
J. Appl. Numer. Optim. 5 (2023), No. 3, pp. 349-370
Available online at http://jano.biemdas.com
https://doi.org/10.23952/jano.5.2023.3.05

AN OUTER QUADRATIC APPROXIMATION METHOD FOR SOLVING SPLIT
FEASIBILITY PROBLEMS

GUASH HAILE TADDELE1, POOM KUMAM1, AVIV GIBALI2,∗, WIYADA KUMAM3

1Fixed Point Research Laboratory, Fixed Point Theory and Applications Research Group,
Center of Excellence in Theoretical and Computational Science (TaCS-CoE), Faculty of Science,

King Mongkut’s University of Technology Thonburi (KMUTT),
126 Pracha Uthit Rd., Bang Mod, Thung Khru, Bangkok 10140, Thailand

2Department of Mathematics, Braude College, Karmiel 2161002, Israel
3Applied Mathematics for Science and Engineering Research Unit (AMSERU),

Program in Applied Statistics, Department of Mathematics and Computer Science,
Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi (RMUTT),

Pathum Thani 12110, Thailand

Abstract. In this paper, we consider the multiple-sets split feasibility problem in real Hilbert space and
propose a self-adaptive method that uses projections onto quadratic (balls) approximations of the problem’s
associated sets. Our algorithm has several major advantages over existing methods in the literature. The first
is its simple implementation as it uses closed-formula projection onto balls, and the second is that strong
convergence is obtained under mild conditions. Several numerical experiments illustrate and compare the
performances of the proposed scheme.
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1. INTRODUCTION

Censor, Gibali and Reich [11] introduced the split inverse problem (SIP). Given are two vector
spaces X and Y and a bounded and linear operator T : X → Y , let the two inverse problems IP1
be formulated in space X and IP2 be formulated in space Y . Given these data, the Split Inverse
Problem (SIP) is formulated as follows:

find a point x∗ ∈ X that solves IP1

and such that

the point y∗ = T x∗ ∈ Y solves IP2.

The first instance of the SIP is the split convex feasibility problem (SCFP) [9]. Here the spaces
are H1 and H2, real Hilbert spaces. Let T be the operator as above with its adjoint T ∗ : H2→ H1.

∗Corresponding author.
E-mail address: avivg@braude.ac.il (A.Gibali).
Received December 19, 2022; Accepted September 1, 2023.

c©2023 Journal of Applied and Numerical Optimization

349



350 G.H. TADDELE, P. KUMAM, A. GIBALI, W. KUMAM

The split feasibility problem consists of finding a point

x∗ ∈C such that T x∗ ∈ Q (1.1)

where C and Q are nonempty, convex, and closed subsets of H1 and H2, respectively. One denotes
the solutions set of the SCFP (1.1) by D =C∩T−1(Q) and always assume its nonempty.

SCFPs reformulations have been successfully employed for many real-world problems, such as
intensity-modulated radiation therapy [8, 10], medical image reconstruction [3, 9], gene regulatory
network inference [28], just to name a few.

One of the well-known methods for solving SCFP (1.1) is Byrne CQ-algorithm [3, 4]. Given
the current iterate xn, update the next iterate via the rule

xn+1 = PC(xn− τnT ∗(I−PQ)T xn)), (1.2)

where PC and PQ are the nearest point projections onto C and Q, respectively, and τn ∈
(
0,2/‖T‖2)

with ‖T‖2 being the spectral radius of T ∗T .
Examining the CQ-algorithm from the computational point of view, it can be seen that it bears

two major drawbacks. The first is the need to compute PC and PQ per each iteration. When C
and Q, the involved sets, are not ”simple” enough, this task might be very costly. Second, τn, the
step-size, depends on the evaluation of ‖T‖2, which could be expansive.

In a way to overcome the first drawback, Yang [30] introduced the relaxed CQ-algorithm that
uses projections onto outer linear approximations (half-space) of the sets C and Q. For introducing
Yang’s algorithm, assume that sets C and Q are given as a sublevel sets of some convex functions,
that is,

C := {x ∈ H1 : c(x)≤ 0} and Q := {y ∈ H2 : q(y)≤ 0}, (1.3)

where c : H1 → R and q : H2 → R are convex and subdifferentiable functions on H1 and H2, re-
spectively, and that subdifferentials ∂c(x) and ∂q(y) of c and q, respectively, are bounded operators
(i.e., bounded on bounded sets).

The outer linear (half-space) approximations (C ⊆Cn and Q ⊆ Qn for all n ≥ 1) for the sets C
and Q given as in (1.3) are presented next. Let xn ∈ H1, ξn ∈ ∂c(xn), and ηn ∈ ∂q(T xn). Define

Cn :=


{x ∈ H1 : c(xn)≤ 〈ξn,xn− x〉}, if ξn 6= 0,

H1, if ξn = 0,
(1.4)

and

Qn :=


{y ∈ H2 : q(T xn)≤ 〈ηn, T xn− y〉}, if ηn 6= 0,

H2, if ηn = 0.
(1.5)

Next, we define the convex and differentiable functions fn(·) and its associated gradient func-
tions ∇ fn(·)

fn(xn) :=
1
2
‖(I−PQn)T xn‖2, ∇ fn(xn) := T ∗(I−PQn)T xn. (1.6)

With the above data, for a given iterate xn, Yang’s relaxed CQ iterative procedure is given as

xn+1 = PCn(xn− τn∇ fn(xn)), (1.7)

where τn is chosen as in Byrne’s CQ-algorithm (1.2). While overcoming the first computational
obstacle of Byrne’s original algorithm, Yang’s method still require to evaluate the norm of T . Thus,
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López et al. [19] introduced a new relaxed CQ method with adaptive step-size rules. The step-size
τn is then determined as follows

τn :=
ρn fn(xn)

‖∇ fn(xn)‖2 , (1.8)

where ρn ∈ (0,4) such that liminf
n→∞

ρn(4−ρn)> 0 for all n≥ 1. Under suitable conditions, the weak
convergence of (1.8) was established.

As strong convergence methods are more desirable in infinite dimensional spaces, researchers
proposed CQ extensions that converges strongly to a solution of the SCFP (1.1); see, e.g., [14, 15,
17, 19, 27, 31]. In particular, for a fixed point u ∈ H1 and arbitrary x0 ∈ H1, López et al. [19]
introduced the so-called Halpern-CQ method

xn+1 = αnu+(1−αn)PCn

(
xn− τn∇ fn(xn)

)
,∀n≥ 1. (1.9)

Another related result is of [27]:

xn+1 = PCn

(
(1−αn)(xn− τn∇ fn(xn))

)
,∀n≥ 1, (1.10)

where {αn} ⊂ (0,1) such that lim
n→∞

αn = 0 and
∞

∑
n=1

αn = +∞, and Cn, ∇ fn(xn), and τn are given

as in (1.4), (1.6), and (1.8), respectively. Under some standard conditions, it was shown that any
sequence {xn} generated by (1.9) converges strongly to the point x∗ = PD(u) whereas the sequence
{xn} generated by (1.10) converges strongly to the point x∗ = PD(0).

Recently, Yu et al. [33] considered the sets representations (1.3) with the functions c : H1 →
(−∞,+∞] and q : H2→ (−∞,+∞] as λ -strongly and ϖ-strongly convex subdifferentiable functions
on H1 and H2, respectively such that

c(x)≥ c(xn)+ 〈ξn,x− xn〉+
λ

2
‖x− xn‖2, where ξn ∈ ∂c(xn),

and
q(y)≥ q(T xn)+ 〈ηn,y−T xn〉+

ϖ

2
‖y−T xn‖2, where ηn ∈ ∂q(T xn).

Then, an outer quadratic approximation (ball-relaxed CQ-algorithm) method for solving the
SCFP (1.1) was introduced by replacing the sets Cn (1.4) and Qn (1.5), respectively, by C∗n and Q∗n,
where

C∗n =
{

x ∈ H1 : c(xn)+ 〈ξn,x− xn〉+
λ

2
‖x− xn‖2 ≤ 0

}
, (1.11)

and
Q∗n =

{
y ∈ H2 : q(T xn)+ 〈ηn,y−T xn〉+

ϖ

2
‖y−T xn‖2 ≤ 0

}
. (1.12)

For an arbitrary starting point x0 ∈ H1, Yu et al. [33] proposed the following weak convergent
ball-relaxed method

xn+1 = PC∗n

(
xn−

ρn‖(I−PQ∗n)T xn‖2

2‖T ∗(I−PQ∗n)T xn‖2 T ∗(I−PQ∗n)T xn

)
, (1.13)

where ρn ∈ (0,4) with liminf
n→∞

ρn(4−ρn)> 0.
Now, we wish to extend our scope to Censor et al. [10] multiple-sets split feasibility problem

(MSSCFP). Let H1 and H2 be two real Hilbert spaces. Let T : H1→ H2 be a linear and bounded
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operator and T ∗ : H2→H1 its adjoint. The multiple-sets split feasibility problem consists of finding
a point x∗ ∈ H1 such that

x∗ ∈
t⋂

i=1

Ci such that T x∗ ∈
r⋂

j=1

Q j, (1.14)

where C1, . . . ,Ct and Q1, . . . ,Qr are non-empty, closed, and convex subsets of H1 and H2, respec-
tively and t ≥ 1 and r ≥ 1 are given integers. The solution set of (1.14) is define as

Π :=
(
∩t

i=1 Ci
)
∩T−1(∩r

j=1 Q j
)
.

For solving the MSSCFP (1.14), Censor et al. [10] proposed the following proximity function
p(x) that measures the “distance” of a point to all sets:

p(x) :=
1
2

t

∑
i=1

αi‖(I−PCi)x‖
2 +

1
2

r

∑
j=1

β j‖(I−PQ j)T x‖2, (1.15)

where αi (i = 1,2, . . . , t) > 0 and β j ( j = 1,2, . . . ,r) > 0 and ∑
t
i=1 αi +∑

r
j=1 β j = 1. Clearly, if

the MSSCFP is feasible (Π 6= /0) then p(x∗) = 0 and otherwise, it yields the best least solution.
Following this work, many extensions were proposed; see, e.g., [13, 18, 20, 25, 32]. Moreover,
extensions to fixed points, null points, and more were also proposed in [2, 5, 7, 12, 21, 22, 26].

Reich and Tuyen [23] introduced the following generalized split feasibility problem (GSCFP).
Let H j, j = 1,2, . . . ,M, be real Hilbert spaces and C j, j = 1,2, . . . ,M, be closed and convex subsets
of H j, respectively. Let B j : H j→ H j+1, j = 1,2, . . . ,M−1, be bounded linear operators such that

S :=C1∩B−1
1 (C2)∩·· ·∩B−1

1

(
B−1

2 . . .
(

B−1
M−1(CM)

))
6= /0.

The generalized split feasibility problem consists of finding a point

x∗ ∈ S, (1.16)

that is, x∗ ∈C1, B1x∗ ∈C2, . . . ,BM−1BM−2 . . .B1x∗ ∈CM. In [23], Reich and Tuyen proved a strong
convergence theorem for a modification of the CQ-algorithm which solves the GSCFP (1.16).

The split feasibility problem with multiple output sets (SCFPMOS) of Reich et al. [22] is another
related SCFP generalization. Let H, H j, j = 1,2, . . . ,M, be real Hilbert spaces and let Tj : H →
H j, j = 1,2, . . . ,M, be bounded linear operators. It is to find an element x∗ such that

x∗ ∈ Γ :=C∩
(
∩M

j=1 T−1
j (Q j)

)
6= /0 (1.17)

where C and Q j, j = 1,2, . . . ,M, are non-empty, closed, and convex subsets of H and H j, j =
1,2, . . . ,M, respectively.

A projection gradient algorithm and a viscosity approximation iterative method for solving the
SCFPMOS (1.17) in infinite-dimensional Hilbert spaces were introduced in [22], but both methods
still require to compute the metric projections on to the sets C and Qi and the operator norm. In
[24], a self-adaptive step-size algorithm for solving the SCFPMOS (1.17) was introduced.

Motivated by the problems and methods above, we consider the following multiple-sets split
feasibility problem with multiple output sets (MSSCFPMOS). Let H, H j, j = 1,2, . . . ,M, be real
Hilbert spaces and let Tj : H→H j, j = 1,2, . . . ,M, be bounded linear operators. The multiple-sets
split feasibility problem with multiple output sets consists of finding a point x∗ such that

x∗ ∈Ω :=
(
∩N

i=1 Ci

)
∩
(
∩M

j=1 T−1
j

(
Q j

))
6= /0 (1.18)
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where Ci, i = 1,2, . . . ,N, and Q j, j = 1,2, . . . ,M, are non-empty, closed and convex subsets of H
and H j, j = 1,2, . . . ,M, respectively, N,M ≥ 1 are given integers. Solutions of (1.18) fulfil x∗ ∈Ci
for each i = 1,2, . . . ,N, and Tjx∗ ∈ Q j for each j = 1,2, . . . ,M.

It can be easily confirmed that, with N = 1, MSSCFPMOS (1.18) reduced to SCFPMOS (1.17).
Moreover, if N = 1 = M, then MSSCFPMOS (1.18) reduced to SCFP (1.1). Our aim is to establish
a simple, strong convergenc,e and self-adaptive step-size method for solving the MSSCFPMOS
(1.18) in real Hilbert spaces.

The paper is organized as follows. We start with recalling some basic definitions and results in
Section 2. The algorithm and its analysis are presented in Section 3 and then in Section 4, the last
section, we demonstrate and compare the performances of our new scheme for several numerical
examples.

2. PRELIMINARIES

Throughout this paper, let H, H1 or H2 be a real Hilbert space with inner product 〈., .〉, and
induced norm ‖.‖. Let I stand for the identity operator on H, H1 or H2. Let “ ⇀ ” and “→ ”,
denote the weak and strong convergence, respectively. For any sequence {xn} ⊆H, ωw(xn) =

{
x∈

H : ∃{xnk} ⊆ {xn} such that xnk ⇀ x
}

denotes the weak ω-limit set of {xn}. We denote the set of
fixed points of an operator T : H→ H (if T has a fixed point) by F(T ) = {x ∈ H : T x = x}.

We start with a known and useful norm inequality in real Hilbert space H, ‖σx+(1−σ)y‖2 ≤
σ‖x‖2 +(1−σ)‖y‖2 for all x,y ∈ H and for all σ ∈ R.

Definition 2.1. Let C be a nonempty, closed, and convex subset of H. An operator T : C→ H is
called:

(1) Lipschitz continuous with constant σ > 0 on C if ‖T x−Ty‖ ≤ σ‖x− y‖, ∀x,y ∈C;
(2) nonexpansive on C if ‖T x−Ty‖ ≤ ‖x− y‖, ∀x,y ∈C;
(3) firmly nonexpansive on C if ‖T x−Ty‖2 ≤ ‖x− y‖2−||(I−T )x− (I−T )y‖2, ∀x,y ∈ C,

which is equivalent to ‖T x−Ty‖2 ≤ 〈T x−Ty, x− y〉, ∀x,y ∈C.

Next, we recall the definition and properties of the metric projection of H onto the set C.

Definition 2.2. Let C ⊆ H be a nonempty, closed, and convex set. For every element x ∈ H, there
exists a unique nearest point in C, denoted by PC(x) such that ‖x−PC(x)‖= min{‖x−y‖ : y ∈C}.
The operator PC : H→C is called a metric projection of H onto C. It is readily seen that F(PC) :=C.
Moreover, the metric projection mapping PC has the following well-known properties.

Lemma 2.1. Let C ⊆ H be a nonempty, closed, and convex set. Then, the following assertions
hold, for any x,y ∈ H and z ∈C,

(1) 〈x−PC(x), z−PC(x)〉 ≤ 0;
(2) ‖PC(x)−PC(y)‖ ≤ ‖x− y‖;
(3) ‖PC(x)−PC(y)‖2 ≤ 〈PC(x)−PC(y), x− y〉;
(4) ‖PC(x)− z‖2 ≤ ‖x− z‖2−‖x−PC(x)‖2.

Definition 2.3. Given a function f : H→ (−∞,+∞],
(1) f is called proper if {x ∈ H : f (x)<+∞} 6= /0;
(2) f is called convex if, for each σ ∈ (0,1), f (σx+(1−σ)y)≤ σ f (x)+(1−σ) f (y),∀x,y ∈

H;
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(3) f is called σ -strongly convex if f (x)− (σ/2)‖x‖2 is convex;
(4) f is called lower semi-continuous (lsc) at x if xn→ x implies f (x)≤ liminf

n→∞
f (xn);

(5) f is called weakly lower semi-continuous (w-lsc) at x if xn ⇀ x implies f (x)≤ liminf
n→∞

f (xn);
(6) f is called lower semi-continuous on H if it is lower semi-continuous at every point x ∈ H

and f is weakly lower semi-continuous on H if it is weakly lower semi-continuous at every
point x ∈ H;

(7) A vector ξ ∈ H is a subgradient of f at a point x if f (y)≥ f (x)+ 〈ξ , y− x〉, ∀y ∈ H;
(8) The set of all subgradients of f at x ∈ H, denoted by ∂ f (x), is called the subdifferential of

f , and is defined by ∂ f (x) = {ξ ∈ H : f (y)≥ f (x)+ 〈ξ , y− x〉, for each y ∈ H};
(9) If ∂ f (x) 6= /0, f is said to be subdifferentiable at x. If the function f is continuously differ-

entiable then ∂ f (x) = {∇ f (x)}.

Lemma 2.2. ([1]) Let f : H→ (−∞,+∞] be a proper and convex function. Then f is lower semi-
continuous if and only if it is weakly lower semi-continuous.

Lemma 2.3. ([1]) Let f : H → (−∞,+∞] be a σ -strongly convex function. Then, for all x,y ∈ H,
f (y)≥ f (x)+ 〈ξ , y− x〉+ σ

2 ‖y− x‖2, ξ ∈ ∂ f (x).

Lemma 2.4. ([29]) Let C and Q be closed and convex subsets of real Hilbert spaces H1 and H2,
respectively, and f : H1→ (−∞,+∞] be given by f (x) = 1

2‖(I−PQ)T x‖2, where T : H1→ H2 is a
bounded and linear operator. Then, for σ > 0 and x∗ ∈H1, the following statements are equivalent.

(1) the point x∗ solves the SCFP (1.1);
(2) the point x∗ is the fixed point of the mapping PC(I−σ∇ f ).

Lemma 2.5. ([4]) Let H1 and H2 be real Hilbert spaces and let f : H1→ (−∞,+∞] be given by
f (x) = 1

2‖(I−PQ)T x‖2, where Q is closed and convex subset of H2. Let T : H1→H2 be a bounded
and linear operator. Then,

(1) f is convex and weakly lower semi-continuous on H1;
(2) ∇ f (x) = T ∗(I−PQ)T x, for x ∈ H1;
(3) ∇ f is ‖T‖2-Lipschitz, i.e., ‖∇ f (x)−∇ f (y)‖ ≤ ‖T‖2‖x− y‖, ∀x,y ∈ H1.

Lemma 2.6. ([16]) Let {Σn} be a sequence of nonnegative real numbers such that

Σn+1 ≤ (1− ςn)Σn + ςnΛn, n≥ 1,
Σn+1 ≤ Σn−Φn +Ξn, n≥ 1,

where {ςn} ⊂ (0,1), {Φn} is a nonnegative real sequence, and {Λn} and {Ξn} are real sequences
such that

(1) ∑
∞
n=1 ςn = ∞;

(2) lim
n→∞

Ξn = 0;

(3) lim
k→∞

Φnk = 0 implies limsup
k→∞

Λnk ≤ 0 for any subsequence {nk} of {n}. Then lim
n→∞

Σn = 0.

3. MAIN RESULT

Focusing on the MSSCFPMOS (1.18) with the sets Ci (i∈{1,2, . . . ,N}) and Q j ( j∈{1,2, . . . ,M})
representations

Ci = {x ∈ H : ci(x)≤ 0} and Q j = {y ∈ H2 : q j(y)≤ 0},
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for ci : H→ (−∞,+∞], i∈ {1,2, . . . ,N} and q j : H j→ (−∞,+∞], j ∈ {1,2, . . . ,M} being λi and ϖ j
strongly convex functions, respectively, we give our method. Moreover, we assume the following.
(SA1) all functions ci(i = 1,2, . . . ,N) and q j( j = 1,2, . . . ,M) are subdifferentiable on H and H j,

respectively;
(SA2) for any x ∈ H and for each i ∈ {1,2, . . . ,N}, subgradient ξi ∈ ∂ci(x) can be calculated;
(SA3) for any y ∈ H j and for each j ∈ {1,2, . . . ,M}, subgradient η j ∈ ∂q j(y) can be calculated;
(SA4) all operators ∂ci(i = 1,2, . . . ,N) and ∂q j( j = 1,2, . . . ,M) are bounded on bounded sets.

Following (SA2)-(SA3), it is clear that all functions ci and q j are lower semi-continuous (also
weakly from Lemma 2.2) and convex. In our algorithm, given the n-th current iterative xn, we
construct for i ∈ {1,2, . . . ,N} the super-sets C∗i,n and for j ∈ {1,2, . . . ,M} the super-sets Q∗j,n as
follows

C∗i,n =
{

x ∈ H : ci(xn)+ 〈ξi,n, x− xn〉+
λi

2
‖x− xn‖2 ≤ 0

}
, (3.1)

where ξi,n ∈ ∂ci(xn). If λi = 0, then C∗i,n above is reduced to the following half-space

Ci,n =
{

x ∈ H : ci(xn)+ 〈ξi,n, x− xn〉 ≤ 0}.

If λi > 0, then, for i ∈ {1,2, . . . ,N}, C∗i,n can be defined by (see [33])

C∗i,n =
{

x ∈ H :
∥∥∥x−

(
xn−

1
λi

ξi,n

)∥∥∥2
≤ 1

λ 2
i
‖ξi,n‖2− 2

λi
ci(xn)

}
and it follows from the fact that C∗i,n ⊇Ci 6= /0 (i ∈ {1,2, . . . ,N}) the set C∗i,n is nonempty. Further-
more, let x∗ ∈Ci (i ∈ {1,2, . . . ,N}). Since each ci (i ∈ {1,2, . . . ,N}) is λi-strongly convex, it then
follows from Lemma 2.3 that

ci(xn)+ 〈ξi,n, x∗− xn〉+
λi

2
‖x∗− xn‖2 ≤ ci(x∗)≤ 0,

which implies that, for each i ∈ {1,2, . . . ,N},
2
λi

ci(xn)≤
2
λi
‖ξi,n‖‖xn− x∗‖−‖xn− x∗‖2 ≤ 1

λ 2
i
‖ξi,n‖2

which also yields 1
λ 2

i
‖ξi,n‖2− 2

λi
ci(xn) ≥ 0. Therefore, each C∗i,n (i ∈ {1,2, . . . ,N}) is a nonempty

ball of radius
√

1
λ 2

i
‖ξi,n‖2− 2

λi
ci(xn) centred at xn − 1

λi
ξi,n. The set Q∗j,n ( j ∈ {1,2, . . . ,M}) is

defined as

Q∗j,n =
{

y ∈ H j : q j(Tjxn)+ 〈η j,n, y−Tjxn〉+
ϖ j

2
‖y−Tjxn‖2 ≤ 0

}
, (3.2)

where η j,n ∈ ∂q j(Tjxn). If ϖ j = 0, then Q∗j,n above is reduced to the following half-space

Q j,n =
{

y ∈ H j : q j(Tjxn)+ 〈η j,n, y−Tjxn〉 ≤ 0
}
.

If ϖ j > 0, then Q∗j,n above is noting but a nonempty closed ball. Indeed, Q∗j,n is nonempty because
Q∗j,n ⊇ Q j 6= /0 ( j ∈ {1,2, . . . ,M}). Similarly, for all n≥ 0 and for each j ∈ {1,2, . . . ,M}, observe
that

Q∗j,n =
{

y ∈ H j :
∥∥∥y−

(
Tjxn−

1
ϖ j

η j,n

)∥∥∥2
≤ 1

ϖ2
j
‖η j,n‖2− 2

ϖ j
q j(Tjxn)

}
.



356 G.H. TADDELE, P. KUMAM, A. GIBALI, W. KUMAM

That is, each Q∗j,n ( j ∈ {1,2, . . . ,M}) is also a nonempty closed ball of radius√
1

ϖ2
j
‖η j,n‖2− 2

ϖ j
q j(Tjxn)

centred at Tjxn− 1
ϖ j

η j,n. Therefore, both C∗i,n and Q∗j,n are nothing but nonempty closed balls and
it is easy to verify that [33] C∗i,n ⊇Ci (i ∈ {1,2, . . . ,N}) and Q∗j,n ⊇ Q j ( j ∈ {1,2, . . . ,M}) hold for
every n≥ 0.

With the above, we are now ready to present our new and simple method for solving the MSS-
CFPMOS (1.18).

Algorithm 1
Step 0. Choose two real sequences {αn} ⊂ (0,1) and {ρn} ⊂ (0,2) satisfying the assumptions:

(A1) liminf
n→∞

ρn(2−ρn)> 0 (A2) lim
n→∞

αn = 0 and
∞

∑
n=0

αn = ∞.

Choose arbitrary starting point x0 ∈ H and set n := 0. Choose weights δ n
i (i = 1,2, . . . ,N) > 0

and parameters β j ( j = 1,2, . . . ,M)> 0 such that
N

∑
i=1

δ
n
i = 1 and inf

i∈In
δ

n
i > δ > 0, where In = {i ∈ {1,2, . . . ,N} : δ

n
i > 0}, and

M

∑
j=1

β j = 1.

Step 1. Given the current iterate xn ∈ H, compute the next iterate xn+1 by

xn+1 =
N

∑
i=1

δ
n
i PC∗i,n

(
(1−αn)

(
xn− τn

M

∑
j=1

β jT ∗j
(

I−PQ∗j,n

)
Tjxn

))
,

where C∗i,n and Q∗j,n are the sets defined in (3.1) and (3.2), respectively and the step-size τn is
updated via

τn :=
ρn ∑

M
j=1 β j

∥∥∥(I−PQ∗j,n

)
Tjxn

∥∥∥2

Θ2
n

,

where

Θn := max

{
1,
∥∥∥ M

∑
j=1

β jT ∗j
(

I−PQ∗j,n

)
Tjxn

∥∥∥}.
Step 2. If xn+1 = xn, then stop; otherwise, set n := n+1 and return to Step 1.

Remark 3.1. If λi = ϖ j = 0, then all functions ci and q j for i ∈ {1,2, . . . ,N} and j ∈ {1,2, . . . ,M}
are convex, then Algorithm 1 reduced to a outer linear (half-spaces) approximation method projec-
tions. Moreover, only one family of sets is convex and the other is strongly convex, and we obtain
another new algorithm for solving the MSSCFPMOS (1.18).

3.1. Convergence Analysis.
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Lemma 3.1. Assume that (SA1)-(SA4) hold and let {xn} be any sequence generated by Algorithm
1. Then

M

∑
j=1

β j

∥∥∥(I−PQ∗j,n

)
Tjxn

∥∥∥2
= 0 ⇔

∥∥∥ M

∑
j=1

β jT ∗j
(

I−PQ∗j,n

)
Tjxn

∥∥∥= 0.

Proof. Suppose that ∑
M
j=1 β j

∥∥∥(I−PQ∗j,n

)
Tjxn

∥∥∥2
= 0. Thus

∥∥∥ M

∑
j=1

β jT ∗j
(

I−PQ∗j,n

)
Tjxn

∥∥∥2
≤ M

(
max

1≤ j≤M
β j

)(
max

1≤ j≤M
‖Tj‖2

) M

∑
j=1

β j

∥∥∥(I−PQ∗j,n)Tjxn

∥∥∥2
,

which yields
∥∥∥∑

M
j=1 β jT ∗j

(
I−PQ∗j,n

)
Tjxn

∥∥∥= 0.

On the other hand, let
∥∥∥∑

M
j=1 β jT ∗j

(
I−PQ∗j,n

)
Tjxn

∥∥∥= 0 and fix x∗ ∈Ω. By Lemma 2.1, we have

M

∑
j=1

β j

∥∥∥(I−PQ∗j,n)Tjxn

∥∥∥2
≤

〈 M

∑
j=1

β j(I−PQ∗j,n)Tjxn, Tjxn−Tjx∗
〉

=
〈 M

∑
j=1

β jT ∗j (I−PQ∗j,n)Tjxn, xn− x∗
〉

≤
∥∥∥ M

∑
j=1

β jT ∗j (I−PQ∗j,n)Tjxn

∥∥∥‖xn− x∗‖.

So, it is clear that ∑
M
j=1 β j

∥∥∥(I−PQ∗j,n)Tjxn

∥∥∥2
= 0 and the desired result is obtained. �

Lemma 3.2. Assume that the solution set of the MSSCFPMOS (1.18) Ω 6= /0 and let {ρn} and
{αn} be the sequences defined in Algorithm 1. Let {xn} be any sequence generated by Algorithm
1. Then,

(1): for all x∗ ∈Ω and n ∈ N, it holds

‖xn+1− x∗‖2 ≤ αn‖x∗‖2 +(1−αn)‖xn− x∗‖2

−ρn(2−ρn)(1−αn)

(
∑

M
j=1 β j

∥∥∥(I−PQ∗j,n

)
Tjxn

∥∥∥2)2

Θ2
n

,

(2): sequence {xn} is bounded,
(3): for all x∗ ∈Ω and n ∈ N, it holds

‖xn+1− x∗‖2 ≤ (1−αn)‖xn− x∗‖2 +αn

[
αn‖x∗‖2 +2(1−αn)〈xn− x∗, −x∗〉

+2τn(1−αn)‖x∗‖
∥∥∥ M

∑
j=1

β jT ∗j
(

I−PQ∗j,n

)
Tjxn

∥∥∥].
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Proof. (1) Let x∗ ∈ Ω. Note that, for each j = 1,2, . . . ,M, I−PQ∗j,n is firmly nonexpansive and

∑
M
j=1 β jT ∗j

(
I−PQ∗j,n

)
Tjx∗ = 0. Hence, it follows from Lemma 2.1 that

〈
τn

M

∑
j=1

β jT ∗j
(

I−PQ∗j,n

)
Tjxn,xn− x∗

〉
= τn

M

∑
j=1

β j

〈(
I−PQ∗j,n

)
Tjxn,Tjxn−Tjx∗

〉
≥ τn

M

∑
j=1

β j

∥∥∥(I−PQ∗j,n

)
Tjxn

∥∥∥2
,

which together with the definition of τn and
∥∥∥∑

M
j=1 β jT ∗j

(
I−PQ∗j,n

)
Tjxn

∥∥∥≤Θn implies that

∥∥∥xn− τn

M

∑
j=1

β jT ∗j
(

I−PQ∗j,n

)
Tjxn− x∗

∥∥∥2

= ‖xn− x∗‖2 + τ
2
n

∥∥∥ M

∑
j=1

β jT ∗j
(

I−PQ∗j,n

)
Tjxn

∥∥∥2
−2τn

〈 M

∑
j=1

β jT ∗j
(

I−PQ∗j,n

)
Tjxn,xn− x∗

〉
≤ ‖xn− x∗‖2 + τ

2
n Θ

2
n−2τn

M

∑
j=1

β j

∥∥∥(I−PQ∗j,n

)
Tjxn

∥∥∥2

= ‖xn− x∗‖2−ρn(2−ρn)

(
∑

M
j=1 β j

∥∥∥(I−PQ∗j,n

)
Tjxn

∥∥∥2)2

Θ2
n

. (3.3)

By Lemma 2.1, we also obtain the following estimation

‖xn+1− x∗‖2

=
∥∥∥ N

∑
i=1

δ
n
i PC∗i,n

(
(1−αn)

(
xn− τn

M

∑
j=1

β jT ∗j
(

I−PQ∗j,n

)
Tjxn

))
−

N

∑
i=1

δ
n
i PC∗i,nx∗

∥∥∥2

≤
∥∥∥(1−αn)

(
xn− τn

M

∑
j=1

β jT ∗j
(

I−PQ∗j,n

)
Tjxn

)
− x∗

∥∥∥2

≤ (1−αn)
∥∥∥xn− τn

M

∑
j=1

β jT ∗j
(

I−PQ∗j,n

)
Tjxn− x∗

∥∥∥2
+αn‖x∗‖2. (3.4)

Substituting (3.3) into (3.4), we have that

‖xn+1− x∗‖2 ≤ αn‖x∗‖2 +(1−αn)‖xn− x∗‖2

−ρn(2−ρn)(1−αn)

(
∑

M
j=1 β j

∥∥∥(I−PQ∗j,n

)
Tjxn

∥∥∥2)2

Θ2
n

.

(3.5)
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(2) Since liminf
n→∞

ρn(2−ρn)> 0, we obtain from (3.5) that

‖xn+1− x∗‖2 ≤ αn‖x∗‖2 +(1−αn)‖xn− x∗‖2

≤ max{‖x∗‖2, ‖xn− x∗‖2}
≤ max{‖x∗‖2, ‖xn−1− x∗‖2}
...

≤ max{‖x∗‖2, ‖x0− x∗‖2}.

Hence, sequence {xn} is bounded. Consequently, sequence {Tjxn} for each j = 1,2, . . . ,M is also
bounded.

(3) Furthermore, since liminf
n→∞

ρn(2−ρn)> 0, it follows from (3.3) that

∥∥∥xn− τn

M

∑
j=1

β jT ∗j
(

I−PQ∗j,n

)
Tjxn− x∗

∥∥∥2
≤ ‖xn− x∗‖2. (3.6)

From (3.4), we also have

‖xn+1− x∗‖2 ≤ α
2
n‖x∗‖2 +(1−αn)

2
∥∥∥xn− τn

M

∑
j=1

β jT ∗j
(

I−PQ∗j,n

)
Tjxn− x∗

∥∥∥2

+ 2αn(1−αn)
〈

xn− τn

M

∑
j=1

β jT ∗j
(

I−PQ∗j,n

)
Tjxn− x∗, −x∗

〉
,

which together with (3.6) gives that

‖xn+1− x∗‖2 ≤ α
2
n‖x∗‖2 +(1−αn)

2‖xn− x∗‖2 +2αn(1−αn)〈xn− x∗, −x∗〉

+ 2αnτn(1−αn)
〈 M

∑
j=1

β jT ∗j
(

I−PQ∗j,n

)
Tjxn, x∗

〉
≤ (1−αn)‖xn− x∗‖2 +αn

[
αn‖x∗‖2 +2(1−αn)〈xn− x∗, −x∗〉

+ 2τn(1−αn)
〈 M

∑
j=1

β jT ∗j
(

I−PQ∗j,n

)
Tjxn, x∗

〉]
≤ (1−αn)‖xn− x∗‖2 +αn

[
αn‖x∗‖2 +2(1−αn)〈xn− x∗, −x∗〉

+ 2τn(1−αn)
∥∥∥ M

∑
j=1

β jT ∗j
(

I−PQ∗j,n

)
Tjxn

∥∥∥‖x∗‖]. (3.7)

This completes the proof. �

Theorem 3.1. Assume that the solution set of MSSCFPMOS (1.18) is nonempty and the sequences
{ρn} and {αn} satisfy the assumptions (A1) and (A2) in Algorithm 1. Then any sequence {xn}
generated by Algorithm 1 converges strongly to the point x∗ = PΩ0.
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Proof. Let x∗ = PΩ0. From the assumptions imposed on sequences {ρn} and {αn}, there is a
constant ρ > 0 such that ρ ≤ ρn(2−ρn)(1−αn) for all n ∈ N. Thus, it follows from (3.5) that

‖xn+1− x∗‖2 ≤ αn‖x∗‖2 +(1−αn)‖xn− x∗‖2−ρ

(
∑

M
j=1 β j

∥∥∥(I−PQ∗j,n

)
Tjxn

∥∥∥2)2

Θ2
n

,

which further implies that

‖xn+1− x∗‖2 ≤ αn‖x∗‖2 +‖xn− x∗‖2−ρ

(
∑

M
j=1 β j

∥∥∥(I−PQ∗j,n

)
Tjxn

∥∥∥2)2

Θ2
n

. (3.8)

By (3.7) and (3.8), we have

‖xn+1− x∗‖2 ≤ (1−αn)‖xn− x∗‖2 +αnΛn, n≥ 1,
‖xn+1− x∗‖2 ≤ ‖xn− x∗‖2−Φn +αn‖x∗‖2, n≥ 1,

(3.9)

Relating (3.9) to Lemma 2.6, we define for all n≥ 1:

Σn = ‖xn− x∗‖2,

Λn = αn‖x∗‖2 +2(1−αn)〈xn− x∗, −x∗〉+2τn(1−αn)
∥∥∥∑

M
j=1 β jT ∗j

(
I−PQ∗j,n

)
Tjxn

∥∥∥‖x∗‖,
Φn := ρ

(
∑

M
j=1 β j

∥∥∥(I−PQ∗j,n

)
Tjxn

∥∥∥2)2

Θ2
n

.

Moreover, setting ςn := αn, one has {ςn} ⊂ (0,1), limn→∞ ςn = 0, and ∑
∞
n=0 ςn = ∞. One also

defines Ξn := αn‖x∗‖2 and obtains that limn→∞ Ξn = 0
Next, we focus on the convergence analysis of {Σn}. Let {nk} be a subsequence of {n} and

suppose limsupk→∞ Φnk ≤ 0, which further yields

lim
k→∞

[
ρ

(
∑

M
j=1 β j

∥∥∥(I−PQ∗j,nk

)
Tjxnk

∥∥∥2)2

Θ2
nk

]
= 0. (3.10)

Since ρ > 0, (3.10) implies that

lim
k→∞

[
∑

M
j=1 β j

∥∥∥(I−PQ∗j,nk

)
Tjxnk

∥∥∥2

Θnk

]
= 0. (3.11)

Since {xnk} is bounded and by the Lipschitz continuity of the
(

I − PQ∗j,nk

)
Tjxnk for each j =

1,2, . . . ,M and for all k ∈N,
{∥∥∥∑

M
j=1 β jT ∗j

(
I−PQ∗j,nk

)
Tjxnk

∥∥∥} is bound. Hence, {Θnk} is bounded

as well. Therefore, we obtain from (3.11) that lim
k→∞

∑
M
j=1 β j‖

(
I−PQ∗j,nk

)
Tjxnk‖2 = 0, which implies

for each j = 1,2, . . . ,M that
lim
k→∞

∥∥∥(I−PQ∗j,nk

)
Tjxnk

∥∥∥= 0. (3.12)

Furthermore,

lim
k→∞

τnk

∥∥∥ M

∑
j=1

β jT ∗j
(

I−PQ∗j,nk

)
Tjxnk

∥∥∥= 0. (3.13)

Next, we prove that each weak cluster point of {xnk} belongs to Ω, that is, ωw(xnk) ⊂ Ω. Let
p∗ ∈H be a weak cluster point of {xnk}. Since {xnk} is a bounded vector sequence, we may assume
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that there exists a subsequence {xnkm
} of {xnk} that convergent to p∗ weakly. Furthermore, since

each Tj for j = 1,2, . . . ,M is bounded and linear, this yields that {Tjxnkm
}weakly converges to Tj p∗.

We claim here that p∗ is a solution to MSSCFPMOS (1.18), that is, p∗ ∈Ω. To demonstrate this, it
suffices to demonstrate that p∗ ∈Ci for all i ∈ {1,2, . . . ,N} and Tj p∗ ∈Q j for all j ∈ {1,2, . . . ,M}.

We first demonstrate that Tj p∗ ∈Q j for all j∈{1,2, . . . ,M}. Since ∂q j for each j∈{1,2, . . . ,M}
is bounded on bounded sets, we may assume that there is a constant η0 > 0 such that ‖η j,nkm

‖≤ η0,
where η j,nkm

∈ ∂q j(Tjxnkm
) for each j ∈ {1,2, . . . ,M}. That is, sequence {η j,nkm

} is bounded. Note
that PQ∗j,nkm

(Tjxnkm
) ∈ Q∗j,nkm

for each j ∈ {1,2, . . . ,M}. Now, it follows from (3.2) and (3.12) for

all j ∈ {1,2, . . . ,M} and as m→ ∞ that

q j

(
Tjxnkm

)
≤

〈
η j,nkm

, Tjxnkm
−PQ∗j,nkm

(Tjxnkm
)
〉
−

ϖ j

2

∥∥∥Tjxnkm
−PQ∗j,nkm

(Tjxnkm
)
∥∥∥2

≤
〈

η j,nkm
, Tjxnkm

−PQ∗j,nkm
(Tjxnkm

)
〉

≤
∥∥∥η j,nkm

∥∥∥∥∥∥(I−PQ∗j,nkm

)
Tjxnkm

∥∥∥
≤ η0

∥∥∥(I−PQ∗j,nkm

)
Tjxnkm

∥∥∥→ 0. (3.14)

The weakly lower semi-continuity of q j together with (3.14) implies for all j ∈ {1,2, . . . ,M} that

q j(Tj p∗)≤ liminf
m→∞

q j

(
Tjxnkm

)
≤ lim

k→∞
η0

∥∥∥(I−PQ∗j,nkm

)
Tjxnkm

∥∥∥= 0.

It turns out that, Tj p∗ ∈ Q j, ∀ j ∈ {1,2, . . . ,M}.
We next prove that p∗ ∈Ci for all i ∈ {1,2, . . . ,N}. Indeed, it follows from the definition of xn+1

that

‖xnkm+1− xnkm
‖

≤
∥∥∥(1−αnkm

)
(

xnkm
− τnkm

M

∑
j=1

β jT ∗j
(

I−PQ∗j,nkm

)
Tjxnkm

)
− xnkm

∥∥∥
≤ αnkm

∥∥∥xnkm
− τnkm

M

∑
j=1

β jT ∗j
(

I−PQ∗j,nkm

)
Tjxnkm

∥∥∥+ τnkm

∥∥∥ M

∑
j=1

β jT ∗j
(

I−PQ∗j,nkm

)
Tjxnkm

∥∥∥→ 0,

as m→ ∞. That is,
lim

m→∞

∥∥xnkm
− xnkm+1

∥∥= 0. (3.15)

Since ∂ci for each i ∈ {1,2, . . . ,N} is bounded on bounded sets, we may again assume that, for all
nkm ≥ 0, there is a constant ξ0 > 0 such that ‖ξi,nkm

‖ ≤ ξ0, where ξi,nkm
∈ ∂ci(xnkm

) for each i ∈
{1,2, . . . ,N}. That is, {ξi,nkm

} is bounded. Using the fact that xnkm+1 ∈C∗i,nkm
for all i∈{1,2, . . . ,N}

and employing (3.1) and (3.15), we obtain for all i ∈ {1,2, . . . ,N} as m→ ∞ that

ci(xnkm
) ≤

〈
ξi,nkm

, xnkm
− xnkm+1

〉
− λi

2

∥∥∥xnkm
− xnkm+1

∥∥∥2

≤
∥∥∥ξi,nkm

∥∥∥∥∥∥xnkm
− xnkm+1

∥∥∥
≤ ξ0

∥∥∥xnkm
− xnkm+1

∥∥∥→ 0. (3.16)
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The weakly lower semi-continuity of ci together with (3.16) implies for all i ∈ {1,2, . . . ,N} that

ci(p∗)≤ liminf
m→∞

ci(xnkm
)≤ lim

m→∞
ξ0

∥∥∥xnkm
− xnkm+1

∥∥∥= 0,

Consequently, p∗ ∈Ci for all i ∈ {1,2, . . . ,N}. Altogether, we conclude that p∗ ∈ Ω. Since p∗ is
arbitrary, we conclude that each weak cluster point of {xnk} belongs to Ω. That is, wω(xnk) ⊂ Ω,
which implies there exists a subsequence {xnkm

} of {xnk} such that xnkm
⇀ p∗.

Furthermore, by Lemma 2.1, assumption (A2), and (3.13), we obtain that

limsup
m→∞

Λnkm
= limsup

m→∞

[
αnkm
‖x∗‖2 +2(1−αnkm

)〈xnkm
− x∗, −x∗〉

+ 2τnkm
(1−αnkm

)
∥∥∥ M

∑
j=1

β jT ∗j
(

I−PQ∗j,nkm

)
Tjxnkm

∥∥∥‖x∗‖]
= 2 max

p∗∈ωw(xnkm
)
〈p∗− x∗, −x∗〉

≤ 0.

Therefore, applying Lemma 2.6, we conclude that any sequence {xn} generated by Algorithm 1
converges strongly to the minimum-norm element x∗ = PΩ0 and the proof is complete. �

By setting N = M = 1, MSSCFPMOS (1.18) reduces to SCFP (1.1). As a direct consequence of
Theorem 3.1, we obtain the following result for solving SCFP (1.1).

Corollary 3.1. Let H1 and H2 be two real Hilbert spaces, and let T : H1 → H2 be bounded and
linear operator. Let C and Q be nonempty, convex, and closed subsets of H1 and H2, respectively.
Assume that D = C ∩ T−1(Q) 6= /0. For any starting point x0 ∈ H1, let {xn} be any sequence
generated by

xn+1 = PC∗n

(
(1−αn)

(
xn− τnT ∗

(
I−PQ∗n

)
T xn
))

where {αn} ⊂ (0,1), the step-size τn is self-adaptively updated via

τn :=
ρn‖(I−PQ∗n)T xn‖2(

max
{

1,
∥∥T ∗(I−PQ∗n)T xn

∥∥})2 , {ρn} ⊂ (0,2),

and C∗n and Q∗n are the balls given by (1.11) and (1.12), respectively. Suppose that the sequences
{ρn} and {αn} satisfy (A1) and (A2) in Algorithm 1. Then, {xn} converges strongly to the
minimum-norm element x∗ = PD(0) of the SCFP (1.1).

Now, for the special case that N = 1, Theorem 3.1 yields the following result for solving the
GSCFP (1.16).

Theorem 3.2. Let H =H1,C =C1,Q j =C j+1,1≤ j≤M−1, T1 = B1,T2 = B2B1, . . . , and TM−1 =
BM−1BM−2BM−3 . . .B2B1. Assume that the GSCFP (1.16) is consistent (i.e., S 6= /0). Let x0 ∈C1 be
an arbitrary initial point, and set n = 0. Take the constant parameters β j ( j = 1,2, . . . ,M)> 0 as
in Algorithm 1. Let {xn} be the sequence generated by

xn+1 = PC∗1,n

(
(1−αn)

(
xn− τn

M−1

∑
j=1

β jT ∗j
(

I−PC∗j+1,n

)
Tjxn

))
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where C∗1,n and C∗j+1,n are balls containing C1 and C j+1, respectively, the step-size τn is self-
adaptively updated via

τn :=
ρn ∑

M−1
j=1 β j

∥∥∥(I−PC∗j+1,n

)
Tjxn

∥∥∥2

Θ2
n

where

Θn := max
{

1,
∥∥∥M−1

∑
j=1

β jT ∗j
(

I−PC∗j+1,n

)
Tjxn

∥∥∥},
{αn}⊂ (0,1), {ρn}⊂ (0,2) satisfying the assumptions: liminf

n→∞
ρn(2−ρn)> 0, lim

n→∞
αn = 0, ∑

n=0
αn =

∞. Then, {xn} converges strongly to the minimum-norm element x∗ ∈ S, where x∗ = PS(0).

Remark 3.2. For the particular case, M = 1, MSSCFPMOS (1.18) reduced to the following prob-
lem.

Let H1 and H2 be two real Hilbert spaces, and let T : H1→ H2 be bounded and linear operator
with its adjoint T ∗ : H2→ H1. Find an element x∗ such that

x∗ ∈ E :=
(
∩N

i=1 Ci
)
∩T−1(Q) 6= /0 (3.17)

where Ci, i = 1,2, . . . ,N, and Q are nonempty, closed, and convex subsets of H1 and H2, respec-
tively, and N is a given positive integer. That is, x∗ ∈Ci for each i = 1,2, . . . ,N, and T x∗ ∈ Q.

It can be easily seen that (3.17) is a special case of the MSSCFP (1.14) with r = 1. Moreover,
we present the following result for solving (3.17).

Theorem 3.3. Assume that the solution set of (3.17) is nonempty, i.e., E 6= /0. Take the weights
δ n

i (i = 1,2, . . . ,N)> 0 as in Algorithm 1. For any starting point x0 ∈H1, let {xn} be the sequence
generated by

xn+1 =
N

∑
i=1

δ
n
i PC∗i,n

(
(1−αn)

(
xn− τnT ∗

(
I−PQ∗n

)
T xn

))
where {αn} ⊂ (0,1), C∗i,n is the ball given as in (3.1), Q∗n is given as in (1.12), and the step-size τn
is self-adaptively updated via

τn :=
ρn
∥∥(I−PQ∗n

)
T xn
∥∥2

Θ2
n

where {ρn} ⊂ (0,2) and

Θn := max
{

1,
∥∥T ∗

(
I−PQ∗n

)
T xn
∥∥}.

Suppose that {ρn} and {αn} satisfy the assumptions (A1) and (A2) in Algorithm 1. Then, {xn}
converges strongly to the minimum-norm element x∗ = PE(0).

4. NUMERICAL EXAMPLES

In this section, we present two numerical examples to illustrate the performances of our pro-
posed scheme. All testings are executed on a standard FUJITSUNOTEBOOK laptop with 11th
Gen Intel(R) Core(TM) i7-1165G7 @ 2.80GHz 2.80 GHz with memory 16GB. The code is imple-
mented in MATLAB R2022a.
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Example 4.1. Consider H =R3, H1 =R6, H2 =R9, H3 =R12, and H4 =R15. Find a point x∗ ∈R3

such that x∗ ∈Ω :=C1∩C2∩C3∩T−1
1 (Q1)∩T−1

2 (Q2)∩T−1
3 (Q3)∩T−1

4 (Q4) 6= /0, where

C1 = {x ∈ R3 : ‖x−o1‖2 ≤ r2
1}, C2 = {x ∈ R3 : ‖x−o2‖2 ≤ r2

2}, C3 = {x ∈ R3 : ‖x−o3‖2 ≤ r2
3},

Q1 = {T1x ∈ R6 : ‖T1x− c1‖2 ≤ ρ
2
1}, Q2 = {T2x ∈ R9 : ‖T2x− c2‖2 ≤ ρ

2
2},

and
Q3 = {T3x ∈ R12 : ‖T3x− c3‖2 ≤ ρ

2
3}, Q4 = {T4x ∈ R15 : ‖T4x− c4‖2 ≤ ρ

2
4},

where o1,o2,o3 ∈ R3, c1 ∈ R6, c2 ∈ R9, c3 ∈ R12, c4 ∈ R15, r1,r2,r3,ρ1,ρ2,ρ3,ρ4 ∈ R, and T1 :
R3→ R6, T2 : R3→ R9, T3 : R3→ R12, T4 : R3→ R15.

For any x ∈ R3, we have ci(x) = ‖x− oi‖2− r2
i for i = 1,2,3, and q j(Tjx) = ‖Tjx− c j‖2−ρ2

j
for j = 1,2,3,4.

In what follows, the subgradients ξi,n and η j,n of respectively ci(xn) and q j(Tjxn) can be calcu-
lated respectively at the points xn and Tjxn by ξi,n(xn) = 2(xn−oi) and η j,n(Tjxn) = 2(Tjxn− c j).
Thus, according to (3.1) and (3.2), the balls C∗i,n (i = 1,2,3) and Q∗j,n ( j = 1,2,3,4), respectively
of the sets Ci and Q j can be easily determined at a point xn and Tjxn, respectively and the metric
projections onto the balls C∗i,n (i = 1,2,3) and Q∗j,n ( j = 1,2,3,4) can be easily calculated.

Now, we take the radii r1 = 4,r2 = 5 = r3, ρ1 = 8,ρ2 = 15,ρ3 = 22, and ρ4 = 18. Then

T1 =



−3.70 0.93 −1.45
−2.75 −3.37 −45
−1.50 3.38 −2.86
−2.13 −3.32 −1.02
4.27 0.02 −1.66
−4.49 4.99 −2.70

 , T2 =



4.36 4.32 3.30
1.83 2.63 −2.10
4.62 3.26 −0.97
−0.62 0.73 3.62
4.40 2.92 1.15
−4.94 −1.71 4.91
1.10 −2.76 −2.96
3.01 −1.88 3.27
−2.67 0.84 1.76


,

T3 =



−2.51 2.42 0.01
−0.24 2.58 0.22
−1.01 −1.11 −4.10
0.99 −0.71 4.05
3.00 4.56 3.84
−3.95 0.73 −0.61
3.21 3.50 2.82
3.41 −2.24 −3.52
−1.45 1.22 1.20
−0.70 0.88 −2.39
0.72 4.63 −.54
2.01 −4.14 3.44



, T4 =



−3.04 1.32 1.53
−1.96 4.85 −3.92
−0.17 0.59 −4.64
−1.62 4.34 1.18
2.98 2.20 0.67
4.87 −0.16 4.62
−3.41 1.39 2.46
−2.63 3.88 1.63
2.02 −3.01 0.23
−1.24 −1.05 −2.40
4.74 4.92 4.62
4.72 −0.98 0.40
1.44 1.59 −4.70
3.60 4.01 1.96
−0.98 4.95 0.20



,
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and the centers

o1 = (0.4,0.6,0.6)T ,

o2 = (−0.4,−0.4,0.1)T ,

o3 = (−0.3,0.7,0.6)T ,

c1 = (0.1,−0.5,0.4,−0.5,−0.1,−0.2)T ,

c2 = (0.1,1.0,0.5,1.0,−0.5,0.1,−0.9,0.5,0.2)T ,

c3 = (0.7,1.0,0.9,−0.2,−1.0,0.1,−0.6,−0.6,−0.3,−0.9,0.5,0.5)T ,

and

c4 = (0.1,−0.3,0.7,0.1,0.9,0.8,−0.3,0.1,−0.3,0.26,0.6,0.5,−0.7,0.6,−0.9)T .

The parameters choices in this example are: ρn =
n

6n+1 , δ n
i = i

6 , i = 1,2,3, λi = 0.95, ϖ j = 0.5,
β1 =

1
10 , β2 =

1
5 , β3 =

3
10 , and β4 =

2
5 .

The stopping criteria that we take is Errorn = ‖xn+1− xn‖2 < 10−8. All results are reported in
Table 1 and Figure 1.

TABLE 1. Results of Algorithm 1 with different choices of x0 and αn
αn =

1
5n+6 αn =

1
2n+6 αn =

1
2n αn =

1
n+6 αn =

100
100n+5

Iter. (n) 163 147 171 134 225
x0 = (1,1,1)T CPU(s) 0.009856 0.015708 0.015068 0.017095 0.017968

Errorn 9.1247e-09 9.1508e-09 9.7497e-09 9.5981e-09 9.9332e-09
Iter. (n) 248 236 219 222 221

x0 = (−1,2,−2)T CPU(s) 0.012187 0.019565 0.017350 0.018336 0.017495
Errorn 9.1511e-09 9.5716e-09 9.4844e-09 9.0429e-09 9.8820e-09
Iter. (n) 378 401 241 442 220

x0 = (−0.05,−0.01,−0.03)T CPU(s) 0.020337 0.019179 0.016844 0.018579 0.016722
Errorn 9.7671e-09 9.7251e-09 9.8093e-09 9.7901e-09 9.9832e-09
Iter. (n) 261 248 156 251 223

x0 = (−1,−1,−1)T CPU(s) 0.017217 0.023305 0.016495 0.017885 0.017254
Errorn 9.4467e-09 9.5806e-09 9.9104e-09 9.7798e-09 9.8821e-09
Iter. (n) 177 164 152 150 224

x0 = (1,1,−1)T CPU(s) 0.018949 0.017725 0.019414 0.017590 0.016947
Errorn 9.6776e-09 9.4563e-09 9.2707e-09 9.2744e-09 9.9009e-09
Iter. (n) 145 175 177 221 226

x0 = (4,−2,−3)T CPU(s) 0.003837 0.016237 0.016613 0.017001 0.018756
Errorn 9.5935e-09 9.7352e-09 9.9798e-09 9.9954e-09 9.8471e-09
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(f) x0 = (4,−2,−3)T

FIGURE 1. Iter. (n) vs Errorn, experimental results of Algorithm 1 for different
choices of x0 and different values of αn
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Example 4.2. Consider H =R4, H1 =R3, H2 =R6, H3 =R9, H4 =R12, and H5 =R15. Consider
the sets Ci and Q j are ellipsoids in Rn defined by

C1 = {x ∈ R4 : (x− z1)
T D1(x− z1)≤ r1}, C2 = {x ∈ R4 : (x− z2)

T D2(x− z2)≤ r2},

C3 = {x ∈ R4 : (x− z3)
T D3(x− z3)≤ r3}, C4 = {x ∈ R4 : (x− z4)

T D4(x− z4)≤ r4},

Q1 = {T1x∈R3 : (T1x−w1)
T P1(T1x−w1)≤ ρ1}, Q2 = {T2x∈R6 : (T2x−w2)

T P2(T2x−w2)≤ ρ2},

Q3 = {T3x∈R9 : (T3x−w3)
T P3(T3x−w3)≤ ρ3}, Q4 = {T4x∈R12 : (T3x−w4)

T P4(T4x−w4)≤ ρ4},

and

Q5 = {T5x ∈ R15 : (T5x−w5)
T P5(T5x−w5)≤ ρ5},

where each Di ∈R4×4, P1 ∈R3×3, P2 ∈R6×6, P3 ∈R9×9, P4 ∈R12×12, and P5 ∈R15×15 are positive
definite matrices, zi ∈ R4, w1 ∈ R3, w2 ∈ R6, w3 ∈ R9, w4 ∈ R12, w5 ∈ R15, each ri,ρ j > 0, and
T1 : R4 → R3, T2 : R4 → R6, T3 : R4 → R9, T4 : R4 → R12, T5 : R4 → R15 are bounded linear
operators.

Our aim is to find a point x∗ ∈ R4 such that x∗ ∈ Ω :=
(
∩4

i=1 Ci

)
∩
(
∩5

j=1 T−1
j

(
Q j

))
6= /0.

Observe that an ellipsoid is a closed and convex set that can be represented as a sublevel set of a
particular convex function; see [6]. Indeed, define ci : R4→R by ci(x) = 1

2

[
(x−z)T Di(x−z)−ri

]
.

Then Ci = {x ∈ R4 : ci(x) ≤ 0} is a level set of ci. It is easy to verify that ∇ci(x) = Di(x− z).
Furthermore, it can be easily seen that

‖∇ci(x)−∇ci(y)‖= ‖Di(x− z)−Di(y− z)‖= ‖Di(x− y)‖ ≤ ‖Di‖‖x− y‖,∀x,y ∈ R4

which further implies that ∇ci is a ‖Di‖-Lipschitz continuous mapping. Similarly, each Q j is a
sublevel set of convex function.

Thus, according to (3.1) and (3.2), balls C∗i,n (i = 1,2,3,4) and Q∗j,n ( j = 1,2,3,4,5) respectively
of the sets Ci and Q j can be easily determined at a point xn and Tjxn, respectively and the metric
projections onto the balls C∗i,n (i = 1,2,3,4) and Q∗j,n ( j = 1,2,3,4,5), can be easily calculated. We
take r1 = 9, r2 = 16, r3 = 30, r4 = 36, ρ1 = 36, ρ2 = 100, ρ3 = 400, ρ4 = 225, ρ5 = 256, z1 =
(0.4,0.6,0.5,0.6)T , z2 = (0.4,0.4,0.1,0.5)T , z3 = (0.3,0.7,0.6,0.5)T , z4 = (0.3,0.7,0.6,0.5)T ,
w1 = (0.1,0.4,0.1)T , w2 = (0.1,0.5,0.4,0.5,0.1,0.2)T ,

w3 = (0.1,1.0,0.5,1.0,0.5,0.1,0.9,0.5,0.2)T ,

w4 = (0.7,1.0,0.9,0.2,1.0,0.1,0.6,0.6,0.3,0.9,0.5,0.5)T ,

w5 = (0.1,0.3,0.7,0.1,0.9,0.8,0.3,0.1,0.3,0.26,0.6,0.5,0.7,0.6,0.9)T ,

Di = diag(zi) (i = 1,2,3,4), and Pj = diag(w j) ( j = 1,2,3,4,5). The elements of the representing
matrices Tj are randomly generated in the closed interval [−5,5]. We also fix the parameters
sequences as ρn =

1
6n+1 , αn =

1
5n+6 , δ n

i = i
10 , for i = 1,2,3,4, λi = 0.05, ϖ j = 1.08, and β j =

j
15

for j = 1,2, . . . ,5. The stopping criteria that we take is Errorn = ‖xn+1−xn‖2 < ε for small enough
ε > 0. The results are reported in Table 2 and Figure 2.
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TABLE 2. Results of Algorithm 1 with different choices of x0 and ε

ε = 10−4 ε = 10−6 ε = 10−8 ε = 10−10

Iter. (n) 73 191 329 402
x0 = (1,1,1,1)T CPU(s) 0.029053 0.044395 0.007795 0.044373

Errorn 8.9121e-05 9.3344e-07 9.7178e-09 9.9979e-11
Iter. (n) 119 155 297 467

x0 = (2,−1,−1,2)T CPU(s) 0.023579 0.024190 0.027815 0.030634
Errorn 9.7235e-05 9.7152e-07 9.6760e-09 9.7687e-11
Iter. (n) 54 153 330 410

x0 = (3,−10,2,−4)T CPU(s) 0.022961 0.022139 0.009270 0.029090
Errorn 8.8726e-05 9.3973e-07 9.1314e-09 9.3456e-11
Iter. (n) 110 137 295 374

x0 = (−0.5,−0.1,−0.3,−0.4)T CPU(s) 0.024781 0.014833 0.018609 0.022720
Errorn 9.1706e-05 9.2732e-07 9.2888e-09 9.9338e-11
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(c) x0 = (3,−10,2,−4)T
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(d) x0 = (−0.5,−0.1,−0.3,−0.4)T

FIGURE 2. Iter. (n) vs Errorn, experimental results of Algorithm 1 for different
choices of x0 and different values of ε
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