + [ Tya|> = 220 (v, Ay — Awy)
+ 2K A2 || Ay, — Aw, ||
= 0(P,wn) + O W, Yn) +2(p — W, JWp — Jyn) + 220 (p — Yn,Ayn — Awy,)
+2K22.2 | Ay, — Aw 2. 4.11)
By (P2), we have
O (Wn,¥n) = =@ (Vns Wn) +2{9n — Wn, Jyn — Jwy). (4.12)
From the definition of y, = IIcJ ! (Jw, — A, Aw,,), we have (p — y,., Jw, — A,Aw, — Jy,) < 0, which
implies that
(P =Yn,Jwn = Jyn) < An(p = yn,Awn). (4.13)
Applying (4.12) and (4.13) in (4.11), we obtain
¢ (Ps2n) < G(Pswn) — O (Vs W) + 200 — Wi Jyn — IWp) +2{p — Wi, JWn — Jyn)
+220(p — Y, Ay — Awn) + 271 [ Ay — Awi|*
< O(p,wn) = O(ns W) = 240 (Y — P, AWn) + 20 (P = Yn, AV — Awy) + 2K A || Ay, — Aw, ||
= (P, Wn) = 9 (ns W) — 22 {(Vn — P, AYa) + 26 A [ Ay — Aw, > (4.14)

Since p € VI(C,A), we have (Ap,y, — p) > 0,Vp € C. By the pseudomonotonicity of A, it follows
that (Ay,,y, — p) > 0. Hence, we obtain from (4.14) that

O(pszn) < O(P,wn) — O (Yn, wn) + ZKZ)“r%HAYn _Awn||2-
By (4.1) and Lemma 2.7, we have

Deu?KA2
n+1
2cu?KkA2
=gt = (1= 22555 Y o).
A
n+1
This completes the proof. ]

At this point, we state and prove our strong convergence theorem for the proposed algorithm.

Theorem 4.1. Assume that Assumption 3.1 holds. Then, the sequence {x,} generated by Algorithm
3.1 converges strongly to X € VI(C,A), where ¥ = Iy c 4)Xo-

Proof. We divide the proof into several steps as follows.
Step 1. The set C, is closed and convex.

Clearly, C; = C is closed and convex. Suppose that C, and Dy, are closed and convex for some
k > 1, where

2eu?K2A2

Dy={peCi:9(p,zx) < ¢(p,wi) — <1 Y

)¢<yk,Wk>}.
k+1

By the construction of Cy 1, we have Cy1 = C; N Dy. Since Dy and Cy, are closed and convex, then
Ci1 1s closed and convex. By induction, we can conclude that C, is closed and convex.
Step 2. The sequence {x,} is well defined.
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It is clear that VI(C,A) C C =C). Let VI(C,A) C Cy for some k > 1, and let p € VI(C,A). From
(4.8), it follows that

2 2 21‘2
C‘L)LLZK £ )(P(yk?Wk)v
k+1

which implies that VI(C,A) C Dy. Hence VI(C,A) C Ci . By induction, we have VI(C,A) C C,
for all n > 1. Thus the sequence {x,} is well defined.
Step 3. The sequence {x,} is bounded.

Since VI(C,A) is a nonempty, closed, and convex subset of E, then there exists an element
y € VI(C,A). 1t is clear that x,,11 € C,+1 C C,, for all n > 1. Also, we have (y — x,11,Jxp —
Jxpy1) <0 for all y € C,. From Lemma 2.1, we have x,;| = Ilc,, ,x0. Then, it follows that
O (xn,x0) < @ (x+1,%0) for all n € N. Similarly, since VI(C,A) C C,, we have ¢ (x,,x0) < ¢ (y,x0)
forally € VI(C,A), n € N, which implies that {¢ (x,,x0)} is bounded. Therefore {x,} is bounded.
Consequently, {y,},{w,}, and {z,} are bounded.
Step 4. We show that the sequence {x, } converges strongly to X € C.

It is already known that x,, = Il¢c,xo and x,,41 = Il¢, ,x0 € Cyy1 C Cy. Then, it follows from
Lemma 2.1 that

O(p,zx) < O(p,wi) — (1 —

¢ (%n,%0) < O (Xnt1,%0) — @ (Xnt1,%n) < @ (Xns1,%0).
Hence, sequence {¢(x,,xo)} is increasing. Therefore lim,_s. ¢ (x,,x0) exists. Clearly, from the
construction of C,, we have that x,, = Il¢, xo € C,, C C, for m > n > 1. Recall that x, = Ilc,xo.
From Lemma 2.1, it follows that @ (x,,,x,) < @ (xXm,%0) — @ (xn,x0) — 0 as m,n — oo, which implies
by Lemma 2.3 that

lim || X, — x| = 0. (4.15)
n—oo

This implies that {x,} is a Cauchy sequence. Hence, there exists an element X € C such that
lim,, o0 Xx,; = X.
Step 5. We show that x € VI(C,A).

Letting Let m = n+ 1 in (4.15), we have limy,_c||Xy+1 — X|| = 0. Since J is norm-to-norm
uniformly continuous on each bounded subset of E, we have

im ([ Jxps1 — Jxa]| = 0. (4.16)
n—soo

From the definition of w,, we see Jw, — Jx, = 6,(Jx, — Jx,_1), which together with (4.16) yields
Wy — Ixn || = |6n]||Jxn — Jxn—1]| = 0 as n — eo. 4.17)
By Lemma 2.6, we obtain
[Wn — x> < 262 (W, — X, Jwp — Jx) < 262 || Wi — x| 1w — x|

which implies that
[Wn — x| < 22| Iwy — Jxn|| = 0 as n — oo, (4.18)

Since {x,} and {w,} are bounded, it follows from Remark 2.1 that ¢ (x,,w,) — 0 as n — oo. By
(4.16) and (4.17), we have ||Jx,11 —Jwy|| < [[Jxpt1 — x| + || I — Iwn|| — 0 as n — co. By (P2),
we obtain

¢(xn+lawn) < <xn+1 — Wi, J X1 _JWn> < MHan—H _JWHH — 0. (4.19)
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By Lemma 2.3, we have lim,_ ||X,+1 — wy|| = 0. Recall that x,,, | € C,. Hence, we have
2cu’K*A2
T

n+1

q)(xn—l—len) < (p(xn—l—lvwn) - (l )(P(ynawn)- (4.20)

Moreover, since lim,, oA, =A >0and u € <O, ﬁ) , we obtain

2cu?K2A?
lim (1 - %) = (1—2cu’x?) > 0.
e 2’n-i—l
2,292
Then, there exists ng € N such that 1 — %—Kl” > & > 0 for all n > ng. It follows from (4.20) that, for

n+1
alln > ng, ¢ (xpt1,2n) < O(Xnt1,wWn) — €P (Y, wn). By (4.19), we have that limy, e @ (x,11,2,) =0,

which implies that lim,,_e ||x,11 — z,|| = 0. Since J is norm-to-norm uniformly continuous on
bounded subset of E, we have ||Jx,+1 —Jz,|| — 0 as n — oo. Hence, we obtain

[zn — Iwn|| < |[Jzn — Ixnt1 || + |[Jxn1 —Iwn|| — 0 as n — oo, (4.21)

Since J~! is norm-to-norm uniformly continuous on bounded subset of E*, we have lim,, ... ||w,, —
Zn|| = 0. ¢(z,,w,) — 0 as n — co. From (4.8), we have

2eu?KkA2
e

n+1

)¢<yn,wn> < O(powa) — 0(pr2). (4.22)

From (P1), we have
O(p,wn) = O(p,zn) + O (20, Wn) +2(p — 2, J 20 — W),
which implies that

O(pswn) — 0(Ps2n) = O(2n,Wn) +2(p — 20, Jzn — Jw)
S(P(ZmWn)+2”p_zn||||JZn_JWn||' (4.23)
By taking the limit of (4.23) and applying (4.21), we see that lim,_.(@(p,wn) — @ (p,z,)) = 0.

Since 1imy ;e (1 _ 2oy ) > 0, it follows from (4.22) that limy_se @ (yn, wn) = 0. It follows

A
from Lemma 2.3 that lim,,_« ||y, — wy|| = 0. Since {x,} is a bounded sequence, then there exists
a subsequence {x } C {x,} such that x,, — x. By (4.18) we have w, — X. Moreover, we have
limy e | Wn, — ¥, || = 0, and it follows from Lemma 4.2 that ¥ € VI(C,A).

Step 6. We show that X = ITy (¢ 4)Xo-

Clearly, x, = Il¢,xp and VI(C,A) C C,. Hence, from Lemma 2.1, it follows that
(y —xn,Jx0 —Jxp) <0, Vy e VI(C,A). (4.24)

Observe that J is norm-to-norm uniformly continuous on bounded sets. By taking the limit of
(4.24), we obtain (y — X, Jxo —J%) <0 for all y € VI(C,A), which implies that X = ITy;(c 4)xo. This
completes the proof. U

Next, we have the following consequent result in the framework of Hilbert spaces.

Corollary 4.1. Let C be a nonempty, closed, and convex subset of a real Hilbert space H, and
let A: H — H be a pseudomonotone and uniformly continuous mapping. Let {x,} be a sequence
generated by the Algorithm presented as follows:
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Algorithm 4.2.

Step 0: Select u € (O, 1),%1 >0, and 6, € [0, 0] for some 6 > 0. Let xo,x; € E be arbitrary. Set
Ci=Candn:=1.

Step 1: Compute wy, = (x, + 6, (x, — Xp—1))-

Step 2: Compute y, = Pc(w, — L,Awy,).

Step 3: Compute z, =y, — A, (Ay, — Awy,).

Step 4: Construct

2 2 .Uz/lz 2
cn+1={pecn:||zn—pu < lwa—pl —(1— ")Hwn—ynu }

and compute x, 1 = Fc, X0, where the adaptive step-size is given by

2’YH-] - min{%, kn—'_pf’l}a AWn—AJ’n?é(),
A+ Pn; otherwise.

Setn:=n+1 and go to Step 1.

IfVI(C,A) # 0 and all other conditions of Theorem 4.1 hold, then {x,} converges strongly to
X = Pyy(c.a)Xo0-

5. NUMERICAL EXAMPLES

In this section, we present some numerical examples and compare our proposed method, (Pro-
posed Alg.) Algorithm 3.1 with Algorithm 1.2 proposed by Cai et al. (Cai et al. Alg.), Algorithm 1.3
proposed by Shehu (Shehu Alg.), Algorithm 1.4 by Shehu (Shehu Alg.), Appendix 6.1 by Liu (Liu
Alg.), and Appendix 6.2 by Tan & Cho (Tan & Cho Alg.). All numerical computations were carried
out using Matlab version R2021(b). We plot the graphs of errors against the number of iterations
in each case. In all the experiments, we use ||x,.1 —x,|| < 10~ as the stopping criterion. We
choose 4 =0.5,6, =0.75, and A; = 0.25 for our proposed Algorithm 3.1. A, = 0.025, o, = ﬁ in
Algorithm 1.2 and Algorithm 1.3. y=0.65,¢/ = 0.05,6 = 0.1 in Algorithm 1.4. For Appendix 6.1,

Ay =0.75,04, = 5,51, and B, = 3245 and Sx = §. 4 = 0.5,6, = 0.75, and A; = 0.25 in Appendix
6.2.

Example 5.1. Let A : R? — R? be defined by Ax := (ax; + bxy +asin(x1 ), —bx| + cx + csin(xy))
for all x = (x1,x;) € R?, where a,b, and c are real numbers. Then, A is monotone and L-Lipschitz
continuous with L = \/2max{4a2 + b2 4c2 +b2}. The set of feasible solutions is given by C =
{(x1,x2) € R?: —1 < x; < 1}. Tt is clear that VI(C,A) = {(0,0)}. Let z = (0,0) and use TOL, =
||, — z|| < 107> as the stopping criterion.

We consider the following cases for the numerical experiments:

Case 1: Take xop = (2,3),x; = (1,2).

Case 2: Take xo = (1,1),x; = (1,-2).

Case 3: Take xo = (3,—2),x; = (—2,2).

Case 4: Take xo = (0,1),x; = (1,2).

Te numerical results are reported in Figures 1-4 and Table 1.
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TABLE 1. Numerical Results for Example 5.1
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Case 1 Case 2 Case 3 Case 4
Iter. CPU Time Iter. CPU Time Iter. CPU Time Iter. CPU Time
Caietal. Alg. 83 0.0089 92 0.0091 73 0.0084 83 0.0086
Shehu Alg. 80 0.0045 88 0.0050 71 0.0045 80 0.0047
Shehu Alg. 64 0.0065 71 0.0065 59 0.0066 64 0.0064
Liu Alg. 70 0.0055 54 0.0053 54 0.0052 70 0.0053
Tan & Cho Alg. 16 0.0070 16 0.0064 16 0.0068 16 0.0066
Proposed Alg. 3.1 16 0.0131 16 0.0123 16 0.0124 16 0.0124
* e ES
2Tt gt
10°F «3
o Iterauonlnoljmber (n) o o Iterauonlnoljmber (n) o
FIGURE 1. Example 5.1: Case 1 FIGURE 2. Example 5.1: Case 2

—k— Cai et al Alg.
Shehu Alg.
—<— Shehu Alg.
Liu Alg.
—©—Tan & Cho Alg.
—A— proposed Alg.

i
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Iteration number (n)

FIGURE 3. Example 5.1: Case 3
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10t
Iteration number (n)

FIGURE 4. Example 5.1: Case 4
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Example 5.2. Let E = (I5(R), ||.||;,), where L(R) := {x = (x1,x2,x3,...), X;

1
and |[x||, := (X7 |xi|?)? for all x € L(R). Let € = {x € L(R) : |[x—al|;, < r}, where a =
Define the

(L%;é;"

continuous.

Consider the following cases for the numerical experiments:

Case 1: Take xo = (3,1,%,---) and x; = (2,1,3,---).

Case 2: Take xo = (2,1, 1,---) and x| = (1,%,%,--~).
Case 3: Take xo = (3,1,%,---) and x; = (%, 8,57, ).
Case 4: Take xop = (2, 1,%,--~) and x; = (0.1,0.01,0.001,---).
The numerical results are reported in Figures 5-8 and Table 2.

—|
W=

TABLE 2. Numerical Results for Example 5.2

-), r =2. Then % is a nonempty, closed, and convex subset of /;(R).
operator A,: [r(R) — I (R) by Ax =35 +(1,1,0,0,...,). Then, A is pseudomonotone and uniformly

ER:YY |xi]? < o0}

Case 1 Case 2 Case 3 Case 4

Iter. CPU Time Iter. CPU Time Iter. CPU Time Iter. CPU Time
Caietal Alg. 481 0.0192 491 0.0195 487 0.0233 481 0.0233
Shehu Alg. 475 0.0041 484 0.0045 482 0.0044 475 0.0044
Shehu Alg. 383  0.0134 390 0.0143 388 0.0133 383 0.0133
Liu Alg. 44 0.0046 44 0.0044 44 0.0045 44 0.0045
Tan & Cho Alg. 53 0.0055 53 0.0057 54 0.0057 53 0.0060
Proposed Alg. 3.1 37 0.0116 37 0.0113 37 0.0110 37 0.0123

—¥— Cai et al Alg.
Shehu Alg.
—<— shehu Alg.
Liu Alg.
—6— Tan & Cho Alg.
—A— proposed Alg.

.
10 10?
Iteration number (n)

FIGURE 5. Example 5.2: Case 1

10°

—¥— Cai et al Alg.
Shehu Alg.
—<— shehu Alg.

Liu Alg.

—6— Tan & Cho Alg.
—A— proposed Alg.

10

.
10°

Iteration number (n)

10°

FIGURE 6. Example 5.2: Case 2
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—%— Cai et al Alg.
Shehu Alg.
—<— Shehu Alg A
Liu Alg. 100 F
—O— Tan & Cho Alg.
—A— proposed Alg

—%— Cai et al Alg.
Shehu Alg.
—<— Shehu Alg
Liu Alg.
—O— Tan & Cho Alg.
—A— proposed Alg

. . ) . . )
10° 10 10° 10° 10° 10 10° 10°
Iteration number (n) Iteration number (n)

FIGURE 7. Example 5.2: Case 3 FIGURE 8. Example 5.2: Case 4

6. CONCLUSION

In this paper, we studied the class of pseudomonotone variational inequalities with non-Lipschitz
operators and proposed an inertial shrinking Tseng’s extragradient algorithm with self-adaptive
step sizes for approximating the solution of the problem in the framework of 2-uniformly convex
Banach spaces which are also uniformly smooth. Moreover, we proved a strong convergence result
for the proposed algorithm under mild conditions on the control parameters. We also provided some
numerical experiments in order to illustrate the efficiency of our algorithm as well as compare it
with related methods in the literature.
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Appendix 6.1. [40, Algorithm 4.1]

(

xo € E,
Vo = Hed 1 (Ix, — 1A (%)),
T, =4{wy €E: {(w—yn,Jxn — ApAx, —Jy,) <0},
wy, =17, (Jxn — XA (yn)),
Zn =J N xo + (1 — ty)Iw),
A+l = ]_1([)’an” + (1= Bn)JISzn),

where E is a 2-uniformly convex and uniformly smooth Banach space with 2-uniformly constant ¢y,
S: E — E is arelatively nonexpansive mapping and A : E — E* is a monotone and L-Lipschitz map-
ping with L > 0,{A,} is a real number sequence satisfying 0 < inf,>1 A, <sup,~1 A, < 7,{Bn} C
la,b] C [0, 1] for some a,b € (0,1),{ct,} C (0,1) with lim,yee 0y =0, and Y7 | = oo.

Appendix 6.2. [39, Algorithm 3.2]

Algorithm 6.3. Initialization: Set 6, € [—6, 0] for some 6 > 0,A; >0,u € (0,1), and C; = H.
Let xo,x; € H be arbitrary.
Iterative Steps: Calculate next iteration point x,4 as follows:

Wnp = (xn‘i‘en(xn_xnfl))a
Yn :PC(Wn_)LnAWn%
Zn :yn_;l«n(A n_AWn)7

Xn+1 = Fe,, X0,
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where

5 5 ‘uZ;LZ
cnﬂ={pecn:uzn—pu < Ilwa—pl —(1— ")Hwn—

and the adaptive step-size is given by

min{%, Mn},  Awy—Ay, #0,

A, otherwise.

Any1 =
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