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Abstract. In this paper, we introduce a forward-backward-forward splitting algorithm with double inertial
effects to approximate a solution of a non-convex mixed variational inequality problem. Our algorithm
does not involve an on-line rule and one of the inertial factors is chosen to be non-positive. We give global
convergence results of the iterative sequence generated by our algorithm. Some known results are recovered
as special cases of our results. Numerical test is given to support the theoretical findings.
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1. INTRODUCTION

Let Ω be a non-empty subset of Rm with F : Rm→Rm a given mapping and h : Ω→R. A mixed
variational inequality (MVI, for short) is defined by

find x∗ ∈Ω : 〈F(x∗),u− x∗〉+h(u)−h(x∗)≥ 0, ∀ u ∈Ω. (1.1)

Let S stand for the set of solutions of MVI (1.1). Special cases of MVI (1.1) were discussed in
[7, 9, 18, 25, 26, 27] and the references therein.

If h≡ 0 in (1.1), then MVI (1.1) reduces to the classical variational inequality:

find x∗ ∈Ω : 〈F(x∗),u− x∗〉 ≥ 0, ∀ u ∈Ω. (1.2)

Also, if F ≡ 0 and h is convex in (1.1), then MVI (1.1) becomes a convex minimization problem
[8, 22, 29, 35, 36]. However, when h in MVI (1.1) is non-convex function, then MVI (1.1) becomes
harder to solve. This is because S = /0 might occur even when Ω is compact and convex (see [24,
Example 3.1], [17, page 127] and [12] for more details).

The forward-backward-forward splitting algorithm [33] has been a desired algorithm in the lit-
erature for solving variational inequality problem (1.2). The method was shown to be effective
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since only a projection onto Ω is needed at each iteration unlike the extragradient method [19].
The forward-backward-forward splitting method is given by{

ys = PΩ(xs−λsF(xs)),
xs+1 = ys−λs (F(ys)−F(xs)) , s≥ 1.

(1.3)

Corresponding convergence results of forward-backward-forward algorithm (1.3) for solving con-
vex variational inequality problem (1.2) were obtained in the literature when either the step-sizes
λs ∈

(
0, 1

L

)
, L being the Lipschitz constant of F or when λs is obtained by using Armijo line search

(see [33, (2.4)]) or λs is self-adaptively generated [5, 31, 32].
The weak convergence of the forward-backward-forward algorithm with one-step extrapolation

for solving variational inequality problem (1.2) were studied in [3, 4, 6, 31, 32] and other related
papers. In general, they considered:

zs = xs +θ(xs− xs−1),
ys = PΩ(zs−λsF(zs)),
xs+1 = (1−ρ)zs +ρ(ys−λs(F(ys)−F(zs)), s≥ 1.

(1.4)

Boţ et al. in [6] obtained a weak convergence of (1.4) when θ ∈ [0,1) and 0 < ρ < 2(1−θ)2

(1+µ)(2θ 2−θ+1) .

Convergence results of (1.4) were obtained in [31] when ρ = 1 and 0 < a≤ λs ≤ b < 1
L .

Recently, existence results for MVI (1.1) involving quasiconvex functions were obtained in [16,
17, 34], and this raises the quest for numerical iterative methods to solve non-convex MVI (1.1).
Iterative processes for convex MVI (1.1) were obtained in [25, 26, 27], where the involved h is
continuous and the methods proposed are either implicit methods or only conceptual methods
with no numerical implementations. The proposed methods in [25, 26, 27] also require inner
loops or two forward evaluations. Our approach in this paper is to propose and study a numerical
method to solve non-convex MVI (1.1) for which h is a noncontinuous non-convex function which
furthermore extends the results on minimization of quasiconvex functions obtained in [20, 28].

Quite recently, Grad and Lara [12] applied the Malitsky’s Golden Ratio Algorithm [22] to solve
non-convex MVI (1.1) and proposed the following method:

Algorithm 1 Golden Ratio Algorithm (GRA)

1: Choose x0,x1 ∈Ω such that x0 6= x1,φ = 1+
√

5
2 , and z0 = x1.

2: If xs+1 = xs = zs, then STOP: xs ∈S . Otherwise, go to Step 3.
3: Take s = s+1, and compute

zs = (1− 1
φ
)xs +

1
φ

zs−1,

xs+1 = Proxh+ιΩ

(
zs−

1
α

F(xs)
)
, (1.5)

and go to Step 2.

Grad and Lara [12] proved that {xs} and {zs} from Algorithm 1 converge to a solution of non-
convex MVI (1.1).
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Our Contributions.
• We apply the forward-backward-forward splitting algorithm with double extrapolation to

solve a non-convex mixed variational inequality problem. We extend the usage of forward-
backward-forward splitting methods from the convex variational inequality problem (1.2)
studied in [5, 31, 32] to non-convex MVI (1.1).
• Instead of one-step inertial extrapolation, which was considered in several papers in [3, 4,

6, 31] for convex variational inequality problem (1.2), we further accelerate the forward-
backward-forward splitting method by adding a two-step inertial extrapolation.
• Numerical experiments are given to show the benefits gained by considering a two-step

inertial extrapolation instead of one-step inertial extrapolation.

Presentation. We arrange the paper as follows: Section 2 gives some definitions which we need in
our convergence analysis. In Section 3, we examine our algorithm and global convergence results
are given. We present numerical tests in Section 4 and final remarks in Section 5.

2. PRELIMINARIES

In this section, we recall some basic notions in convex analysis which are used frequently in the
sequel. Given a non-empty set Ω⊆ Rm, the indicator function ιΩ is defined by

ιΩ(u) :=
{

0 if u ∈Ω

+∞ otherwise.

The effective domain of h : Rm → R∪{±∞} is defined by dom h := {w ∈ R : h(w) < +∞}.
Recall that h is proper if h(w) > −∞ for all w ∈ Rm and domh 6= /0. We say that h with a convex
domain is

(a) convex if, for given u,v ∈ domh,

h(tu+(1− t)v)≤ th(u)+(1− t)h(v) ∀ t ∈ [0,1];

(b) quasiconvex if, for given u,v ∈ domh,

h(αu+(1−α)v)≤max{h(u),h(v)} ∀ α ∈ [0,1].

Clearly, a convex function is quasiconvex.
Given a function h : Rm→ R∪{±∞}, the proximity operator with λ > 0 at u ∈ Rm is defined

by Proxλh : Rm ⇒ Rm with

Proxλh(u) = arg min
v∈Rm

{
h(v)+

1
2λ
‖v−u‖2

}
.

If h : Ω→R∪{±∞} with Ω∩domh 6= /0 is a proper function and f : Ω×Ω→R, then f is said
to be

(a) monotone on Ω if, for all u,v ∈Ω f (u,v)+ f (v,u)≤ 0,
(b) h-pseudomonotone on Ω if, for all u,v ∈Ω

f (u,v)+h(v)−h(u)≥ 0 =⇒ f (v,u)+h(u)−h(v)≤ 0.

It can be seen from the definition above that a monotone bifunction is a h− pseudomonotone
bifunction. However, the converse fails.



338 V.N. TRAN, Y. SHEHU, R. XU, P.T. VUONG

A new class of generalized convex functions called ”prox-convex functions”, which includes
some classes of quasiconvex functions and weakly convex functions along other functions was
introduced in [13].

Definition 2.1. ([13]) We say that a proper function h : Rm→ R∪{±∞} with Ω closed subset of
Rm and Ω∩ domh 6= /0 is said to be prox-convex on Ω (with prox-convex value ρ) if there exists
ρ > 0 such that, for all w ∈Ω, Proxh+ιΩ

(w) 6= /0, and

ū ∈ Proxh+ιΩ
(w) =⇒ h(ū)−h(u)≤ ρ〈ū−w,u− ū〉, ∀u ∈Ω. (2.1)

Properties of prox-convex functions like the map w→ Proxh+ιK(w) is single-valued and further
details can be found in [13]. Also, the generalized convexity can be found in [11, 14].

The following lemma is useful in the sequel.

Lemma 2.1. Suppose u,v,w ∈ Rm and θ ,β ∈ R. Then

‖(1+θ)u− (θ −β )v−βw‖2

= (1+θ)‖u‖2− (θ −β )‖v‖2−β‖w‖2 +(1+θ)(θ −β )‖u− v‖2

+β (1+θ)‖u−w‖2−β (θ −β )‖v−w‖2.

Also, the following identity is needed later.

〈u−w,v−u〉= 1
2
‖w− v‖2− 1

2
‖u−w‖2− 1

2
‖v−u‖2

for all u,v,w ∈ Rm.

3. THE ALGORITHM AND CONVERGENCE ANALYSIS

We present our algorithm for non-convex MVI (1.1) with its convergence analysis in this section.

3.1. Proposed Method. Before giving our proposed method, and analysing the convergence, the
following convergence criteria are assumed.

Assumption 3.1. (A1) F is Lipschitz continuous Ω with constant L > 0;
(A2) h is lower semicontinuous and prox-convex on Ω with prox-convex value α > 0;
(A3) F and h satisfy (cf. [12, 22, 30])

〈F(y),y− x̄〉+h(y)−h(x̄)〉 ≥ 0, ∀ y ∈Ω, ∀ x̄ ∈S ;

(A4) S 6= /0;
(A5) α > L.

Remark 3.1. Assumption (A5) is weaker than assumption α > 2L
φ

, where φ = 1+
√

5
2 was required

in [12].

Remark 3.2. Note that if F = 0, then L = 0 and α > L holds automatically from Condition (A5).

Along with the assumption above, we also use more the following assumption related to inertial
parameters.

Assumption 3.2. We assume that the inertial parameters θ ∈
[
0, 1

3

)
and β ∈ (−∞,0] satisfy the

following conditions.
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(i)

0≤ θ <
α−L

3α +L
;

(ii)

max
{

2θ

(
α−L
α +L

)
− (1−θ),

1
2α

[
θ(α +L)− (α−L)(1−θ)2

1+θ

]}
< β ≤ 0;

(iii)

2θ
2L−α(1−3θ)+L(1−θ)−β (4αθ +3α−L)+2Lβ

2 < 0.

Now, we present the proposed method:

Algorithm 2 Non-convex Forward-Backward-Forward Method

1: Choose β ∈ (−∞,0] and θ ∈
[
0, 1

3

)
such that Assumptions 3.2 are fulfilled. Pick x−1,x0,x1 ∈

Rm and set s = 1.
2: Given xs−2,xs−1 and xs, compute xs+1 as follows:

zs = xs +θ(xs− xs−1)+β (xs−1− xs−2)

ys = Proxh+ιΩ

(
zs− 1

α
F(zs)

)
xs+1 = ys +

1
α
(F(zs)−F(ys)).

(3.1)

3: Set s← s+1, and go to Step 2.

We give the following remarks regarding Algorithm 2.

Remark 3.3.
(i) Unlike Algorithm 1, Algorithm 2 does not contain the golden ratio step but a recall of a

previous step at the current iteration and a two-step inertial extrapolation.
(ii) If F ≡ 0, and θ = 0 = β , our Algorithm 2 reduces to xs+1 = Proxh+ιΩ

(xs) proposed in [13,
Theorem 4.1] and also an extension of algorithms proposed in [20, 28] for minimization of
quasiconvex functions.

(iii) If h≡ 0, then Algorithm 2 reduces to [30, Algorithm 2.1].

3.2. Convergence analysis. In this subsection, we present the global convergence of Algorithm
2. The first lemma demonstrates the boundedness of {xs}.

Lemma 3.1. Let {xs} be generated by Algorithm 2. Then {xs} is bounded under Assumptions 3.2.

Proof. Since

ys = Proxh+ιΩ

(
zs−

1
α

F(zs)

)
,

we obtain by using (2.1) that, for all y ∈Ω,

h(ys)−h(y)≤ α〈ys− zs +
1
α

F(zs),y− ys〉. (3.2)

Thus 0 ≤ α〈ys− zs +
1
α

F(zs),y− ys〉+h(y)−h(ys) for all y ∈ Ω. Replacing y = x̄ ∈S , we have
from the last inequality that

0≤ α〈ys− zs +
1
α

F(zs), x̄− ys〉+h(x̄)−h(ys). (3.3)
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Since F satisfies condition (A3), we obtain 〈F(y),y− x̄〉+h(y)−h(x̄)≥ 0 for all y ∈Ω. In partic-
ular, we have

〈F(ys),ys− x̄〉+h(ys)−h(x̄)≥ 0. (3.4)

Combining (3.3) and (3.4), we arrive at

−〈F(ys), x̄− ys〉+h(ys)−h(x̄)+α〈ys− zs +
1
α

F(zs), x̄− ys〉+h(x̄)−h(ys)≥ 0.

Thus α〈ys− zs+
1
α

F(zs)− 1
α

F(ys), x̄−ys〉 ≥ 0. We have from the last inequality and the definition
of {xs} that α〈xs+1− zs, x̄− ys〉 ≥ 0, which further implies that

〈xs+1− x̄,xs+1− zs〉 ≤ 〈xs+1− ys,xs+1− zs〉
= ‖xs+1− zs‖2 + 〈zs− ys,xs+1− zs〉

= ‖xs+1− zs‖2 + 〈zs− ys,ys +
1
α
(F(zs)−F(ys))− zs〉

= ‖xs+1− zs‖2−‖zs− ys‖2 +
1
α
〈zs− ys,F(zs)−F(ys)〉. (3.5)

In addition,

‖xs+1− x̄‖2−‖zs− x̄‖2 +‖xs+1− zs‖2 = 2〈xs+1− x̄,xs+1− zs〉. (3.6)

If we combine (3.5) and (3.6), then

‖xs+1− x̄‖2 ≤ ‖zs− x̄‖2 +‖xs+1− zs‖2−2‖zs− ys‖2 +
2
α
〈zs− ys,F(zs)−F(ys)〉. (3.7)

Because F is Lipschitz continuous with L, we deduce

‖xs+1− zs‖2 = ‖ys− zs‖2 +
2
α
〈ys− zs,F(zs)−F(ys)〉+

1
α2‖F(zs)−F(ys)‖2

≤ ‖ys− zs‖2 +
2
α
〈ys− zs,F(zs)−F(ys)〉+

L2

α2‖zs− ys‖2. (3.8)

From (3.7) and (3.8), we have

‖xs+1− x̄‖2 ≤ ‖zs− x̄‖2−
(

1− L2

α2

)
‖ys− zs‖2. (3.9)

Observe that

zs− x̄ = xs +θ(xs− xs−1)+β (xs−1− xs−2)− x̄

= (1+θ)(xs− x̄)− (θ −β )(xs−1− x̄)−β (xs−2− x̄).

Hence, by Lemma 2.1, we see that

‖zs− x̄‖2 = ‖(1+θ)(xs− x̄)− (θ −β )(xs−1− x̄)−β (xs−2− x̄)‖2

= (1+θ)‖xs− x̄‖2− (θ −β )‖xs−1− x̄‖2−β‖xs−2− x̄‖2

+(1+θ)(θ −β )‖xs− xs−1‖2 +β (1+θ)‖xs− xs−2‖2

−β (θ −β )‖xs−1− xs−2‖2.

(3.10)

Note that

2θ〈xs+1− xs,xs− xs−1〉 ≤ 2|θ |‖xs+1− xs‖‖xs− xs−1‖= 2θ‖xs+1− xs‖‖xs− xs−1‖
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and hence
−2θ〈xs+1− xs,xs− xs−1〉 ≥ −2θ‖xs+1− xs‖‖xs− xs−1‖. (3.11)

On the other hand, we have
2β 〈xs+1− xs,xs−1− xs−2〉= 2〈β (xs+1− xs),xs−1− xs−2〉

≤ 2|β |‖xs+1− xs‖‖xs−1− xs−2‖,
i.e.,

−2β 〈xs+1− xs,xs−1− xs−2〉 ≥ −2|β |‖xs+1− xs‖‖xs−1− xs−2‖. (3.12)
Similarly, we have 2βθ〈xs−1− xs,xs−1− xs−2〉 ≤ 2|β |θ‖xs− xs−1‖‖xs−1− xs−2‖, so

2βθ〈xs− xs−1,xs−1− xs−2〉 ≥ −2|β |θ‖xs− xs−1‖‖xs−1− xs−2‖. (3.13)

By (3.1), we have

‖xs+1− zs‖ ≤
1
α
‖F(zs)−F(ys)‖+‖ys− zs‖

≤ L
α
‖ys− zs‖+‖ys− zs‖

=

(
1+

L
α

)
‖ys− zs‖.

Therefore,

−‖ys− zs‖2 ≤− 1(
1+ L

α

)2‖xs+1− zs‖2. (3.14)

Substituting (3.14) into (3.9) gives

‖xs+1− x̄‖2 ≤ ‖zs− x̄‖2−

(
1− L

α

)
(

1+ L
α

)‖xs+1− zs‖2 = ‖zs− x̄‖2−
(

α−L
α +L

)
‖xs+1− zs‖2. (3.15)

By (3.11), (3.12), (3.13), and Cauchy-Schwarz inequality, one has

‖xs+1− zs‖2 = ‖xs+1− xs−θ(xs− xs−1)−β (xs−1− xs−2)‖2

= ‖xs+1− xs‖2−2θ〈xs+1− xs,xs− xs−1〉

−2β 〈xs+1− xs,xs−1− xs−2〉+θ
2‖xs− xs−1‖2

+2βθ〈xs− xs−1,xs−1− xs−2〉+β
2‖xs−1− xs−2‖2

≥ ‖xs+1− xs‖2−2θ‖xs+1− xs‖‖xs− xs−1‖

−2|β |‖xs+1− xs‖‖xs−1− xs−2‖+θ
2‖xs− xs−1‖2

−2|β |θ‖xs− xs−1‖‖xs−1− xs−2‖+β
2‖xs−1− xs−2‖2

≥ ‖xs+1− xs‖2−θ‖xs+1− xs‖2−θ‖xs− xs−1‖2

−|β |‖xs+1− xs‖2−|β |‖xs−1− xs−2‖2 +θ
2‖xs− xs−1‖2

−|β |θ‖xs− xs−1‖2−|β |θ‖xs−1− xs−2‖2 +β
2‖xs−1− xs−2‖2

= (1−|β |−θ)‖xs+1− xs‖2 +(θ 2−θ −|β |θ)‖xs− xs−1‖2

+(β 2−|β |− |β |θ)‖xs−1− xs−2‖2.

(3.16)
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Combining (3.10) and (3.16) into (3.15) and noting that β ≤ 0, we have

‖xs+1− x̄‖2 ≤ (1+θ)‖xs− x̄‖2− (θ −β )‖xs−1− x̄‖2−β‖xs−2− x̄‖2

+(1+θ)(θ −β )‖xs− xs−1‖2 +β (1+θ)‖xs− xs−2‖2

−β (θ −β )‖xs−1− xs−2‖2−
(

α−L
α +L

)
(1−|β |−θ)‖xs+1− xs‖2

−
(

α−L
α +L

)
(θ 2−θ −|β |θ)‖xs− xs−1‖2

−
(

α−L
α +L

)
(β 2−|β |− |β |θ)‖xs−1− xs−2‖2

= (1+θ)‖xs− x̄‖2− (θ −β )‖xs−1− x̄‖2−β‖xs−2− x̄‖2

+
(
(1+θ)(θ −β )−

(
α−L
α +L

)
(θ 2−θ −|β |θ)

)
‖xs− xs−1‖2

+β (1+θ)‖xs− xs−2‖2−
(

α−L
α +L

)
(1−|β |−θ)‖xs+1− xs‖2

−
(

β (θ −β )+
(

α−L
α +L

)
(β 2−|β |− |β |θ)

)
‖xs−1− xs−2‖2

≤ (1+θ)‖xs− x̄‖2− (θ −β )‖xs−1− x̄‖2−β‖xs−2− x̄‖2

+
(
(1+θ)(θ −β )−

(
α−L
α +L

)
(θ 2−θ +βθ)

)
‖xs− xs−1‖2

−
(

α−L
α +L

)
(1+β −θ)‖xs+1− xs‖2

−
(

β (θ −β )+
(

α−L
α +L

)
(β 2 +β +βθ)

)
‖xs−1− xs−2‖2.

By rearranging, we arrive at

‖xs+1− x̄‖2−θ‖xs− x̄‖2−β‖xs−1− x̄‖2 +
(

α−L
α +L

)
(1+β −θ)‖xs+1− xs‖2

≤ ‖xs− x̄‖2−θ‖xs−1− x̄‖2−β‖xs−2− x̄‖2

+
(
(1+θ)(θ −β )−

(
α−L
α +L

)
(θ 2−2θ +βθ +β +1)

)
‖xs− xs−1‖2

−
(

β (θ −β )+
(

α−L
α +L

)
(β 2 +β +βθ)

)
‖xs−1− xs−2‖2

+
(

α−L
α +L

)
(1+β −θ)‖xs− xs−1‖2.

(3.17)

Define

Λs := ‖xs− x̄‖2−θ‖xs−1− x̄‖2−β‖xs−2− x̄‖2 +
(

α−L
α +L

)
(1+β −θ)‖xs− xs−1‖2.



AN INERTIAL FBF ALGORITHM FOR SOLVING NON-CONVEX MIXED VARIATIONAL INEQUALITIES 343

Let us demonstrate that Λs ≥ 0 for all s≥ 1. Indeed,

Λs = ‖xs− x̄‖2−θ‖xs−1− x̄‖2−β‖xs−2− x̄‖2 +
(

α−L
α +L

)
(1+β −θ)‖xs− xs−1‖2

≥ ‖xs− x̄‖2−2θ‖xs− xs−1‖2−2θ‖xs− x̄‖2

−β‖xs−2− x̄‖2 +
(

α−L
α +L

)
(1+β −θ)‖xs− xs−1‖2

= (1−2θ)‖xs− x̄‖2 +
[(

α−L
α +L

)
(1+β −θ)−2θ

]
‖xs− xs−1‖2−β‖xs−2− x̄‖2.

(3.18)

In view of θ < 1
2 , β ≤ 0, Assumption 3.2 (i) and (ii), and 2θ

(
α+L
α−L

)
− (1−θ)< β , it follows from

(3.18) that Λs ≥ 0 for all n≥ 1. Furthermore, we derive from (3.17) that

Λs+1−Λs ≤
(
(1+θ)(θ −β )−

(
α−L
α +L

)(
θ

2−2θ +βθ +β +1
))
‖xs− xs−1‖2

−
(

β (θ −β )+
(

α−L
α +L

)
(β 2 +β +βθ)

)
‖xs−1− xs−2‖2

=−
(
(1+θ)(θ −β )−

(
α−L
α +L

)
(θ 2−2θ +βθ +β +1)

)(
‖xs−1− xs−2‖2

−‖xs− xs−1‖2
)
+
(
(1+θ)(θ −β )−

(
α−L
α +L

)(
θ

2−2θ +βθ +β +1
)

−β (θ −β )−
(

α−L
α +L

)(
β

2 +β +βθ
))
‖xs−1− xs−2‖2

= c1
(
‖xs−1− xs−2‖2−‖xs− xs−1‖2)− c2‖xs−1− xs−2‖2, (3.19)

where

c1 :=−
(
(θ −β )(1+θ)−

(
α−L
α +L

)
(θ 2−2θ +βθ +β +1)

)
and

c2 :=−
(
(θ −β )(1+θ)−

(
α−L
α +L

)
(θ 2−2θ +βθ +β +1)

−β (θ −β )−
(

α−L
α +L

)
(β 2 +β +βθ)

)
.

By Assumption 3.2 (ii), it holds that

1
2α

[
θ(α +L)− (α−L)(1−θ)2

1+θ

]
< β .

As a result, c1 > 0. Thus c2 > 0 by Assumption 3.2 (iii). By (3.19), we have

Λs+1 + c1‖xs− xs−1‖2 ≤ Λs + c1‖xs−1− xs−2‖2− c2‖xs−1− xs−2‖2. (3.20)

Letting Λ̄s := Λs+c1‖xs−1−xs−2‖2, we have Λ̄s ≥ 0 for all s≥ 1. Also, it follows from (3.20) that
Λ̄s+1≤ Λ̄s. That is, {Λ̄s} is decreasing and bounded from below. Thus lim

s→∞
Λ̄s exists. Consequently,

we obtain from (3.20) and the squeeze theorem that lim
s→∞

c2‖xs−1− xs−2‖2 = 0. Hence,

lim
s→∞
‖xs−1− xs−2‖= 0. (3.21)
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As a result,

‖xs+1− zs‖ = ‖xs+1− xs−θ(xs− xs−1)−β (xs−1− xs−2)‖
≤ ‖xs+1− xs‖+θ‖xs− xs−1‖+ |β |‖xs−1− xs−2‖→ 0 (3.22)

as s→ ∞. By lim
s→∞
‖xs+1− xs‖= 0, one has

‖xs− zs‖ ≤ ‖xs− xs+1‖+‖xs+1− zs‖→ 0, s→ ∞. (3.23)

From the fact that F is Lipschitz continuous one sees lims→∞ ‖F(xs+1)−F(xs)‖ = 0. By (3.21)
and the existence of lim

s→∞
Λ̄s, we have that lim

s→∞
Λs exists and hence {Λs} is bounded. Now, since

lim
s→∞
‖xs−1− xs‖= 0, we have from the definition of Λs that

lim
s→∞

[
‖xs− x̄‖2−θ‖xs−1− x̄‖2−β‖xs−2− x̄‖2] exists. (3.24)

Using the boundedness of {Λs}, we obtain from (3.18) that {xs} is bounded, so both {zs} and {ys}
are also bounded. �

Our global convergence result for Algorithm 2 is given as following.

Theorem 3.1. Let Assumptions 3.2 be satisfied. Then {xs} generated by Algorithm 2 converges to
a solution of MVI (1.1).

Proof. By Lemma 3.1, we have that {xs} is bounded. Let x∗ be an accumulating point of {xs}. By
(3.2), we have, for all y ∈Ω,

h(ys)−h(y)≤ α

〈
ys− zs +

1
α

F(zs),y− ys

〉
. (3.25)

From (3.9), we obtain(
1− L2

α2

)
‖ys− zs‖2 ≤ ‖zs− x̄‖2−‖xs+1− x̄‖2

=
(
‖zs− x̄‖−‖xs+1− x̄‖

)(
‖zs− x̄‖+‖xs+1− x̄‖

)
≤ M∗

(
‖zs− x̄‖−‖xs+1− x̄‖

)
≤ M∗‖xs+1− zs‖,

where M∗ := sups≥1(‖zs− x̄‖+ ‖xs+1− x̄‖) < ∞ since both {xs} and {zs} are bounded. By As-
sumption 3.1 (A5) and (3.22), one derives that lims→∞ ‖ys− zs‖= 0, which implies that

‖xs+1− ys‖ ≤ ‖ys− zs‖+‖xs+1− zs‖→ 0,s→ ∞. (3.26)

Because x∗ is an accumulating point of {xs}, by (3.23), it is also an accumulating point of {ys} and
of {zs}. Passing to the limit in (3.25), we have (note (3.26) and (3.21)) that

h(x∗)−h(y)≤ 〈F(x∗),y− x∗〉, ∀y ∈Ω.

Thus, x∗ ∈S . Suppose now that there exist {xs j}⊂ {xs} and {xsm}⊂ {xs} such that xs j→ x∗∗, j→
∞ and xsm → x∗,m→ ∞. We claim that x∗∗ = x∗. Observe that

2〈xs,x∗− x∗∗〉= ‖xs− x∗∗‖2−‖xs− x∗‖2−‖x∗∗‖2 +‖x∗‖2, (3.27)

2〈xs−1,x∗− x∗∗〉= ‖xs−1− x∗∗‖2−‖xs−1− x∗‖2−‖x∗∗‖2 +‖x∗‖2, (3.28)
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and

2〈xs−2,x∗− x∗∗〉= ‖xs−2− x∗∗‖2−‖xs−2− x∗‖2−‖x∗∗‖2 +‖x∗‖2. (3.29)

Therefore,

2〈−θxs−1,x∗− x∗∗〉 = −θ‖xs−1− x∗∗‖2 +θ‖xs−1− x∗‖2 +θ‖x∗∗‖2−θ‖x∗‖2 (3.30)

and

2〈−βxs−2,x∗− x∗∗〉 = −β‖xs−2− x∗∗‖2 +β‖xs−2− x∗‖2 +β‖x∗∗‖2−β‖x∗‖2. (3.31)

A combination of (3.27), (3.30), and (3.31) gives

2〈xs−θxs−1−βxs−2,x∗− x∗∗〉 =
(
‖xs− x∗∗‖2−θ‖xs−1− x∗∗‖2−β‖xs−2− x∗∗‖2

)
−
(
‖xs− x∗‖2−θ‖xs−1− x∗‖2−β‖xs−2− x∗‖2

)
+(1−θ −β )

(
‖x∗‖2−‖x∗∗‖2) . (3.32)

Using (3.24), it holds that lim
s→∞

[
‖xs− x∗‖2−θ‖xs−1− x∗‖2−β‖xs−2− x∗‖2] exists and

lim
s→∞

[
‖xs− x∗∗‖2−θ‖xs−1− x∗∗‖2−β‖xs−2− x∗∗‖2]

exists. These imply from (3.32) that lim
s→∞
〈xs−θxs−1−βxs−2,x∗− x∗∗〉 exists. It follows that

〈x∗∗−θx∗∗−βx∗∗,x∗− x∗∗〉 = lim
j→∞
〈xs j −θxs j−1−βxs j−2,x∗− x∗∗〉

= lim
s→∞
〈xs−θxs−1−βxs−2,x∗− x∗∗〉

= lim
m→∞
〈xsm−θxsm−1−βxsm−2,x∗− x∗∗〉

= 〈x∗−θx∗−βx∗,x∗− x∗∗〉.

Hence, (1− θ −β )‖x∗− x∗∗‖2 = 0. Therefore, x∗ = x∗∗. As a consequence, every accumulation
point of {xs} is a solution to MVI (1.1). �

Remark 3.4. We can replace Step 2 in Algorithm 2 to have an algorithm with a constant step size
in the backward step. In this case, Algorithm 2 becomes

zs = xs +θ(xs− xs−1)+β (xs−1− xs−2)
ys = Proxλαh+ιΩ

(zs−λF(zs))
xs+1 = ys +λ (F(zs)−F(ys))

(3.33)

where λαh is assumed prox-convex with prox-convex value α > 0 and λ ∈ (0, 1
L). Following

similar arguments as in the proof of Theorem 3.1, we can obtain similar convergence results of
(3.33).

Remark 3.5. In the convex setting with β = 0, Algorithm 2 reduces to [31, Algorithm 3.1].
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4. NUMERICAL EXPERIMENTS

In this section, we give a numerical test to compare Algorithm 2 to Algorithm 1 (proposed
in [12]). All codes were written in MATLAB R2020b and performed on a PC Desktop Intel(R)
Core(TM) i7-6600U CPU @ 3.00GHz 3.00 GHz, RAM 32.00 GB.

Oligopolistic Equilibrium Problem: We examine same oligopolistic equilibrium model given in
[12, 18, 23]. Let us consider a mixed variational inequality problem modelled as 5 companies with
the cost functions given as

ϕ1 : [0,2]→ R, ϕ1(u) =−u2−u,
ϕ2 : R→ R, ϕ2(u) = u2,

ϕ3 : [1,2]→ R, ϕ3(u) = 5u+ ln(1+10u),

ϕ4 : R→ R, ϕ4(u) =

{
u2

2 , if |u| ≤ 1,
|u|− 1

2 , otherwise,
ϕ5(u) : [1,2]→ R, ϕ5(u) = 8−u3.

As explained in [12], cost functions ϕ1,ϕ3 and ϕ5 are prox-convex with constant α for any α > 0,
while ϕ2 and ϕ4 are convex. More details on these cost functions can be found in [1, 2, 12, 15, 23].

In this numerical test, let F(u)=Au, u∈R5 with A∈R5×5 a real symmetry positive semidefinite
matrix and h(u1, ...,u5) = ∑

5
i=1 ϕi(ui). Furthermore, matrix A is randomly generated and scaled in

order to have L = 1. The proximity operator of (the separable function) h has as components the
ones of the involved functions, which are known (cf. [10, 12, 21]). By choosing α = 2,θ = 0.14,
and β = −0.04, Assumption 3.2 is satisfied, and we now choose x0 = x−1 = (0.1,2,2,2,0.1) for
Algorithm 2 (denoted by iFBF), with stopping condition

Error = max{‖xs+1− zs‖,‖xs− xs−1‖} ≤ ε.

As in [12], for Algorithm 1 (denoted by GoldenRatio), we take x0 = (0.1,2,2,2,0.1) and z0 = x1 =
(0,0,1.9,0,0) with stopping condition

Error = max{‖xs+1− xs‖,‖xs− zs‖} ≤ ε,

where ε = 10−4. Figure 1 clearly demonstrates that iFBF (Algorithm 2) outperforms GoldenRatio-
Algorithm (Algorithm 1).

5. CONCLUSION

We demonstrated that the forward-backward-forward splitting algorithm with the two-step in-
ertial extrapolation can be adapted to solve non-convex mixed variational inequalities. Global
convergence of the iterative sequence generated by the proposed method was established and some
numerical illustrations were also presented. We demonstrated the benefits of considering two-step
inertial extrapolation compared to one-step inertial extrapolation considered in several related pa-
pers on (convex) variational inequalities via numerical experiments. In the future project, we aim
to study the proposed method with a combination of inertia and corrections terms.
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