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PROXIMAL LINEAR METHODS FOR DC COMPOSITE MINIMIZATION
PROBLEMS
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Abstract. In this paper, we introduce two linearized proximal algorithms for solving DC composite opti-
mization problems. The basic algorithms that we rely are the proximal-linear(ized) methods, which in each
iteration solve regularized subproblems formed by linearizing the smooth maps and the concave component,
respectively. It is proved that the two proposed algorithms provide descent methods and that if the sequences
generated by the algorithms are bounded, every cluster points are critical points of the functions under
consideration. Finally, a conclusion is stated and some directions for further research are suggested.
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1. INTRODUCTION AND PRELIMINARIES

In this paper, we are interested in the following class of composite optimization problems

min
x∈IRd

f (x) := g(c(x))−h(x), (1.1)

where g : IRm→ IR∪{+∞} and h : IRd → IR∪{+∞} are closed and convex functions and c : IRd →
IRm is a smooth map with the composition being on the convex component.

We focus on these optimization problems where the loss function is convex with concave penalty
that are common in sparse regression, compressive sensing, sparse approximation and which also
brings to mind canonical DC problems and clearly can be used to model reasonably a large class of
real-world systems; see, e.g., [1, 2, 3] and the references therein.

A look will also be taken when the composition is on the concave component, namely

min
x∈IRd

f (x) := g(x)−h(c(x)), (1.2)

where g : IRd→ IR∪{+∞} and h : IRm→ IR∪{+∞} are closed convex functions, and c : IRd→ IRm

is a smooth map.
Regularized nonlinear least squares and exact penalty formulations of nonlinear programs are

classical examples, while notable contemporary instances include robust phase retrieval and matrix
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factorization problems. The setting where c is the identity function, both (1.1) and (1.2) reduce to

min
x∈IRd

f (x) := g(x)−h(x), (1.3)

which is nothing else than DC minimization (minimization of a difference of two convex functions,
that use convex properties of the two convex functions separately) which is now common place
in large-scale optimization. The DCA investigated by Tao and An [4], is a popular algorithm
for DC minimization and a proximal point algorithm proposed in [5]. Moudafi and Maingé [6]
proposed an alternative proof of the main result of [5] with some extensions. A proximal linearized
algorithm for minimizing DC functions was then proposed in [7]. DC optimization algorithms were
proved to be particularly successful for analyzing and solving a variety of highly structured and
practical problems. As for (1.1), regularized nonlinear least squares and exact penalty formulations
of nonlinear programs are classical examples, while notable contemporary instances include robust
phase retrieval and matrix factorization problems. In statistical estimation often, one is interested in
minimizing an error between a nonlinear/linear process model G(x) and observed data b through
amisfit measure h. The resulting problem takes the form

min
x

h(b−G(x))+g(x),

where g may be a convex surrogate encouraging prior structural information on x, such as the l1-
norm, the squared l2-norm classically, but also for example l1-l2-norm; see [8, 9] and the references
therein. The misfit h = l2-norm appears in particular in nonlinear least squares while h = l1-norm is
used in the Least Absolute Deviations technique in regression and for robust phase retrieval. Concave
sparse penalty are common in sparse regression, compressive sensing, and sparse approximation [1],
Fan and Li [2] proposed the smoothly clipped absolute deviation (SCAD) regularizer that behaves
like the l1-norm near the origin, transitioning (via a concave quadratic) to a constant for large loss
values.

Our goal in this paper centers around prox-linear methods and share the same idea, namely,
they linearize some component h(·) or c(·); or both, which we propose to extend to the entire
problem classes (1.1) and (1.2). We begin by describing our methods for minimizing composite DC
functions which have the property that every cluster points of the sequences are critical points of the
composite DC functions. In each iteration of (1.4) (resp. (1.5)), the prox-linear method linearizes
the smooth map c(·) and h (resp. only h) solves, respectively the following proximal subproblems:

Given an initial point x0 ∈ dom f and a sequence of positive parameters (λk)k∈IN such that
liminfk→+∞ λk > 0, calculate (wk)k∈IN and compute (xk)k∈IN by{

wk ∈ ∂h(xk);
xk+1 = argminx∈IRd

(
g(c(xk)+∇c(xk)(x− xk))−〈wk,x− xk〉+ 1

2λk
‖x− xk‖2). (1.4)

If xk+1 = xk, stop. Otherwise, set k := k+1 and return the first step.
Likewise, calculate (wk)k∈IN and compute (xk)k∈IN by{

wk ∈ ∇c(xk)
∗∂h(c(xk));

xk+1 = argminx∈IRd
(
g(x)−〈wk,x− xk〉+ 1

2λk
‖x− xk‖2). (1.5)

If xk+1 = xk, stop. Otherwise, set k := k+1 and return the first step.
Note that if c is the identity function, then Algorithm (1.4) and (1.5) become exactly the linearized

proximal point algorithm introduced in [7] for DC functions. The setting where h is the null
function, Algorithm (1.4) reduces to the proximal-linear algorithm for composite minimization [10]
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and Algorithm (1.5) is nothing else than the classical proximal point algorithm. The underlying
assumption here is that the proximal subproblems can be solved efficiently.

Throughout this paper, we assume that the original function f is bounded below. As it is known
that a necessary condition for x ∈ dom f to be a local minimizer of f is in general hard to be reached,
so we focus our attention on finding critical points of f . Before stating the definition of critical
points, given a convex function ϕ : IRd→ IR∪{+∞}, we recall that a vector v is called a subgradient
of ϕ at a point x ∈ domϕ if

ϕ(y)≥ ϕ(x)+ 〈v,y− x〉 ∀y ∈ IRd.

The set of all subgradients of ϕ at x is denoted by ∂ϕ(x), and is called the subdifferential of ϕ at
x. For any point x /∈ domϕ , we define ∂ϕ(x) to be the empty set. For any closed function ϕ , its
Frechét subdifferential at x, ∂̂ϕ(x), is the collection of vectors v such that

ϕ(y)≥ ϕ(x)+ 〈v,y− x〉+o(‖y− x‖) ∀y ∈ IRd.

Unfortunately, ∂̂ϕ can be empty at certain points ever for Lipschitz continuous functions. To avoid
this degeneracy, we arrive at the limiting subdifferential, ∂ϕ , defined as

v ∈ ∂ϕ(x)⇔∃xk→ x,ϕ(xk)→ ϕ(x),vk ∈ ∂̂ϕ(xk),vk→ v.

Clearly, ∂̂ϕ(x)⊂ ∂ϕ(x) for all x. It is known that the above subdifferential reduces to the classical
subdifferential in convex analysis when ϕ is convex. In addition, if ϕ is continuously differentiable,
then the limiting subdifferential reduces to the gradient, ∇ϕ , of the function ϕ . From the definition,
it follows that if x̄ is a local minimizer, then 0∈ ∂̂ϕ(x̄) and 0∈ ∂ϕ(x̄), which generalizes the familiar
Fermat’s rule. The latter condition is in general hard to be reached and we relax it to the following
notion of critical point. Throughout this paper, we also assume that the chain rule can be applied
when needed which is always the case via qualification conditions as Ndomg(c(x̄))∩Ker(∇c(x̄)∗) =
{0}, Ndomg being the normal cone to domg or even better like IR+

(
domg−c(x̄)

)
−∇c(x̄)(IRm)= IRd;

see [11, 12] and the references therein.

Definition 1.1. Recall that x̄ ∈ IRd is a critical point of f in (1.1) if

∇c(x̄)∗∂g(c(x̄))∩∂h(x̄) 6= /0, (1.6)

and that x̄ ∈ IRd is a critical point of f in (1.2) if

∂g(x̄)∩∇c(x̄)∗∂h(c(x̄)) 6= /0. (1.7)

2. P-L METHOD FOR DC COMPOSITE MINIMIZATION (1.4)

Throughout this section, we make the following assumptions on the functional components of
the problem: h : IRd → IR∪{+∞} is a proper, closed, convex function, g : IRm→ IR∪{+∞} is a
convex and L-Lipschitz continuous function

‖g(x)−g(y)‖ ≤ L‖x− y‖ ∀x,y ∈ IRm,

and c : IRm→ IRd is a C1-smooth mapping with a β -Lipschitz continuous Jacobian map

‖∇c(x)−∇c(y)‖ ≤ β‖x− y‖ ∀x,y ∈ IRm.

The norm here is the operator norm.
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The proposed algorithm seeks critical points of f : g ◦ c− h by constructing two sequences
(xk)k∈IN and (wk)k∈IN by the rules (1.4). To establish its convergence, we begin by showing that
Algorithm (1.4) is a descent method.

Theorem 2.1. The sequence (xk)k∈IN generated by Algorithm (1.4) satisfies
(i) either the algorithm stops at a critical point.

(ii) or f decreases strictly, i.e. f (xk+1)< f (xk) provided that 0 < λk <
1

Lβ
for all k ∈ IN.

Proof. From the two relations in (1.4) and the subdifferential chain rule, we have

wk ∈ ∂h(xk) and wk ∈
xk+1− xk

λk
+∇c(xk)

∗
∂g
(
c(xk)+∇c(xk)(xk+1− xk)

)
, (2.1)

respectively. If xk+1 = xk, then

wk ∈ ∂h(xk)∩∇c(xk)
∗
∂g(c(xk)),

which means that xk is a critical point of f . Now, suppose xk+1 6= xk. By the definition of
subdifferential, we can write

h(xk+1)≥ h(xk)+ 〈wk,xk+1− xk〉.
On the other hand, since xk+1 minimizes

g(c(xk)+∇c(xk)(·− xk))−〈wk, ·− xk〉+
1

2λk
‖ ·−xk‖2,

we also have

g(c(xk))≥ g(c(xk)+∇c(xk)(xk+1− xk))−〈wk,xk+1− xk〉+
1

2λk
‖xk+1− xk‖2. (2.2)

Combining the two last inequalities, we obtain

f (xk) = g(c(xk))−h(xk)≥ g(c(xk)+∇c(xk)(xk+1− xk))−h(xk+1)+
1

2λk
‖xk+1− xk‖2. (2.3)

This lead to

f (xk)≥ f (xk+1)+g(c(xk)+∇c(xk)(xk+1− xk))−g(c(xk+1))+
1

2λk
‖xk+1− xk‖2. (2.4)

Taking into the fact that

‖g(c(xk)+∇c(xk)(xk+1− xk))−g(c(xk+1))‖ ≤ L‖
(
c(xk)+∇c(xk)(xk+1− xk)

)
− c(xk+1)‖

together with
‖
(
c(xk)+∇c(xk)(xk+1− xk)

)
− c(xk+1)‖

= ‖
∫ 1

0

(
∇c(xk + t(xk+1− xk))−∇c(xk)

)
(xk+1− xk)dt‖

≤
∫ 1

0
‖
(
∇c(xk + t(xk+1− xk))−∇c(xk)

)
‖‖xk+1− xk‖dt

≤ β‖xk+1− xk‖2
∫ 1

0
tdt =

β

2
‖xk+1− xk‖2,

we finally deduce

f (xk)≥ f (xk+1)+
1
2
(λ−1

k −Lβ )‖xk+1− xk‖2. (2.5)
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Therefore, the algorithm provides a monotonically decreasing sequence ( f (xk))k∈IN provided that
0 < λk ≤ 1

Lβ
, since xk+1 6= xk. �

The following result is a consequence of Theorem 2.1.

Corollary 2.1. Consider the sequence (xk)k∈IN generated by Algorithm (1.4). Then sequence
( f (xk))k∈IN is convergent. Furthermore, if f is a continuous function and (xk)k∈IN is bounded, then
limk→+∞ f (xk) = f (x̄) for some cluster point x̄ of (xk)k∈IN .

The following proposition is useful to prove the convergence theorem.

Proposition 2.1. Let (xk)k∈IN be generated by Algorithm (1.4), then limk→+∞‖xk+1− xk‖= 0.

Proof. From (2.5), we have that ∑
n−1
k=0

1−λkLβ

2λk
‖xk+1−xk‖2≤ f (x0)− f (xk). Since f is bounded from

below and liminfk→+∞ λk > 0, we obtain ∑
+∞

k=0
1−λkLβ

2λk
‖xk+1− xk‖2 < +∞ and thus the sequence

(xk)k∈IN is asymptotically regular, namely limk→+∞ ‖xk+1− xk‖= 0. �

Theorem 2.2. Suppose that (xk)k∈IN is bounded. Then every cluster-point x̄ of (xk)k∈IN is a critical
point of the function f , namely

∂g(x̄)∩∇c(x̄)∗∂h(c(x̄)) 6= /0.

Proof. Note that from the first part of (2.1) and the convexity of g, if (xk)k∈IN is bounded, then
(wk)k∈IN is also bounded. Let x̄ and w̄ be cluster points of the sequences (xk)k∈IN and (wk)k∈IN ,
respectively. Then, there exist two subsequences (xkν

) and (wkν
) converging respectively to x̄ and

w̄. Since g is convex and lower semicontinuous, it follows from the first part of (2.1) and maximal
monotonicity of its subdifferential that w̄ ∈ ∂h(x̄) when ν →+∞.

Now, we claim that w̄ ∈ ∇c(x̄)∂g(c(x̄)). The optimality condition of the minimization problem
in algorithm (1.4) (i.e., the second part of (2.1)) reads as

wkν
=

xkν+1− xkν

λkν

+∇c(xkν
)∗zkν

for some zkν
∈ ∂g

(
c(xkν

)+∇c(xkν
)(xkν+1− xkν

)
)
.

Taking into account the C1-smoothness of c, convex and lower semicontinuity of g together with
asymptotical regularity of (xk)k∈IN , we obtain at the limit w̄ = ∇c(x̄)∗z̄ with z̄ ∈ ∂g(c(x̄)). These
lead finally to

∂g(x̄)∩∇c(x̄)∗∂g(c(x̄)) 6= /0,
which means that x̄ is a critical point of f . �

3. P-L METHOD FOR DC COMPOSITE MINIMIZATION (1.5)

Throughout this section, we make the following assumptions on the functional components of
the problem: g : IRd → IR∪{+∞} is a proper, closed, and convex function, h : IRm→ IR∪{+∞} is
a convex and L-Lipschitz continuous function

‖h(x)−h(y)‖ ≤ L‖x− y‖, ∀x,y ∈ IRm,

and c : IRd → IRm is a C1-smooth mapping with a β -Lipschitz continuous Jacobian map

‖∇c(x)−∇c(y)‖ ≤ β‖x− y‖, ∀x,y ∈ IRd.

The proposed algorithm look for critical points of f := g− h ◦ c by constructing two sequences
(xk)k∈IN and (wk)k∈IN by the following rules
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{
wk ∈ ∇c(xk)

∗∂h(c(xk));
xk+1 = argminx∈IRd

(
g(x)−〈wk,x− xk〉+ 1

2λk
‖x− xk‖2). (3.1)

We begin by showing that Algorithm (1.5) is also a descent method.

Theorem 3.1. The sequence (xk)k∈IN generated by Algorithm (1.5) satisfies
(i) either the algorithm stops at a critical point.

(ii) or f decreases strictly, i.e. f (xk+1)< f (xk) provided that 0 < λk <
1

Lβ
for all k ∈ IN.

Proof. In view of (1.5), the subdifferential chain rule yields

wk ∈ ∇c(xk)
∗
∂h(c(xk)) and wk +

xk− xk+1

λk
∈ ∂g(xk+1),

respectively. If xk+1 = xk, then wk ∈ ∂g(xk)∩∇c(xk)
∗∂h(c(xk)), which means that xk is a critical

point of f .
Now, we suppose xk+1 6= xk. Since wk = ∇c(xk)

∗vk for some vk ∈ ∂h(c(xk)), by the definition of
subdifferential, we can write

h(c(xk+1))≥ h(c(xk))+ 〈vk,c(xk+1)− c(xk)〉. (3.2)

On the other hand, as xk+1 minimizes g(·)−〈wk, ·− xk〉+ 1
2λk
‖ ·−x‖2, we also have

g(xk)≥ g(xk+1)−〈wk,xk+1− xk〉+
1

2λk
‖xk+1− xk‖2. (3.3)

Combining the last inequalities, we obtain
f (xk) = g(xk)−h(c(xk))

≥ f (xk+1)+ 〈vk,c(xk+1)− c(xk)〉−〈wk,xk+1− xk〉+
1

2λk
‖xk+1− xk‖2.

(3.4)

In view of
〈vk,c(xk+1)− c(xk)〉−〈wk,xk+1− xk〉 = 〈vk,c(xk+1)−

(
c(xk)+∇c(xk)(xk+1− xk)

)
〉

≥ −Lβ

2 ‖xk+1− xk‖2,

this lead again to

f (xk)≥ f (xk+1)+
1
2
(λ−1

k −Lβ )‖xk+1− xk‖2. (3.5)

Therefore, this algorithm provides also a monotonically decreasing sequence ( f (xk))k∈IN since
0 < λk <

1
Lβ

and xk+1 6= xk. �

The following results are consequences of Theorem 3.1.

Remark 3.1. Consider the sequence (xk)k∈IN generated by Algorithm (1.5), the sequence ( f (xk))k∈IN
is convergent. Moreover, taking into account (3.5) and summing along the indices i = 0, · · ·,n, we
obtain that the sequence (xk)k∈IN is again asymptotically regular, namely limk→+∞ ‖xk+1− xk‖= 0.
Furthermore, if f is a continuous function and (xk)k∈IN is bounded, then limk→+∞ f (xk) = f (x̄) for
some cluster point x̄ of (xk)k∈IN .

Theorem 3.2. Suppose that (xk)k∈IN is bounded. Then every cluster-point x̄ of (xk)k∈IN is a critical
point of the function f , namely

∂g(x̄)∩∇c(x̄)∗∂h(c(x̄)) 6= /0.
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Proof. From (1.5), convexity of h together with C1 smoothness of c, if (xk)k∈IN is bounded, then
(wk)k∈IN is bounded too. Let x̄ and w̄ be cluster points of the sequences (xk)k∈IN and (wk)k∈IN ,
respectively. Then, there exist two subsequences (xkν

) and (wkν
) converging respectively to x̄ and w̄.

Since h is convex and lower semicontinuous and c is C1 smooth, it follows from (1.5) and maximal
monotonicity of subdifferential of h that w̄ ∈ ∇c(x̄)∗∂h(c(x̄)) when ν →+∞. Now, we clam that
w̄ ∈ ∂g(x̄). The optimality condition of the minimization problem in algorithm (1.5) reads as

wkν
+

xkν
− xkν+1

λkν

∈ ∂g(xkν+1).

Taking into account the convex and lower semicontinuity of g and thus maximal monotonicity of its
subdifferential, together with asymptotical regularity of (xk)k∈IN , we obtain at the limit ν →+∞

that w̄ ∈ ∂g(x̄). These lead finally to

∂g(x̄)∩∇c(x̄)∗∂h(c(x̄)) 6= /0,

which means again that x̄ is a critical point of f . �

Remark 3.2. It is worth mentioning that the results presented are still true if we consider approxi-
mate versions obtained by replacing the exact subdifferential by the approximate one such as in
[6] and inexact versions handling approximate solutions of subproblems as in [7]. A generalized
version of (1.4) may be proposed by using quasi distance as regularization term which preserves the
nice properties of convexity, continuity and coercivity of the Euclidean norm [13]. This kind of
generalized method is more appropriate and is a nice tool to model the dynamics of human behaviors
in the context of the variational rationality approach [14]. It is also well known that inertial versions
of prox-(linear) methods automatically accelerate the convergence. We hope that this paper may
stimulate further research involving proximal linearized algorithms for composite DC functions
and these concepts. Also, one can replace g in (1.1) (resp. h in (1.2)) by a smooth approximation
(for instance, its Moreau envelope which is convex, Lipschitz and enjoys the key properties to
be continuously differentiable, with Lipschitz gradient and which is a good approximation of the
associated function) and then minimize the resulting composite function by prox-linear methods
suggested in this paper.

To conclude, we foresee further progress in this topics in the near future beginning with global
and Linear convergences of the sequences (1.4) and (1.5) under suitable additional assumptions such
as Kurdyka-Lojasiewicz property, which is satisfied by a wide variety of functions such as proper
closed semi algebraic functions, and plays an important role in the convergence analysis of many
first-order methods. Another focus of research regarding the composite problem minx h(c(x))+g(x),
introduced in [15], is to investigate the following general composite envelope

ϕλ (x) := min
u∈IRd

(
h(c(x)+∇c(x)(u− x))+g(u)+

1
2λ
‖u− x‖2)

in line with the composite Moreau envelope studied in the excellent paper [16]. Relying on

Sλ (x) := arg min
u∈IRd

(
h(c(x)+∇c(x)(u− x))+g(u)+

1
2λ
‖u− x‖2)

and

Rλ (x) =
x−Sλ (x)

λ
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one can devise Newton-like algorithms with fast asymptotic convergence rates by using the proper-
ties of this more general envelope that also reads as

ϕλ (x) = h
(
c(x)−λ 〈∇c(x),Rλ (x)〉

)
+g(Sλ (x))+

λ

2
‖Rλ (x)‖2.

If h is the identity function, then ϕλ become exactly the composite Moreau envelope introduced in
[16] and if h is the null function, then ϕλ reduces to the classical Moreau envelope. It would be also
interesting to develop the nice case g= δC and h= δQ, i.e., the split feasibility problems governed by
closed sets C and Q with a nonlinear smooth model c and related extended CQ-algorithm versions.
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