
J. Appl. Numer. Optim. 5 (2023), No. 3, pp. 371-390
Available online at http://jano.biemdas.com
https://doi.org/10.23952/jano.5.2023.3.06

SELF-ADAPTIVE STEPSIZE METHOD WITH INERTIAL EFFECTS FOR SOLVING
GENERALIZED SPLIT FEASIBILITY PROBLEMS WITH APPLICATIONS

CHINEDU IZUCHUKWU1,∗, MAGGIE APHANE2, KAZEEM OLALEKAN AREMU3

1School of Mathematics, University of the Witwatersrand, Private Bag 3, Johannesburg 2050, South Africa
2Department of Mathematics and Applied Mathematics, Sefako Makgatho Health Sciences University,

Ga-Rankuwa, Pretoria 0204, South Africa
3Department of Mathematics, Usmanu Danfodiyo University Sokoto, 2346 Sokoto, Nigeria

Abstract. In this paper, we consider a class of generalized split feasibility problem over the solution set
of monotone variational inclusion problems, which includes the split common null point problem, the split
variational problems, and other related split type problems. We propose a new self-adaptive stepsize method
coupled with inertial extrapolation techniques for solving this problem in real Hilbert spaces. We prove that
the sequence generated by the proposed method converges strongly to a solution of the problem under the
assumption that the associated singlevalued operator in the monotone variational inclusion problem is not
required to be inverse-strongly monotone. Our method uses the stepsizes that are generated at each iteration
by some simple calculations, which allows it to be easily implemented without the prior knowledge of the
operator norm or the Lipschitz constant of the singlevalued operator. Finally, we apply our results to solve
optimal control problems, split linear inverse problems, and least absolute selection and shrinkage operator
problems.

Keywords. Generalized split feasibility problems; Inertial effects; Self-adaptive stepsize method.

2020 Mathematics Subject Classification. 65K15, 90C30.

1. INTRODUCTION

Let C and Q be nonempty, closed, and convex subsets of real Hilbert spaces H1 and H2, re-
spectively. Let T : H1→ H2 be a bounded linear operator. The Split Feasibility Problem (SFP) is
formulated as:

Find x∗ ∈C such that y∗ = T x∗ ∈ Q. (1.1)

This problem was first investigated by Censor and Elfving [1] (see also [2, 3]) in finite dimensional
spaces. The SFP finds numerous real-world applications, such as intensity-modulated radiation
therapy treatment planning, phase retrieval, image and signal processing, data compression, com-
puterized tomography, and so on; see, e.g., [3, 4, 5] and the references therein.

In 2012, Byrne et al. [6] considered the following problem: Given set-valued mappings Bi :
H1→ 2H1 , 1 ≤ i ≤ m, and M j : H2→ 2H2 1 ≤ j ≤ N, respectively, and bounded linear operators

∗Corresponding author.
E-mail address: chinedu.izuchukwu@wits.ac.za (C. Izuchukwu).
Received June 9, 2023; Accepted August 18, 2023.

c©2023 Journal of Applied and Numerical Optimization

371

372 C. IZUCHUKWU, M. APHANE, K.O. AREMU

Tj : H1→ H2, 1≤ j ≤ N, the Split Common Null Point Problem (SCNPP) that they investigated is
to find x ∈ H1 such that

x ∈
(
∩m

i=1B−1
i (0)

)
∩
(
∩N

j=1T−1
j

(
M−1

j (0)
))

,

where B−1
i (0) and M−1

j (0) are null point sets of Bi and M j, respectively. When m = N = 1, their
problem reduces to finding a point x ∈ H1 such that

x ∈ B−1(0) and T x ∈M−1(0). (1.2)

When problem (1.2) is viewed separately, the problem of finding x ∈ H such that x ∈ B−1(0) is
the classical Null Point Problem (NPP). Byrne et al. [6] proposed the following algorithm and
established some convergence theorems for solving SCNPP (1.2) when B and M are maximal
monotone operators

xn+1 = (I +λB)−1(xn + τT ∗((I +λM)−1− I)T xn),n≥ 1,

where τ ∈ (0, 1
L) with L being the spectral radius of the operator T ∗T .

In [7, Theorems 4.2 and 4.3], Takahashi et al. introduced and studied the following Generalized
Split Feasibility Problem (GSFP) over the solution set of NPP:

Find x ∈ H1 such that x ∈ B−1(0) and T x ∈ Fix(S), (1.3)

where S : H2→H2 is a nonexpansive mapping, Fix(S) is the set of fixed points of S, and B : H1→ 2H1

is a maximal monotone operator. To solve the GSFP (1.3), Takahashi et al. [7] proposed the
following two methods:

xn+1 = (I +λnB)−1(xn + τnT ∗(S− I)T xn), n≥ 1, (1.4)

where 0 < liminfn→∞ λn ≤ limsupn→∞ λn < ∞ and 0 < liminfn→∞ τn ≤ limsupn→∞ τn <
1
||T ||2 and

xn+1 = βnxn +(1−βn)(I +λnB)−1(xn +λnT ∗(S− I)T xn), n≥ 1, (1.5)

where ∑
∞
n=1 βn(1−βn) = ∞, 0 < a≤ λn ≤ b < 1

||T ||2 , and ∑
∞
n=1 |λn−λn+1|< ∞. They proved in [7,

Theorem 4.2 and Theorem 4.3] that Algorithm (1.4) and Algorithm (1.5) respectively, converge
weakly to a solution of the GSFP (1.3). Another form of the SIP which is more general than the
SFP (1.1) is the following Split Variational Inequality Problem (SVIP), introduced and studied by
Censor et al. [3] (see also [2]):

Find x∗ ∈C such that 〈A(x∗),x− x∗〉 ≥ 0, ∀x ∈C, (1.6)

and such that y∗ = T x∗ ∈ Q solves

〈g(y∗),y− y∗〉 ≥ 0, ∀y ∈ Q, (1.7)

where C and Q are nonempty, closed, and convex subsets of real Hilbert spaces H1 and H2,
respectively, T : H1→ H2 is a bounded linear operator, A : H1→ H1 and g : H2→ H2 are two given
operators. Similar to the case of SCNPP (1.2), when problem (1.6)-(1.7) is viewed separately, (1.6)
is the classical Variational Inequality Problem (VIP). To solve the SVIP (1.6)-(1.7), Censor et al.
[3] proposed the following method:

xn+1 = PC(I−λA)(xn + τT ∗(PQ(I−λg)− I)T xn),n≥ 1, (1.8)

GENERALIZED SPLIT FEASIBILITY PROBLEMS WITH APPLICATIONS 373

where τ ∈ (0, 1
L) with L being the spectral radius of T ∗T . They proved that their algorithm

converges weakly to a solution of problem (1.6)-(1.7) under the assumption that A, g are α1,α2-
inverse-strongly monotone and λ ∈ (0,2α) (where α := min{α1,α2}).

Motivated by the results of Takahashi et al. [7] and Censor et al. [3], Tian and Jiang [8] introduced
and studied the following GSFP over the solution set of VIP:

Find x ∈C such that
〈
Ax,y− x

〉
≥ 0 ∀ y ∈C and T x ∈ Fix(S), (1.9)

where C is a nonempty, closed, and convex subset H1, T : H1→H2 is a bounded and linear operator,
A : H1→ H1 is a given operator, and S : H2→ H2 is nonexpansive. They proposed the following
algorithm for solving (1.9):

yn = PC(xn− τnT ∗(I−S)T xn),

tn = PC(yn−λnA(yn)),

wn = PC(yn−λnA(tn)),
xn+1 = αn f (xn)+(1−αn)wn, n≥ 1;

(1.10)

where {αn} ⊂ (0,1) with lim
n→∞

αn = 0 and
∞

∑
n=1

αn = ∞, f is a contraction mapping, {τn} ⊂ [a,b] for

some a,b ∈ (0, 1
||T ||2), {λn} ⊂ [c,d] for some c,d ∈ (0, 1

L), and A is a monotone and L-Lipschitz
continuous operator.

Based on the work of Censor et al. [3], Moudafi [9] recently introduced and studied a new type
of SIP, called the Split Monotone Variational Inclusion Problem (SMVIP), which is to find

x ∈ H1 such that 0 ∈ A(x)+B(x), (1.11)

and such that y = T x ∈ H2 solves

0 ∈ g(y)+M(y), (1.12)

where B : H1→ 2H1 and M : H2→ 2H2 are maximal monotone operators, T : H1→H2 is a bounded
and linear operator, A : H1→ H1 and g : H2→ H2 are singlevalued operators. We also note that if
(1.11) and (1.12) are considered separately, we have that (1.11) is the classical Monotone Variational
Inclusion Problem (MVIP). To solve the SMVIP (1.11)-(1.12), Moudafi [9] proposed the following
iterative algorithm and obtained weak convergence result:

xn+1 = (I +λB)−1(I−λA)(xn + τT ∗((I +λM)−1(I−λg)− I)T xn), n≥ 1, (1.13)

where A, g are α1,α2-inverse-strongly monotone operators with λ ∈ (0,2α) (α = min{α1,α2}),
τ ∈ (0, 1

L) with L being the spectral radius of the operator T ∗T . For the results on SIPs, we refer to
[10, 11, 12, 13, 14] and the references therein.

We mention here that all these papers share a common computational weakness, which is the
fact that the stepsize τ (τn) depends on the operator norm ||T || of T . For Algorithms (1.10) and
(1.13), stepsize {λn} (or λ) depends on the knowledge of the coefficient of the operators A and g.
We know that stepsizes play essential roles in the convergence properties of iterative methods, since
the efficiency of the methods depends heavily on it. When the stepsize depends on the knowledge
of either the operator norm or the coefficient of an operator, it usually slows down the convergence
rate of the method. Moreover, in many practical cases, the operator norm or the coefficient of a
given operator may not be known or may be difficult to estimate. Therefore, iterative methods that

374 C. IZUCHUKWU, M. APHANE, K.O. AREMU

does not depend on any of these, are more applicable in practice. For this reason, López et al. [15]
proposed the following self-adaptive stepsize method for solving the SFP (1.1):

xn+1 = PC(xn + τnT ∗(PQ− I)T xn),n≥ 1,

where the stepsize {τn} is computed as τn := ρn f (xn)
||∇ f (xn)||2

, with f (x) = 1
2 ||(I−PQ)T x||2, ∇ f (x) =

T ∗(I−PQ)T x, 0 < ρn < 4, and infρn(4−ρn)> 0.
Based on the result of López et al. [15], Moudafi and Thakur [16] proposed the split proximal

method for solving split minimization problem (that is, finding a minimizer x of a convex function
f such that T x minimizes another convex function g):

xn+1 = proxλτn f (xn− τnT ∗(I− proxλg)T xn), n≥ 1,

where proxλg(x) = argminu∈H2{g(u)+ 1
2λ
‖u− x‖2} and the stepsize τn := ρn

h(xn)+l(xn)
θ 2(xn)

with 0 ≤
ρn < 4, θ(x) :=

√
‖∇h(x)‖2 +‖∇l(x)‖2, h(x)= 1

2‖(I− proxλg)T x‖2, and l(x)= 1
2‖(I− proxλ µn f)x‖2.

Motivated by the results of López et al. [15] and Moudafi and Thakur [16], Tang and Gibali [17]
introduced the following self-adaptive stepsize method for solving the SCNPP (1.2):{

yn = (1−βn)xn +βn(I +λB)−1xn,

xn+1 = αnxn +(1−αn)(yn + τnT ∗((I +λM)−1− I)Tyn),n≥ 1,

where

βn =

{
ρn

h(xn)
||F(xn)||2+||H(xn)||2

, ||F(xn)||2 + ||H(xn)||2 6= 0,

0, else,

and

τn =

{
ρn

f (yn)
||F(xn)||2+||H(xn)||2

, ||F(xn)||2 + ||H(xn)||2 6= 0,

0, else,

with f (x) = 1
2 ||(I− (I+λM)−1)T x||2, h(x) = 1

2 ||(I− (I+λB)−1)x||2, F(x) = ∇ f (x), and H(x) =
∇h(x).

Motivated by the recent interest in this direction of research, it is our purpose in this paper to:

• study the following generalization of the SIPs (1.1), (1.2), (1.3), (1.6)-(1.7), (1.9), and
(1.11)-(1.12); which we call the GSFP over the solution set of SMVIP.

Find x ∈ H1 such that 0 ∈ A(x)+B(x) and y = T x ∈ Fix(S), (1.14)

where B : H1→ 2H1 is a maximal monotone operator, T : H1→ H2 is a bounded and linear
operator, A : H1→ H1 is a monotone and Lipschitz continuous operator, and S : H2→ H2 is
a nonexpansive mapping;
• propose a new iteratively generated self-adaptive stepsize procedure with the stepsizes {τn}

and {λn} being generated at each iteration by some simple calculations. Thus our method
can be easily implemented;
• study some applications of the GSFP (1.14) to optimal control problems, split linear in-

verse problems, least absolute selection, and shrinkage operator problems via numerical
computations.

GENERALIZED SPLIT FEASIBILITY PROBLEMS WITH APPLICATIONS 375

By combining the new self-adaptive stepsize procedure with a viscosity method, and the inertial
extrapolation technique, we propose a new method for solving the GSFP (1.14) in real Hilbert
spaces. We prove that the sequence generated by this method converges strongly to a solution of the
GSFP. We also derive the methods for solving problems (1.1), (1.2), (1.3), (1.6)-(1.7), (1.9), and
(1.11)-(1.12).

We organize the rest of the paper as follows: We first recall some basic results in Section 2.
Some discussions about our proposed method are given in Section 3. The convergence analysis of
the proposed method is investigated in Section 4. Corollaries of our results are also discussed in
Section 4. In Section 5, the established theorem is applied to solve optimal control problems, split
linear inverse problems and least absolute selection and shrinkage operator problems, via numerical
computations. We then conclude with some final remarks in Section 6, the last section.

2. PRELIMINARIES

Let H be a real Hilbert space, and let A be a nonlinear operator defined on H. A point x ∈ H is
called a fixed point of A if Ax = x. The operator A is said to be

(i) α-inverse-strongly monotone (ism) if there exists α > 0 such that 〈Ax−Ay,x−y〉 ≥ α‖Ax−
Ay‖2 for all x,y ∈ H;

(ii) monotone if 〈Ax−Ay,x− y〉 ≥ 0 for all x,y ∈ H;
(iii) L-Lipschitz continuous if there exists a constant L > 0 such that ‖Ax−Ay‖ ≤ L‖x− y‖ for

all x,y ∈ H. If L ∈ (0,1) then A is a contraction while A is nonexpansive if L = 1.
Clearly, α-inverse-strongly monotone operators are monotone. We also know that every α-inverse-
strongly monotone operator is 1

α
-Lipschitz continuous.

Let A be a multivalued operator, i.e. A : H → 2H . Recall that A is called monotone if 〈x−
y,u− v〉 ≥ 0 for all x,y ∈ H, u ∈ A(x), v ∈ A(y), and A is maximal monotone if the graph Gra(A)
of A defined by Gra(A) := {(x,y) ∈ H ×H : y ∈ A(x)} is not properly contained in the graph
of any other monotone operator. It is generally known that A is maximal monotone if and only
if, for (x,u) ∈ H ×H, 〈x− y,u− v〉 ≥ 0 for all (y,v) ∈ Gra(A) implies u ∈ A(x). The resolvent
operator JA

λ
associated with a multivalued operator A and λ is the mapping JA

λ
: H→ 2H defined by

JA
λ
(x) = (I+λA)−1x for all x∈H and λ > 0, where I is the identity operator on H. It is well-known

that if the operator A is monotone, then JA
λ

is singlevalued and nonexpansive. For more details on
monotone operators and their resolvents, we refer to [18, 19, 20, 21, 22, 23, 24].

Recall that a mapping S1 : H→H is said to be averaged nonexpansive if S1 =(1−β)I+βS2 holds
for a nonexpansive operator S2 : H→H and β ∈ (0,1). Recall that the metric projection, denoted as
PC, is a map defined from H onto C, where C a nonempty, closed, and convex subset H, which assigns
each x ∈ H to the unique point in C, denoted by PCx such that ||x−PCx||= inf{||x− y|| : y ∈C}. It
is well known that PCx is characterized by the inequality 〈x−PCx,z−PCx〉 ≤ 0 for all z ∈C. We
also define the normal cone of C at a point z ∈ H, as NCz := {d ∈ H : 〈d,y− z〉 ≤ 0, ∀ y ∈C} if
z ∈C and /0, otherwise.

The following equalities and inequalities are known in Hilbert spaces.
(i) 2〈x,y〉= ||x||2 + ||y||2−||x− y||2 = ||x+ y||2−||x||2−||y||2,

(ii) ‖αx+(1−α)y‖2 = α‖x‖2 +(1−α)‖y‖2−α(1−α)‖x− y‖2,
(iii) ||x− y||2 ≤ ||x||2 +2〈y,x− y〉,

where x,y ∈ H and α ∈ (0,1).

376 C. IZUCHUKWU, M. APHANE, K.O. AREMU

The following lemmas are needed for our strong convergence analysis.

Lemma 2.1. [25] Let H be a real Hilbert space, and let f : H→ H be a nonlinear mapping. Then
(i) if f is η-ism and γ > 0, then γ f is η

γ
-ism;

(ii) f is averaged if and only if the complement I− f is η-ism for some η > 1
2 . Indeed, for

β ∈ (0,1), f is β -averaged if and only if I− f is 1
2β

-ism.

Lemma 2.2. [26] Let H be a real Hilbert space, and let S : H → H be a nonexpansive mapping
with Fix(S) 6= /0. If {xn} is a sequence in H converging weakly to x∗ and if {(I−S)xn} converges
strongly to y, then (I−S)x∗ = y.

Lemma 2.3. [27] Let H be a real Hilbert space, A : H→H be a monotone and Lipschitz continuous
operator, and B : H→ 2H be a maximal monotone operator. Then, the operator (A+B) : H→ 2H

is maximal monotone.

Lemma 2.4. [28] Let {an} be a sequence of non-negative real numbers, {βn} be a sequence of real
numbers in (0,1) with condition ∑

∞
n=1 βn = ∞, and {dn} be a sequence of real numbers. Assume

that an+1 ≤ (1−βn)an+βndn for n≥ 0. If limsupk→∞ dnk ≤ 0 for every subsequence {ank} of {an}
satisfying the condition: liminfk→∞

(
ank+1−ank

)
≥ 0, then lim

n→∞
an = 0.

Lemma 2.5. [29] Let {an} be a sequence of nonnegative real numbers satisfying the following:
an+1 ≤ (1− βn)an +σn + γn for n ≥ 1, where {βn} is a sequence in (0,1) and {σn} is a real
sequence. Suppose that ∑

∞
n=1 γn < ∞ and σn ≤ βnM for some M ≥ 0. Then, {an} is a bounded

sequence.

3. PROPOSED METHOD

In this section, we present our method and discuss some of its features. We begin with the
following assumptions under which our strong convergence is obtained.

Assumption 3.1. H1 and H2 are two real Hilbert spaces. Furthermore, we assume that the following
hold:

(a) B : H1→ 2H1 is a maximal monotone operator and A : H1→H1 is a monotone and Lipschitz
continuous operator but the Lipschitz constant need not to be known.

(b) T : H1→ H2 is a bounded linear operator such that T 6= 0.
(c) S : H2→ H2 is nonexpansive and f : H1→ H1 is a contraction with coefficient ρ ∈ (0,1).
(c) The solution set Γ := {z ∈ (A+B)−1(0) : T z ∈ Fix(S)} is nonempty.

Next, we state the conditions under which our parameters are chosen.

Assumption 3.2. Suppose that {αn} and {εn} are positive sequences satisfying the following
conditions:

(a) {αn} ⊂ (0,1) with limn→∞ αn = 0 and ∑
∞
n=1 αn = ∞.

(b) εn = o(αn), where εn = o(αn) means limn→∞
εn
αn

= 0.

In the sequel, we define Fx := T ∗(I−S)T x. We shall see that F is Lipschitz continuous. We now
present the proposed method of this paper.

Algorithm 3.3.

GENERALIZED SPLIT FEASIBILITY PROBLEMS WITH APPLICATIONS 377

Step 0: Choose sequences {αn}∞
n=1 and {εn}∞

n=1 such that the conditions from Assumption 3.2
hold, and let τ1,λ1 > 0, µ,δ ∈ (0,1),θ ≥ 3 and x0,x1 ∈ H1 be given arbitrarily. Set n := 1.
Step 1. Given the iterates xn−1 and xn (n≥ 1), choose the sequence {θn} such that 0≤ θn ≤ θ̄n,
where

θ̄n :=

{
min

{ n−1
n+θ−1 ,

εn
‖xn−xn−1‖

}
if xn 6= xn−1,

n−1
n+θ−1 otherwise.

Step 2. Set un = xn +θn(xn− xn−1). Then, compute

wn = un− τnFun and yn = (I +λnB)−1(I−λnA)wn. (3.1)

Step 3. Compute xn+1 = αn f (xn)+(1−αn)zn, where zn = yn−λn(Ayn−Awn). Update:

τn+1 =

{
min

{
δ ||wn−un||
||Fwn−Fun|| , τn

}
, if Fwn 6= Fun,

τn, otherwise.
(3.2)

λn+1 =

{
min

{
µ||wn−yn||
||Awn−Ayn|| , λn

}
, if Awn 6= Ayn,

λn, otherwise.
(3.3)

Stopping criterion: If yn = wn = un = xn, then stop, otherwise, set n := n+1 and go back to Step
1.

Remark 3.1. (a) Assumption 3.1 (a) requires that operator A to be monotone and Lipschitz
continuous, which is weaker than the inverse-strongly monotonicity assumptions required
in [2, 9, 12, 13].

(b) Stepsizes {τn} and {λn} given by (3.2) and (3.3) respectively are generated at each iteration
by some simple calculations. Thus, {τn} and {λn} are easily implemented without the prior
knowledge of the operator norm ||T || and the Lipschitz constant of A respectively.

(c) Step 1 of Algorithm 3.3 is also easily implemented since the value of ||xn−xn−1|| is a priori
known before choosing θn. Moreover, we will see in Section 5 that , different choices of the
inertial factor θ ≥ 3 plays crucial role in the convergence properties of our method.

We next show that the stopping criterion of Algorithm 3.3 is valid.

Lemma 3.1. If yn = wn = un = xn in Algorithm 3.3, then xn ∈ Γ.

Proof. If yn = wn = un = xn, then it is clear from (3.1) that xn ∈ (A+B)−1(0). Also, we obtain
that xn = xn−τnFxn = xn−τnT ∗(I−S)T xn, which implies that T ∗(I−S)T xn = 0. That is, ST xn =
T xn + v, where T ∗v = 0. Now, let z ∈ Γ, then

‖T xn−T z‖2 = ‖T xn−T z‖2 +2〈T xn−T z,v〉

= ‖ST xn−T z‖2−‖v‖2

≤ ‖T xn−T z‖2−‖v‖2,

which implies that ‖v‖= 0. That is, v = 0. Hence ST xn = T xn, which gives that T xn ∈ Fix(S). Thus
xn ∈ Γ. �

The following results concerns the stepsizes {τn} and {λn} generated by (3.2) and (3.3) respec-
tively.

378 C. IZUCHUKWU, M. APHANE, K.O. AREMU

Lemma 3.2. The limit of the stepsize {τn} exists and lim
n→∞

τn > 0.

Proof. From (3.2), it is obvious that τn+1 ≤ τn for all n ∈N. We also know that if S is nonexpansive,
then I−S is 1

2 -inverse-strongly monotone. Thus we obtain for all x,y ∈ H1 that

||Fx−Fy||2 ≤ ‖T ∗‖2‖(I−S)T x− (I−S)Ty‖2

≤ 2‖T‖2〈x− y,T ∗(I−S)T x−T ∗(I−S)Ty〉

≤ 2‖T‖2‖x− y‖‖T ∗(I−S)T x−T ∗(I−S)Ty‖,

which implies that ‖Fx−Fy‖ ≤ 2‖T‖2‖x− y‖. Therefore, F is Lipschitz continuous. Thus, we get
in the case of Fwn 6= Fun that

τn+1 = min
{

δ‖wn−un‖
‖Fwn−Fun‖

,τn

}
≥min

{
δ

2‖T‖2 ,τn

}
.

Hence, by induction, we obtain that {τn} is bounded below by min
{

δ

2‖T‖2 ,τ1

}
. Hence, the limit of

{τn} exists and lim
n→∞

τn ≥min
{

τ1,
δ

2‖T‖2

}
> 0. �

Remark 3.2. Similar to Lemma 3.2, we obtain that the limit of the stepsize {λn} exists and
lim
n→∞

λn > 0.

4. CONVERGENCE ANALYSIS

Lemma 4.1. Let {xn} be a sequence generated by Algorithm 3.3 such that Assumption 3.1 and
Assumption 3.2 hold. Then {xn} is bounded.

Proof. Let p ∈ Γ, then 0 ∈ (A+B)(p). Also, from (3.1), we obtain that

Ayn +
1
λn

(wn−λnAwn− yn) ∈ (A+B)yn.

Hence, we obtain from Lemma 2.3 that

〈Ayn +
1
λn

(wn−λnAwn− yn),yn− p〉 ≥ 0,

which implies that

〈yn−wn−λn(Ayn−Awn),yn− p〉 ≤ 0. (4.1)

Again, from (3.3), it is clear that

||Ayn−Awn|| ≤
µ

λn+1
||wn− yn|| ∀n ∈ N (4.2)

holds for both Awn = Ayn and Awn 6= Ayn. Also, we obtain from Lemma 3.2 that

lim
n→∞

(
1−λ

2
n

µ2

λ 2
n+1

)
= 1−µ

2 > 0. (4.3)

GENERALIZED SPLIT FEASIBILITY PROBLEMS WITH APPLICATIONS 379

Thus, there exists n0 ∈ N such that 1−λ 2
n

µ2

λ 2
n+1

> 0 ∀n≥ n0. Hence, by Step 3, (4.2), and (4.1), we

obtain

‖zn− p‖2 = ‖wn− p‖2 +‖yn−wn‖2 +λ
2
n ‖Ayn−Awn‖2 +2〈yn− p,yn−wn〉

−2〈yn−wn,yn−wn〉−2λn〈yn− p,Ayn−Awn〉
= ‖wn− p‖2−‖yn−wn‖2 +λ

2
n ‖Ayn−Awn‖2 +2〈yn− p,yn−wn−λn(Ayn−Awn)〉

≤ ‖wn− p‖2−

(
1−λ

2
n

µ2

λ 2
n+1

)
‖yn−wn‖2 +2〈yn− p,yn−wn−λn(Ayn−Awn)〉

≤ ‖wn− p‖2−

(
1−λ

2
n

µ2

λ 2
n+1

)
‖yn−wn‖2 (4.4)

≤ ‖wn− p‖2, ∀n≥ n0. (4.5)

Since F is 2||T ||-Lipschitz continuous, it is 1
2||T ||-inverse-strongly monotone. Hence, we obtain

from Lemma 2.1 that I− τnF is τn‖T‖2-averaged. That is, I− τnT ∗(I−S)T = (1−βn)I+βnSn for
all n ∈ N, where βn = τn‖T‖2 and Sn is nonexpansive for all n ∈ N. Therefore, we can rewrite wn
from (3.1) as

wn = (1−βn)un +βnSnun, n≥ 1. (4.6)

Hence, we obtain that

‖wn− p‖2 ≤ (1−βn)‖un− p‖2 +βn‖Snun− p‖2−βn(1−βn)‖un−Snun‖2

≤ ‖un− p‖2−βn(1−βn)‖un−Snun‖2 (4.7)

≤ ‖un− p‖2.

Observe from Step 1 and Assumption 3.2 that θn||xn− xn−1|| ≤ εn for all n ∈ N, which implies that

θn

αn
||xn− xn−1|| ≤

εn

αn
→ 0,as n→ ∞. (4.8)

Hence, there exists M > 0 such that θn
αn
||xn− xn−1|| ≤M for all n ∈ N. Thus, we obtain from Step 2

that

‖un− p‖ ≤ ||xn− p||+θn||xn− xn−1||

= ||xn− p||+αn
θn

αn
||xn− xn−1||

≤ ||xn− p||+αnM, ∀n ∈ N. (4.9)

Combining (4.5), (4.7), and (4.9), we obtain that

‖xn+1− p‖ ≤ αn‖ f (xn)− p‖+(1−αn)‖zn− p‖
≤ αnρ‖xn− p‖+αn‖ f (p)− p‖+(1−αn)‖zn− p‖
≤ (1−αn(1−ρ))‖xn− p‖+αn [M+‖ f (p)− p‖] , ∀n≥ n0,

which implies by Lemma 2.5 that {xn} is bounded. Consequently, {wn}, {un}, {yn}, {zn}, and
{ f (xn)} are all bounded. �

380 C. IZUCHUKWU, M. APHANE, K.O. AREMU

Lemma 4.2. Let {xn} be a sequence generated by Algorithm 3.3 such that Assumption 3.1 and
Assumption 3.2 hold. If there exists a subsequence {xnk} of {xn} convergent weakly to a point z∈H1
and lim

n→∞
‖wnk− ynk‖= 0 = lim

n→∞
‖wnk− xnk‖, then z ∈ Γ.

Proof. By Step 2 and (4.8), we obtain that

||un− xn||= αn
θn

αn
||xn− xn−1|| → 0, as n→ ∞. (4.10)

Thus, we obtain from the hypothesis that

lim
k→∞
||unk−wnk ||= 0. (4.11)

Now, let the subsequence {xnk} of {xn} be weakly convergent to a point z∈H1. Then, it follows that
the subsequences {wnk}, {ynk}, and {unk} are also weakly convergent to z ∈ H1. Also, by Lemma
3.2, we obtain that lim

n→∞
τn = τ > 0. Furthermore, since F ≡ T ∗(I−S)T is Lipschitz continuous, we

have that {T ∗(I−S)Tunk} is bounded. Hence,

‖(I− τnkT ∗(I−S)T)unk− (I− τT ∗(I−S)T)unk‖= |τnk− τ|‖T ∗(I−S)Tunk‖→ 0

as k → ∞. That is, limk→∞ ‖wnk − (I − τT ∗(I − S)T)unk‖ = 0, which implies from (4.11) that
limk→∞ ‖unk− (I−τT ∗(I−S)T)unk‖= 0. Thus, by Lemma 2.2, we obtain that z ∈ Fix(I−τT ∗(I−
S)T). Hence, using the same line of argument as in the proof of Lemma 3.1, we obtain that
T z ∈ Fix(S). Now, let (v,w) ∈ G(A+B). Then w−Av ∈ B(v). Also, we obtain from (3.1) that

1
λnk

(wnk−λnkAwnk− ynk) ∈ B(ynk). Thus, we have from the monotonicity of B that

〈v− ynk ,w−Av− 1
λnk

(wnk−λnkAwnk− ynk)〉 ≥ 0,

which together with the monotonicity of A yields

〈v− ynk ,w〉 ≥ 〈v− ynk ,Av−A(ynk)〉+ 〈v− ynk ,A(ynk)−A(wnk)〉

+〈v− ynk ,
1

λnk

(wnk− ynk)〉

≥ 〈v− ynk ,A(ynk)−A(wnk)〉+ 〈v− ynk ,
1

λnk

(wnk− ynk)〉. (4.12)

Passing limit as k→ ∞ in (4.12), we obtain 〈v− z,w〉 ≥ 0. Also, by Lemma 2.3, A+B is maximal
monotone. Thus we obtain that 0 ∈ (A+B)z. This gives that z ∈ Γ. �

We now present the main theorem of this paper.

Theorem 4.1. Let {xn} be a sequence generated by Algorithm 3.3 such that Assumption 3.1 and
Assumption 3.2 hold. Then, {xn} converges strongly to z∗ = PΓ f (z∗).

Proof. Let z∗ = PΓ f (z∗). From (4.7), we obtain

‖wn− z∗‖2 ≤ ||xn− z∗||2 +2θn〈xn− z∗,xn− xn−1〉+θ
2
n ||xn− xn−1||2

≤ ||xn− z∗||2 +θn||xn− xn−1|| [2||xn− z∗||+θn||xn− xn−1||]

≤ ||xn− z∗||2 +3θn||xn− xn−1||M̄, (4.13)

GENERALIZED SPLIT FEASIBILITY PROBLEMS WITH APPLICATIONS 381

for some M̄ > 0. By Step 3, (4.4), (4.13), (4.5), (4.7), and (4.9), we obtain that

‖xn+1− z∗‖2

≤ (1−αn)
2‖zn− z∗‖2 +2αn

〈
f (xn)− z∗,xn+1− z∗

〉
≤ (1−αn)

2 [||xn− z∗||2 +3θn||xn− xn−1||M̄
]
− (1−αn)

2

(
1−λ

2
n

µ2

λ 2
n+1

)
‖yn−wn‖2

+2αn
〈

f (xn)− z∗,xn+1− z∗
〉

≤ (1−αn)
2 [||xn− z∗||2 +3θn||xn− xn−1||M̄

]
− (1−αn)

2

(
1−λ

2
n

µ2

λ 2
n+1

)
‖yn−wn‖2

+2αnρ‖xn− z∗‖‖xn+1− z∗‖+2αn
〈

f (z∗)− z∗,xn+1− z∗
〉

≤ (1−αn)
2 [||xn− z∗||2 +3θn||xn− xn−1||M̄

]
− (1−αn)

2

(
1−λ

2
n

µ2

λ 2
n+1

)
‖yn−wn‖2

+2αnρ‖xn− z∗‖ [||xn− z∗||+αn (|| f (xn)− z∗||+M)]+2αn
〈

f (z∗)− z∗,xn+1− z∗
〉

≤ (1−αn)
2 [||xn− z∗||2 +3θn||xn− xn−1||M̄

]
− (1−αn)

2

(
1−λ

2
n

µ2

λ 2
n+1

)
‖yn−wn‖2

+2αnρ‖xn− z∗‖2 +α
2
n K +2αn

〈
f (z∗)− z∗,xn+1− z∗

〉
, ∀n≥ n0,

(4.14)

for some K > 0. Hence, we obtain from (4.14) that

‖xn+1− z∗‖2 ≤ (1−2αn(1−ρ))‖xn− z∗‖2 +α
2
n‖xn− z∗‖2 +3αnMM̄

− (1−αn)
2

(
1−λ

2
n

µ2

λ 2
n+1

)
‖yn−wn‖2 +α

2
n K +2αn

〈
f (z∗)− z∗,xn+1− z∗

〉
≤ (1−2αn(1−ρ))‖xn− z∗‖2 +αnvn, ∀n≥ n0,

(4.15)
where vn := αn

[
‖xn− z∗‖2 +3MM̄+K

]
+2
〈

f (z∗)− z∗,xn+1− z∗
〉
. To show that {xn} converges

strongly to z∗, we apply Lemma 2.4. That is, we show that limsup
k→∞

vnk ≤ 0 for every subsequence

{‖xnk− z∗‖} of {‖xn− z∗‖} satisfying

liminf
k→∞

(
‖xnk+1− z∗‖−‖xnk− z∗‖

)
≥ 0. (4.16)

Now, suppose that {‖xnk− z∗‖} is a subsequence of {‖xn− z∗‖} such that (4.16) holds. Then,

liminf
k→∞

(
‖xnk+1− z∗‖2−‖xnk− z∗‖2)

= liminf
k→∞

[(
‖xnk+1− z∗‖−‖xnk− z∗‖

)(
‖xnk+1− z∗‖+‖xnk− z∗‖

)]
≥ 0.

Hence, we obtain from (4.15) and Assumption 3.2 that

limsup
k→∞

[
(1−αnk)

2

(
1−λ

2
nk

µ2

λ 2
nk+1

)
||ynk−wnk ||

2

]
≤ limsup

k→∞

[
||xnk− z∗||2−||xnk+1− z∗||2

]
=− liminf

k→∞

[
||xnk+1− z∗||2−||xnk− z∗||2

]
≤ 0,

382 C. IZUCHUKWU, M. APHANE, K.O. AREMU

which from (4.3) gives that

lim
k→∞
||ynk−wnk ||= 0. (4.17)

From (4.7) and (4.13), we obtain that

βnk(1−βnk)‖unk−Snkunk‖ ≤ ‖unk− z∗‖2−‖wnk− z∗‖2

≤ ‖xnk− z∗‖2 +3αnkMM̄−‖wnk− z∗‖2. (4.18)

We also have −‖wnk− z∗‖2 ≤−‖xnk+1− z∗‖2 +2αnk〈 f (xnk)− z∗,xnk+1− z∗〉, which implies from
(4.18) that

limsup
k→∞

βnk(1−βnk)‖unk−Snkunk‖ ≤ limsup
k→∞

[
||xnk− z∗||2 +3αnkMM̄−||xnk+1− z∗||2

]
+ limsup

k→∞

2αnk〈 f (xnk)− z∗,xnk+1− z∗〉

= − liminf
k→∞

[
||xnk+1− z∗||2−||xnk− z∗||2

]
≤ 0,

which implies that limk→∞ ||Sunk−unk ||= 0. Thus, we obtain from (4.6) that limk→∞ ||wnk−unk ||=
0. Hence, we obtain from (4.10) that limk→∞ ||wnk− xnk ||= 0. Observe also from Step 3 and (4.17)
that ||znk − ynk || = ||λnk (Aynk−Awnk) || ≤ λnkL||wnk − ynk || → 0 as k→ ∞. Thus, we obtain from
(4.17) that limk→∞ ||znk −wnk ||= 0. Also, we have that ||xnk+1− znk ||= αnk || f (xnk)− znk || → 0 as
k→∞. It follows that limn→∞ ‖xnk+1−xnk‖= 0. Again, by Lemma 4.1, we can chose a subsequence
{xnk j
} of {xnk} such that {xnk j

} converges weakly to z ∈ H1 and

limsup
k→∞

〈 f (z∗)− z∗,xnk− z∗〉= lim
j→∞
〈 f (z∗)− z∗,xnk j

− z∗〉= 〈 f (z∗)− z∗,z− z∗〉.

Also, we obtain from (4.17) and Lemma 4.2 that z ∈ Γ. Since z∗ = PΓ f (z∗), we obtain from the
previous equality that limsup

k→∞

〈 f (z∗)− z∗,xnk − z∗〉 ≤ 0, which implies that limsupk→∞〈 f (z∗)−

z∗,xnk+1− z∗〉 ≤ 0. Thus, limsup
k→∞

vnk ≤ 0. Hence from Lemma 2.4, we obtain that {xn} converges

strongly to z∗. �

Remark 4.1. Note that from the characterization of metric projections, we have that

z∗ = PΓ f (z∗)⇐⇒ 〈 f (z∗)− z∗,z∗− z〉 ≥ 0 ∀z ∈ Γ. (4.19)

Therefore, one advantage of adopting a viscosity-type algorithm is that it also converges strongly to
a solution to variational inequality (4.19). Moreover, viscosity-type algorithms have higher rate of
convergence than their Halpern-type counterpart (see [13]). More so, it has been established (see
[13, Remark 3.7]) that Halpern-type iterations imply viscosity iterations. In fact, setting f (x) = u
for all x ∈ H1 in Algorithm 3.3, we derive a new Halpern-type method for solving the GSFP (1.14)
as a corollary of Theorem 4.1.

Remark 4.2. Recall that, if we set B = NC in (1.14), we recover problem (1.9) as a special case
of problem (1.14). Recall also that y∗ ∈ Q is a solution to classical VIP (1.7) if and only if
y∗ ∈ Fix(PQ(I−λg)). We know that PQ(I−λg) (where g is α2-inverse-strongly monotone and
λ ∈ (0,2α2)) is an averaged-nonexpansive mapping, which is a special type of nonexpansive
mappings. Thus, by setting B = NC and S = PQ(I−λg), we recover SVIP (1.6)-(1.7) as a special
case of problem (1.14). Therefore, we can set B = NC in Algorithm 3.3 (since NC is maximal

GENERALIZED SPLIT FEASIBILITY PROBLEMS WITH APPLICATIONS 383

monotone) to obtain that (I +λNC)
−1(I−λA) = PC(I−λA). Hence, Algorithm 3.3 with B = NC

can be used to solve problem (1.9) while Algorithm 3.3 with B = NC and S = PQ(I−λg) can be
used to solve SVIP (1.6)-(1.7) as corollaries of Theorem 4.1.

Remark 4.3. Similar to Remark 4.2, we know that (I + λM)−1(I− λg) (where M is maximal
monotone and g is α2-inverse strongly monotone with λ ∈ (0,2α2)) is an averaged-nonexpansive
mapping, which is a special type of nonexpansive mappings. Thus, by setting S = (I +λM)−1(I−
λg), we recover the SMVIP (1.11)-(1.12) as a special case of problem (1.14). Therefore, Algorithm
3.3 with S = (I +λM)−1(I−λg) can be used to solve the SMVIP (1.11)-(1.12) as a corollary of
Theorem 4.1.

Remark 4.4. By setting A ≡ 0 in (1.14), we recover problem (1.3) as a special case of problem
(1.14). Therefore, Algorithm 3.3 with A≡ 0 can be used to solve the GSFP (1.3) as a corollary of
Theorem 4.1. Thus Algorithm 3.3 can be reduced to new self-adaptive stepsize methods for solving
SCNPP (1.2) and SFP (1.1).

Remark 4.5. If H1 = H2 = H and T = I = S in the setting of Remarks 4.2-4.4, we recover methods
for solving the classical variational inequality problem (see [30]), monotone variational inclusion
problem (see [12, 31]), and null point problem (see [28]).

5. APPLICATIONS AND NUMERICAL ANALYSIS

In this section, we study some applications of our convergence results to optimal control problems,
split linear inverse problems, and least absolute selection and shrinkage operator problems via some
numerical computations and analysis.

5.1. Optimal control problem. Let H1 = H2 = L2([0,T],Rm) be the Hilbert space of square
integrable and measurable vector functions u from [0,T] into Rm, where m ∈ N and 0 < T ∈ R,
with inner product 〈u,v〉= ∑

m
i=1
∫ T

0 ui(t)vi(t)dt and norm ||u||=
√
〈u,u〉.

Let U be the set of admissible controls in the form of an m-dimensional box which consists
of piecewise continuous functions, defined as: U = {u(t) ∈ L2([0,T],Rm) : ui(t) ∈ [u−i ,u

+
i], i =

1,2 . . . ,m}. Consider the following optimal control problem:

u∗(t) = argmin{J(u) : u ∈U}, (5.1)

where the terminal objective function J is defined by J(u) = Φ(x(T)) with Φ being a convex and
differentiable function defined on the attainability set. If such a control exists. Then, for each
control u(t) ∈U , we suppose that x(t) ∈ L2([0,T],Rm) (also known as the state variable) satisfies
the constraints in the form of a system of linear differential equation:

ẋ(t) = A(t)x(t)+B(t)u(t), x(0) = x0, t ∈ [0,T],

where A(t) ∈ Rn×n, B(t) ∈ Rn×m are given continuous matrices for every t ∈ [0,T]. From the
Pontryagin’s maximum principle (see [32]), we see that, for any optimal pair (x∗,u∗), there exists a
function (the adjoint) p∗ : [0,T]→ Rm such that (x∗, p∗,u∗) solves the following systems:{

ẋ∗(t) = A(t)x∗(t)+B(t)u∗(t)
x∗(0) = x0,

(5.2)

384 C. IZUCHUKWU, M. APHANE, K.O. AREMU{
ṗ∗(t) =−A(t)Tp∗(t)
p∗(T) = ∇Φ(x(T)),

(5.3)

0 ∈ B(t)Tp∗(t)+NU u∗(t), (5.4)

where NU(u) is the normal cone of U at u, and it is maximal monotone. Putting Au(t) := B(t)Tp(t),
we see that Au is the gradient of the objective function J, which is monotone and Lipschitz
continuous (see [33]). Thus (5.4) can be rewritten as 0 ∈ Au∗+NU u∗. Also, we can define the
bounded linear mapping T : L2([0,1])→ L2([0,1]) by T x(s) =

∫ 1
0 K̃(s, t)x(t)dt ∀x ∈ L2([0,1]),

where K̃ is a continuous real-valued function defined on [0,1]× [0,1]. Then, the adjoint of T is

T ∗x(s) =
∫ 1

0
K̃(t,s)x(t)dt ∀x ∈ L2([0,1]).

We can also define the nonexpansive mapping S : L2([0,1])→ L2([0,1]) by Sx(t) =
∫ 1

0 tx(s)ds forall
t ∈ [0,1]. Indeed, S is nonexpansive. To see this, by defining x,y ∈ L2([0,1]), one has

|Sx(t)−Sy(t)|2 ≤
(∫ 1

0
t|x(s)− y(s)|ds

)2

≤
∫ 1

0
|x(s)− y(s)|2ds = ||x− y||2.

Thus ||Sx−Sy|| ≤ ||x− y||2. Hence, we can apply Algorithm 3.3 with B = NU to solve the problem
(1.14) governed by optimal control problem (5.1).

In order to ensure the implementation of the algorithm, we discretize the continuous functions.
We define the mesh size h := T

N , where N is a natural number. We identity any discretized control
uN = (u0,u1, · · · ,uN) with its piece-wise constant extension uN(t) = ui for all t ∈ [ti, ti+1), i =
0,1, · · · ,N, where ti = ih, i = 0,1, · · · ,N. Furthermore, we identity any discretized state variable
xN := (x0,x1, · · · ,xN) with its piece-wise linear interpolation xN(t) = xi +

t−ti
h (xi+1− xi), for t ∈

[ti, ti+1), i = 0,1, · · · ,N− 1. Similarly, for the adjoint variable, pN := (p0, p1, · · · , pN) and thus,
AuN =

(
BT(t0)p0,BT(t1)p1, · · · ,BT(tN)pN

)T
. We now consider the Euler discretization technique

(see [34]) to discretize the systems of ODEs (5.2) and (5.3). That is, at each iteration, the system of
ODEs (5.2) and (5.3) is solved by the Euler method:{

xi+1 = xi +h [A(ti)xi +B(ti)ui]
x(0) = x0,

and
{

pi = pi+1 +hA(ti)Tpi+1
pN = OΦ(xN),

respectively. It is known that, for the Euler discretization, the difference between the discretized
solution uN(t) and the original solution u∗(t) is proportional to the mesh size h. That is, there exists
a constant C > 0 such that ‖uN−u∗‖ ≤Ch. We now consider the following typical example taken
from [35, Example 1.2]:

minimize x1(1)

subject to ẋ j(t) = s jx j+1 +u(t), s j =−2(m− j+1), j = 1,2, · · · ,m,

ẋm+1(t) = u(t), t ∈ [0,1],

x(0) = 0,

u(t) ∈ [−1,1],

GENERALIZED SPLIT FEASIBILITY PROBLEMS WITH APPLICATIONS 385

where m is a natural number. Note that A(t) and B(t) are of the form

A(t) =

0 s1 0 · · · 0 0
0 0 s2 · · · 0 0
0 0 0 · · · 0 0
− − − ·· · − −
0 0 0 · · · 0 sm
0 0 0 · · · 0 0

m+1,m+1

and B(t) =

1
1
1
...
1
1

m+1,1

.

We choose N = 100 and the starting point u−1(t) = u0(t) randomly in U. We also randomly choose
λ1,τ1 > 0 and µ,δ ∈ (0,1). We choose αn =

1
5n+2 and θn = θ̄n with different choices of θ = 3,6,10

and εn =
αn

n0.01 . Note that, in our method, the stepsizes {λn} and {τn} are generated in each iteration.
For the numerical analysis in this subsection, we compared our method with Algorithm (1.10).

For this algorithm, we take λn = 1
2L , where L is the Lipschitz constant of the operator A. The

numerical results are displayed in Figure 1 and Table 1, with m = 1,2,3,4.

Table 1. Numerical results for the optimal control problem.

m
Alg. 3.3
(θ = 3)

Alg. 3.3
(θ = 6)

Alg. 3.3
(θ = 10)

Alg. (1.10)

1
CPU time (sec)
Iterations

1.337
18

0.486
12

0.913
16

44.091
64

2
CPU time (sec)
Iterations

1.304
18

0.221
11

0.829
12

33.371
52

3
CPU time (sec)
Iterations

2.835
26

0.517
12

1.329
19

63.112
72

4
CPU time (sec)
Iterations

1.765
18

0.413
11

0.501
11

15.501
46

5.2. Split linear inverse problem. As assumed in [4], let G : H1→ R be a convex and continuous
function, which possibly is nonsmooth and P : H1→ R be a Fréchet differentiable function with a
Lipschitz continuous gradient ∇P of P. We now consider the following class of Split Linear Inverse
Problem (SLIP) in real Hilbert spaces (see, for example [4], for the case of inverse linear problems
in RN):

Find x∗ ∈ H1 such that P(x∗)+G(x∗) = min
x∈H1

[P(x)+G(x)] , and T x∗ ∈ Fix(S), (5.5)

where S : H2→ H2 is any nonlinear mapping. Let the solution set of problem (5.5) be denoted by ϒ,
and assume that it is nonempty, that is, consistent. According to [20], the subdifferential ∂G of G is
maximally monotone. Moreover,

P(x∗)+G(x∗) = min
x∈H1

[P(x)+G(x)]⇔ 0 ∈ ∇P(x∗)+∂G(x∗).

Thus, we can apply Algorithm 3.3 with A = ∇P and B = ∂G to solve the SLIP (5.5).

5.3. Least absolute selection and shrinkage operator (LASSO) problem. It is important to note
that SLIP (5.5) contains the LASSO problem as a special case. In this case, P(x) = 1

2 ||Dx−b||22

386 C. IZUCHUKWU, M. APHANE, K.O. AREMU

Iteration number (n)
0 10 20 30 40 50 60 70

||x
n+

1
-x

n
||2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Algorithm 3.3 with 3=3
Algorithm 3.3 with 3=6
Algorithm 3.3 with 3=10
Algorithm (1.10)

Iteration number (n)
0 10 20 30 40 50 60

||x
n+

1
-x

n
||2

0

0.05

0.1

0.15

0.2

0.25

0.3

Algorithm 3.3 with 3=3
Algorithm 3.3 with 3=6
Algorithm 3.3 with 3=10
Algorithm (1.10)

Iteration number (n)
0 10 20 30 40 50 60 70 80

||x
n+

1
-x

n
||2

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Algorithm 3.3 with 3=3
Algorithm 3.3 with 3=6
Algorithm 3.3 with 3=10
Algorithm (1.10)

Iteration number (n)
0 10 20 30 40 50

||x
n+

1
-x

n
||2

0

0.5

1

1.5

2

2.5

Algorithm 3.3 with 3=3
Algorithm 3.3 with 3=6
Algorithm 3.3 with 3=10
Algorithm (1.10)

FIGURE 1. Error (||xn−1− xn||2) vs iteration numbers (n) for the optimal control
problem: Top Left: m = 1; Top Right: m = 2; Bottom Left: m = 3; Bottom Right:
m = 4.

and G(x) = λ ||x||1. That is, the LASSO problem can be related to:

min
x∈RN

{
1
2
||Dx−b||22 +λ ||x||1

}
, (5.6)

where λ > 0, b ∈RM, and D : RN →RM is an operator. Note that, solving LASSO problem (5.6) is
equivalent to solving the following underdetermined linear equation systems (see [36]):

Dx = b (linear equations, where N�M). (5.7)

Compressed sensing is then applied for finding solutions of problem (5.7) (and hence, solutions of
problem (5.6)). In this case that the number of unknowns is greater than the number of equations,
system (5.7) generates solutions or no solution. In such situation, the least square method (the
method of finding the minimum l2-norm solution) is then applied to the linear system. In most
real-world applications, problem (5.6) can be computed to recover x when x is sparse. Moreover,
problem (5.6) can be reformulated as a second-order cone programming problem and can be seen as

GENERALIZED SPLIT FEASIBILITY PROBLEMS WITH APPLICATIONS 387

the pivot for proposing two very important methods; namely, the Iteration Shrinkage Thresholding
Algorithm (ISTA) and Fast Iteration Shrinkage Thresholding Algorithm (FISTA) (see [4]), which
are very efficient for solving SLIPs.

To apply Algorithm 3.3 to solve LASSO problem (5.6), we set A = ∇P, the gradient of P, where
P(x) = 1

2 ||Dx− b||22 and B = ∂G, the subdifferential of G, where G(x) = λ ||x||1. We know that
∇P is ||D||2-Lipschitz continuous and monotone, while ∂G is maximally monotone (see [20]).
Therefore, Algorithm 3.3 reduces to the following.

Algorithm 5.1
Step 0: Choose sequences {αn}∞

n=1 and {εn}∞
n=1 such that the conditions from Assumption 3.2 hold

and let τ1,λ1 > 0, µ,δ ∈ (0,1),θ ≥ 3, and x0,x1 ∈ H1 be given arbitrarily. Set n := 1.
Step 1. Given the iterates xn−1 and xn (n≥ 1), choose the sequence {θn} such that 0≤ θn ≤ θ̄n,
where

θ̄n :=

{
min

{ n−1
n+θ−1 ,

εn
‖xn−xn−1‖

}
if xn 6= xn−1,

n−1
n+θ−1 otherwise.

Step 2. Set un = xn + θn(xn− xn−1). Compute wn = un− τnFun and yn = (I + λn∂G)−1(I −
λn∇P)wn.
Step 3. Compute xn+1 = αn f (xn)+(1−αn)zn, where zn = yn−λn(∇Pyn−∇Pwn).
Update:

τn+1 =

{
min

{
δ ||wn−un||
||Fwn−Fun|| , τn

}
, if Fwn 6= Fun,

τn, otherwise.

and

λn+1 =

{
min

{
µ||wn−yn||

||∇Pwn−∇Pyn|| , λn

}
, if ∇Pwn 6= ∇Pyn,

λn, otherwise.

Stopping criterion: If yn = wn = un = xn, then stop, otherwise, set n := n+1 and go back to Step
1.

In this case, we have that (I +λ∂G)−1(x) = proxG(x) = argmin
u

λ ||x||1 + 1
2 ||u− x||22, which is

separable in indices. Thus, for x ∈ RN , we obtain

(I +λ∂G)−1(x) = proxλ ||.||1(x)

=
(

proxλ |.|1(x1), · · · ,proxλ |.|1(xN)
)

= (sgn(x1)max{|x1|−λ ,0}, · · · ,sgn(xN)max{|xN |−λ ,0}) .

For the numerical analysis of this subsection, we compare Algorithm 5.1 with Algorithm 6.1 of
Shehu et al. [36]. Note that, in [36], Algorithm 6.1 of [36] was compared with the Proximal-
Gradient Method (PGM) of [37] and Algorithms 3.3 and 3.5 of Wang and Xu [38] for solving the
LASSO problem (5.6). It was shown there that Algorithm 6.1 of [36] outperforms the PGM of
[37] and Algorithms 3.3 and 3.5 of Wang and Xu [38] in both CPU time and number of iterations.
Therefore, our Algorithm 5.1 do not only outperforms Algorithm 6.1 of Shehu et al. [36] but also
performs better than the PGM of [37] and the Algorithms 3.3 and 3.5 of Wang and Xu [38] in both
CPU time and number of iterations as reported in Table 2 below. For the comparison, we consider

388 C. IZUCHUKWU, M. APHANE, K.O. AREMU

the same choices as in [36]. That is, we take x0 = 0. Furthermore, we denote Di, i = 1,2, . . . ,M by
the row of D. Thus Di represents the ith observation of the independent variable with bi been the
response variable while x ∈RN is the regression coefficient to be recovered. As in [36], we consider
different values of M and N such that N�M. Also, we randomly generate the data b as Dx+αe,
where α = 0.01, x is a generated sparse vector while D and e are random matrices whose entries are
normally distributed with zero mean and variance 1. Set the stopping criterion as ||xn− x∗||2 ≤ ε ,
where ε = 10−3 and x∗ is obtained using SPGL1 (see [36]).

Table 2. Numerical Results for the LASSO Problem.
(N, M)

Alg. 5.1 (θ =
3)

Alg. 5.1 (θ =
6)

Alg. 5.1 (θ =
10)

Alg. 6.1 of
[36]

(12,0.20)
CPU time (sec)
Iterations

7.001
6

5.102
3

6.851
5

14.137
9

(12,0.25)
CPU time (sec)
Iterations

8.321
6

5.701
3

7.013
5

14.727
9

(12,0.30)
CPU time (sec)
Iterations

8.407
6

6.213
3

7.351
5

15.573
9

(12,0.35)
CPU time (sec)
Iterations

8.011
6

6.832
3

6.201
4

15.311
9

In LASSO problem (5.6), the gradient ∇P, where P(x) = ||Dx− b||22, may generally not be
inverse-strongly monotone. In fact, even in the case that ∇P is 1

||D||2 -inverse-strongly monotone,
the iterative methods with the stepsizes that depends on the operator norm or the knowledge of
the coefficient of the underlying operator (in this case ||D||) may still not be applicable to problem
(5.6) since the computation of the constant 1

||D||2 is generally a very difficult task to accomplish
or impossible to calculate (see [39, Theorem 2.3]). Therefore, iterative methods without these
limitations (e.g., Algorithm 3.3 and Algorithm 5.1) seems to have more real-world applications.

6. CONCLUSION

A class of generalized split feasibility problems over the solution set of monotone variational
inclusion problems was considered in real Hilbert spaces. To solve this problem, a new self-adaptive
stepsize method was proposed by combing a viscosity method with inertial extrapolation techniques.
This method was proved to converge strongly to a solution of the generalized split feasibility
problem in the framework of two real Hilbert spaces. The strong convergent result was obtained
under some relaxed assumptions, that is, the associated single-valued operator A involved in the
monotone variational inclusion problem is assumed to be monotone and Lipschitz continuous
and the proposed method uses the stepsizes that are generated at each iteration by some simple
calculations, which allows it to be easily implemented without the prior knowledge of the operator
norm or the Lipschitz constant of the single-valued operator. The method was also demonstrated to
have the capacity of solving other types of split inverse problems. Some applications of the method
were discussed and analyzed numerically.

REFERENCES

[1] Y. Censor, T. Elfving, A multiprojection algorithm using Bregman projections in product space, Numer. Algor. 8
(1994), 221–239.

GENERALIZED SPLIT FEASIBILITY PROBLEMS WITH APPLICATIONS 389

[2] Y. Censor, A. Gibali, S. Reich, Algorithms for the split variational inequality problem, Numer. Algor. 59 (2012),
301-323.

[3] Y. Censor, A. Gibali, S. Reich, The split variational inequality problem. The Technion-Israel Institute of Technol-
ogy, Haifa, 2010. arXiv:1009.3780.

[4] A. Beck, M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse problems, SIAM J.
Imaging Sci. 2 (2009), 183-202.

[5] T. Humphries, M. Loreto, B. Halter, W. O’Keeffe, L. Ramirez, Comparison of regularized and superiorized
methods for tomographic image reconstruction, J. Appl. Numer. Optim. 2 (2020), 77-99.

[6] C. Byrne, Y. Censor, A. Gibali, S. Reich, Weak and strong convergence of algorithms for the split common null
point problem, J. Nonlinear Convex Anal. 13 (2012), 759-775.

[7] W. Takahashi, H. K. Xu, J. C. Yao, Iterative methods for generalized split feasibility problems in Hilbert spaces,
Set-valued Var. Anal. 23 (2015), 205-221.

[8] M. Tian, B-N. Jiang, Viscosity approximation Methods for a Class of generalized split feasibility problems with
variational inequalities in Hilbert space, Numer. Funct. Anal. Optim. 40 (2019), 902-923.

[9] A. Moudafi, Split monotone variational inclusions, J. Optim. Theory Appl. 150 (2011), 275-283.
[10] S. Takahashi, W. Takahashi, The split common null point problem and the shrinking projection method in Banach

spaces, Optimization 65 (2016), 281-287.
[11] J.S. Jung, A general iterative algorithm for split variational inclusion problems and fixed point problems of a

pseudocontractive mapping, J. Nonlinear Funct. Anal. 2022 (2022), 13.
[12] J.N. Ezeora, C. Izuchukwu, Iterative approximation of solution of split variational inclusion problem, Filomat, 32

(2019), 2921-2932.
[13] C. Izuchukwu, J.N. Ezeora, J. Martinez-Moreno, A modified forward-backward splitting method for a certain

class of split monotone variational inclusion problem with application to split linear inverse problems, Comput.
Appl. Math. 39 (2020), 188.

[14] L.C. Ceng, On a viscosity iterative algorithm for variational inclusion problems and the fixed point problem of
countably many nonexpansive mappings, Appl. Set-Valued Anal. Optim. 3 (2021), 203-214.

[15] G. Lopez, V. Martin-Marquez, F. Wang, H. K. Xu, Solving the split feasibility problem without prior knowledge
of matrix norms, Inverse Probl.28 (2012), 085004.

[16] A. Moudafi, B. S. Thakur, Solving proximal split feasibility problems without prior knowledge of operator norms,
Optim. Lett. 8 (2014), 2099-2110.

[17] Y. Tang, A. Gibali, New self-adaptive step size algorithms for solving split variational inclusion problems and its
applications, Numer. Algor, 83 (2020), 305-331.

[18] C.C. Okeke, C. Izuchukwu, A strong convergence theorem for monotone inclusion and minimization problems in
complete CAT(0) spaces, Optim. Methods Softw. 34 (2019), 1168-1183.

[19] F. U. Ogbuisi, C. Izuchukwu, Approximating a zero of sum of two monotone operators which solves a fixed point
problem in reflexive Banach spaces, Numer. Funct. Anal. Optim. 42 (2020), 322-343.

[20] R. T. Rockafellar, On the maximality of sums of nonlinear monotone operators, Trans. Amer. Math. Soc. 149
(1970), 75-288.

[21] L. Liu, S.Y. Cho, J.C. Yao, Convergence analysis of an inertial Tseng’s extragradient algorithm for solving
pseudomonotone variational inequalities and applications, J. Nonlinear Var. Anal. 5 (2021), 627-644.

[22] X. Qin, J.C. Yao, Projection splitting algorithms for nonself operators, J. Nonlinear Convex Anal. 18 (2017),
925–935.

[23] L.C. Ceng, et al., A modified inertial subgradient extragradient method for solving pseudomonotone variational
inequalities and common fixed point problems, Fixed Point Theory 21 (2020), 93-108.

[24] L. Liu, X. Qin, Strong convergence theorems for solving pseudo-monotone variational inequality problems and
applications, Optimization, 71 (2022), 3603-3626.

[25] H. K. Xu, Iterative methods for split feasibility problem in infinite-dimensional Hilbert space, Inverse Probl. 26
(2010), 105018.

[26] H. Zhou, X. Qin, Fixed Points of Nonlinear Operators. Iterative Method, De Gruyter 2020.

390 C. IZUCHUKWU, M. APHANE, K.O. AREMU

[27] B. Lemaire, Which Fixed Point Does the Iteration Method Select?, In: Gritzmann, P., Horst, R., Sachs, E.,
Tichatschke, R. (eds) Recent Advances in Optimization. Lecture Notes in Economics and Mathematical Systems,
vol 452. Springer, Berlin, Heidelberg, 1997.

[28] S. Saejung, P. Yotkaew, Approximation of zeros of inverse strongly monotone operators in Banach spaces,
Nonlinear Anal. 75 (2012), 742-750.

[29] P. E. Mainge, Approximation methods for common fixed points of nonexpansive mappings in Hilbert spaces, J.
Math. Anal. Appl. 325 (2007), 469-479.

[30] J. Yang, H. Liu, Strong convergence result for solving monotone variational inequalities in Hilbert space, Numer.
Algor. 80 (2019), 741-752.

[31] S.A. Khan, S. Suantai, W. Cholamjiak, Shrinking projection methods involving inertial forward-backward splitting
methods for inclusion problems, RACSAM 113 (2019), 645-656.

[32] L.S. Pontryagin, V.G. Boltyanskii, R.V. Gamkrelidze, E.F. Mishchenko, The Mathematical Theory of Optimal
Processes, Wiley, New York, 1962.

[33] E. V. Khoroshilova, Extragradient-type method for optimal control problem with linear constraints and convex
objective function, Optim. Lett. 7 (2013), 1193-1214.

[34] J.C. Butcher, Numerical Methods for Ordinary Differential Equations, Wiley, New York, 2003.
[35] M. Seydenschwanz, Convergence results for the discrete regularization of linear-quadratic control problems with

bang–bang solutions, Comput. Optim. Appl. 629 (2015), 731-760.
[36] Y. Shehu, O.S. Iyiola, F.U. Ogbuisi, Iterative method with inertial terms for nonexpansive mappings: applications

to compressed sensing, Numer. Algor. 83 (2020), 1321-1347.
[37] P.L. Combettes, V. Wajs, Signal recovery by proximal forward-backward splitting, SIAM J. Multiscale Model

Simul. 4 (2005), 1168-1200.
[38] Y. Wang, H. K. Xu, Strong convergence for the proximal-gradient method, J. Nonlinear Convex Anal. 15 (2014),

581-593.
[39] J. M. Hendrickx, A. Olshevsky, Matrix P-norms are NP-hard to approximate if P 6= 1,2,∞, SIAM J. Matrix Anal.

Appl. 31 (2010), 2802-2812.
[40] C. Izuchukwu, C. C. Okeke, F. O. Isiogugu, A viscosity iterative technique for split variational inclusion and fixed

point problems between a Hilbert space and a Banach space, J. Fixed Point Theory Appl. 20 (2018), 1-25.

	1. Introduction
	2. Preliminaries
	3. Proposed Method
	4. Convergence Analysis
	5. Applications and Numerical Analysis
	5.1. Optimal control problem
	5.2. Split linear inverse problem
	5.3. Least absolute selection and shrinkage operator (LASSO) problem

	6. Conclusion
	References

