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Abstract. In this paper, we propose a Mann type self-adaptive Tseng’s extragradient method for solving the
classical variational inequality problem with a Lipschitz continuous and quasi-monotone mapping in a real
Hilbert space. The strong convergence of the proposed algorithm is proven without the prior knowledge of
the Lipschitz constant of the corresponding function. Finally, we give some numerical examples to illustrate
the superiority of our proposed algorithm.
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1. INTRODUCTION

Let H be a Hilbert space with inner product 〈·, ·〉 and induced norm ‖ · ‖, and let C be a
nonempty, convex, and closed sset in H . Fichera [8, 9] introduced the variational inequality
problem (VIP), which consists of find a point x∗ ∈C such that

〈Ax∗,x− x∗〉 ≥ 0, ∀x ∈C, (1.1)
where A : H →H is a single-valued operator. The dual variational inequality problem (DVIP)
of VIP (1.1) is to find a point x∗ ∈C such that

〈Ax,x− x∗〉 ≥ 0, ∀x ∈C. (1.2)
We denote the solution set of VIP (1.1) and DVIP (1.2) by S and SD, respectively.

In view of the wide applications of the variational inequality problem in economics, mathemati-
cal programming, transportation, optimization, and other fields, it has attracted extensive attention;
see, e.g., [2, 4, 5, 6, 14, 18, 23, 24] and the references therein.

Recently, various projected methods were introduced for solving the VIP (1.1), and the simplest
among these methods is the gradient projection method:

xk+1 = PC(xk−λAxk),
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where PC denotes the metric projection from H onto C, and λ is the stepsize. It is known that
the assumption that guarantees the convergence of this method is that operator A is L-Lipschitz
continuous and α-strongly monotone (or inverse-strongly).

If we relax the strong monotonicity to the monotonicity, then this method may not converge.
In order to deal with this situation, Korpelevich [13] proposed the extragradient method in finite
dimensional Euclidean space Rn: 

x0 ∈ Rn,

yk = PC(xk−λAxk),

xk+1 = PC(xk−λAyk),

where A : Rn→ Rn is a monotone and L-Lipschitz continuous operator and λ is in (0, 1
L). Then,

the sequence {xk} generated by this algorithm converges to an element of the solution set of VIP
(1.1).

It is noted that the extragradient method needs to calculate the projection onto feasible set C
twice in each iteration. As everyone knows, when C is a general closed and convex set, the eval-
uation of the projection operator onto set C is computationally expensive, which may seriously
affect the computational efficiency of the extragradiet method. Therefore, numerous authors in-
vestigate how can one improve the extragradient method so that one only needs to calculate the
projection onto C once in each iteration. To this end, Tseng [21] introduced the following famous
extragradient method, Tseng’s extragradient method,{

yk = PC(xk−λAxk),

xk+1 = yk−λ (Ayk−Axk).

Recently, numerous scholars had studied VIP (1.1) with operator A being a pseudo-monotone
operator [3, 7, 16, 17, 22]. It is known that the quasi-monotonicity is a more general than the
pseudo-monotonicity. If A is pseudo-monotone and continuous, then SD = S. If A is quasi-
monotone and continuous, we only have SD ⊆ S (see [3]).

The problem of VIP (1.1) with A being quasi-monotone has attracted the attention of scholars
[1, 12, 15, 19, 20]. For the practical problems in infinite dimensional spaces, one generally expects
to obtain strong convergence results. However, most of the current algorithms for quasi-monotone
variational inequality problems are only weakly convergent. In this paper, we introduce a Mann
type self-adaptive Tseng’s extragradient method for solving VIP (1.1) in real Hilbert spaces with
A being quasi-monotone and L-Lipschitz continuous. The proposed algorithm does not need to
know the Lipschitz constant of the mapping A. Under some conditions, we prove that the iterative
sequence generated by the suggested algorithm converges to a solution of VIP (1.1) strongly. Some
numerical experiments are provided to support the theoretical results.

The remainder of this paper is organized as follows. In Section 2, we recalls some preliminary
results and lemmas for further use. In Section 3, the algorithm is given and its convergence is
analyzed. In Section 4, some numerical examples are presented to illustrate the numerical behavior
of the proposed algorithm and compare it with some existing ones. In the last section, Section 5, a
brief summary is given.
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2. PRELIMINARIES

The weak convergence of a sequence {xk} to x as k→ ∞ is denoted by xk ⇀ x while the strong
convergence of {xk} to x as k→ ∞ is denoted by xk→ x.

Definition 2.1. Let A : H →H be an operator. Then

(a) A is called L-Lipschitz continuous with Lipschitz constant L > 0 if

‖Ax−Ay‖ ≤ L‖x− y‖, ∀x,y ∈H .

(b) A is called monotone if
〈Ax−Ay,x− y〉 ≥ 0, ∀x,y ∈H .

(c) A is called pseudo-monotone if

〈Ax,y− x〉 ≥ 0⇒ 〈Ay,y− x〉 ≥ 0, ∀x,y ∈H .

(d) A is called quasi-monotone if

〈Ax,y− x〉> 0⇒ 〈Ay,y− x〉 ≥ 0, ∀x,y ∈H .

(e) A is called sequentially weakly continuous if, for each sequence {xk}, the fact that {xk} con-
verges weakly to x implies that {Axk} converges weakly to Ax.

In this paper, an important tool of our work is the projection. Let K be a nonempty, closed, and
convex subset of H . Recall that the projection from H onto K, denoted by PK , is defined in such
a way that, for each x ∈H , PK(x) is the unique point in K such that

‖x−PK(x)‖= min{‖x− z‖ : z ∈ K}.

Lemma 2.1. [10] Let K be a closed and convex subset of a real Hilbert spaces H and x ∈H .
Then the following inequalities are true:

(a) ‖PK(x)−PK(y)‖2 ≤ 〈PK(x)−PK(y),x− y〉, ∀y ∈H .
(b) ‖PK(x)− y‖2 ≤ ‖x− y‖2−‖x−PK(x)‖2, ∀y ∈ K.
(c) 〈x−PK(x),y−PK(x)〉 ≤ 0, ∀y ∈ K.

Lemma 2.2. The following statements hold in any real Hilbert space H :
(a) ‖x+ y‖2 ≤ ‖x‖2 +2〈y,x+ y〉, ∀x,y ∈H .

(b)
∥∥∥∥ m

∑
i=1

tixi

∥∥∥∥2

=
m

∑
i=1

ti‖xi‖2−∑
i 6= j

tit j‖xi− x j‖2, where ti ≥ 0 and
m

∑
i=1

ti = 1, for all xi ∈H , 1 ≤

i≤ m.

Lemma 2.3. [11] Let {sk} be a nonnegative real sequence such that

sk+1 ≤ (1−αk)sk +αkbk, k ≥ 0,

sk+1 ≤ sk−η
k +ν

k, k ≥ 0,

where {αk} is a sequence in (0,1), {ηk} is a sequence of nonnegative real numbers, and {bk} and
{νk} are two sequences in R such that

(i) ∑
∞
k=0 αk = 0,

(ii) limk→∞ νk = 0,
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(iii) lim j→∞ ηk j = 0 implies limsup j→∞ bk j ≤ 0 for any subsequence {k j} ⊂ {k}.
Then limk→∞ sk = 0.

3. MAIN RESULTS

In this section, we propose a Mann type self-adaptive Tseng’s extragradient algorithm for solv-
ing the VIP (1.1) when A is a quasi-monotone operator and demonstrate its strong convergence. In
order to state the main results, we need the following assumptions:

Condition 3.1. SD 6= /0.

Condition 3.2. Operator A is sequentially weakly continuous on C and L-Lipschitz continuous on
H with constant L > 0.

Condition 3.3. Operator A is quasi-monotone on H .

Condition 3.4. Let {εk} be a positive sequence such that limk→∞

εk

αk
= 0, where {αk} ⊂ (0,1)

is with the restrictions that ∑
∞
k=1 αk = ∞ and limk→∞ αk = 0. Let {βk} ⊂ (a,b) ⊂ (0,1−αk) for

positive real numbers a and b.

3.1. Algorithm. By combining Tseng’s extragradient method and Mann’s iterative method, we
introduce a Mann type self-adaptive Tseng’s extragradient algorithm.

Algorithm 1 (A Mann type self-adaptive Tseng’s extragradient algorithm)

Step 0. Give θ > 0, λ1 > 0, and µ ∈ (0,1). Choose a nonegative real sequence {ξk} such that
∑

∞
k=1 ξk <+∞. Let x0,x1 ∈H be arbitrary.

Step 1. Given the current iterates xk−1 and xk, set

wk = xk +θk(xk− xk−1),

where

θk =

min
{

εk

‖xk− xk−1‖
,θ

}
, if xk 6= xk−1,

θ , otherwise.

Step 2. Compute
yk = PC(wk−λkAwk).

If xk = yk, then stop, and yk is a solution to Problem 1.1. Otherwise, go to Step 3.
Step 3. Compute

zk = yk−λk(Ayk−Awk),

xk+1 = (1−αk−βk)wk +βkzk.

Update

λk+1 =

min
{

µ‖wk− yk‖
‖Awk−Ayk‖

,λk +ξk

}
, if Awk 6= Ayk,

λk +ξk, otherwise.
Set k := k+1, and go to Step 1.
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Remark 3.1. It follows from Algorithm 1 that

lim
k→∞

θk

αk
‖xk− xk−1‖= 0.

In fact, whether xk = xk−1 or xk 6= xk−1, the definition of {θk} implies that θk‖xk− xk−1‖ ≤ εk for

all k ≥ 1. Combining it with limk→∞

εk

αk
= 0, we have

lim
k→∞

θk

αk
‖xk− xk−1‖ ≤ lim

k→∞

εk

αk
= 0.

Lemma 3.1. Let {λk} be the sequence generated by Algorithm 1. Then, limk→∞ λk = λ , where
λ ∈

[
min{µ

L ,λ0},λ0 + p
]

and p = ∑
∞
k=0 ξk.

Proof. The proof is similar to the result in Liu [15], so we omit it. �

3.2. Convergence analysis. To establish the convergence of Algorithm 1, we give a key lemma
first.

Lemma 3.2. Let {xk} be a sequence generated by Algorithm 1 and Conditions (3.1)-(3.3) hold.
For p ∈ SD, the following inequality hold:

‖zk− p‖2 ≤ ‖wk− p‖2−

(
1−µ

2 λ 2
k

λ 2
k+1

)
‖yk−wk‖2.

Proof. Since p ∈ SD and zk = yk−λk(Ayk−Awk), it is easy to see from Algorithm 1 that

‖zk− p‖2 =‖yk− p‖2 +λ
2
k ‖Ayk−Awk‖2−2λk〈yk− p,Ayk−Awk〉

=‖yk−wk‖2 +‖wk− p‖2 +2〈yk−wk,wk− p〉

+λ
2
k ‖Ayk−Awk‖2−2λk〈yk− p,Ayk−Awk〉

=‖wk− p‖2−‖yk−wk‖2 +2〈yk−wk,yk− p〉

+λ
2
k ‖Ayk−Awk‖2−2λk〈yk− p,Ayk−Awk〉.

From Lemma 2.1, the definition of yk implies that 〈yk−wk +λkAwk,yk− p〉 ≤ 0. Combining the
above two formulas, one has

‖zk− p‖2 ≤ ‖wk− p‖2−‖yk−wk‖2 +λ
2
k ‖Ayk−Awk‖2−2λk〈Ayk,yk− p〉. (3.1)

It follows from p ∈ SD that 〈Ax,x− p〉 ≥ 0 for all x ∈ C. Then, 〈Ayk,yk− p〉 ≥ 0. Applying the
inequality above to (3.1), we obtain

‖zk− p‖2 ≤ ‖wk− p‖2−‖yk−wk‖2 +λ
2
k ‖Ayk−Awk‖2. (3.2)

Using the definition of λk+1, we arrive at

‖Awk−Ayk‖ ≤ µ

λk+1
‖wk− yk‖.

Then, (3.2) implies

‖zk− p‖2 ≤ ‖wk− p‖2−

(
1−µ

2 λ 2
k

λ 2
k+1

)
‖yk−wk‖2.

This completes the proof. �
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Lemma 3.3. Let {wk} and {yk} be a sequence generated by Algorithm 1 and assume that Con-
ditions (3.1)-(3.3) hold. If there exists a subsequence {wk j} of {wk} converging weakly to x∗ and
lim j→∞ ‖wk j − yk j‖= 0, then x∗ ∈ SD or Ax∗ = 0.

Proof. From wk j ⇀ x∗ as j→ ∞ and lim j→∞ ‖wk j − yk j‖ = 0, it follows that yk j ⇀ x∗ as j→ ∞.
Now we divide the proof into two cases.
Case 1. We have Ax∗ = 0 if limsup j→∞ ‖Ayk j‖= 0.

From limsup j→∞ ‖Ayk j‖= 0, we have lim j→∞ ‖Ayk j‖= liminf j→∞ ‖Ayk j‖= 0. Since {yk j} con-
verges weakly to x∗ and A is sequentially weakly continuous on C, it follows that {Ayk j} converges
weakly to Ax∗. By the sequentially weakly lower semicontinuity of the norm, we obtain

0≤ ‖Ax∗‖ ≤ liminf
j→∞

‖Ayk j‖= 0,

which implies Ax∗ = 0.
Case 2. It holds that if limsup j→∞ ‖Ayk j‖> 0, then x∗ ∈ SD.

Observe limsup j→∞ ‖Ayk j‖ > 0. Without loss of generality, we set lim j→∞ ‖Ayk j‖ = M > 0. It
follows that there exists a N0 ∈N such that ‖Ayk j‖ > M

2 for all j ≥ N0. From the definition of yk,
it is easy to see that 〈yk j −wk j +λk jAwk j ,z− yk j〉 ≥ 0 for all z ∈C, which in turn implies

〈wk j − yk j ,z− yk j〉 ≤ λk j〈Awk j ,z− yk j〉.

It follows that

1
λk j

〈wk j − yk j ,z− yk j〉−〈Awk j −Ayk j ,z− yk j〉 ≤ 〈Ayk j ,z− yk j〉.

In the formula above, letting j→∞, and using the facts that {yk j} is bounded, lim j→∞ λk j = λ > 0,
and lim j→∞ ‖yk j −wk j‖→ 0, we see that

0≤ liminf
j→∞
〈Ayk j ,z− yk j〉 ≤ limsup

j→∞

〈Ayk j ,z− yk j〉<+∞. (3.3)

If limsup j→∞〈Ayk j ,z−yk j〉> 0, then there exists a subsequence {yk jn} such that limn→∞〈Ayk jn ,z−
yk jn 〉 > 0. Consequently, there exists N1 ∈ N such that 〈Ayk jn ,z− yk jn 〉 > 0 for all n ≥ N1. By
the quasimonotonicity of A, we obtain, for all n ≥ N1, 〈Az,z− yk jn 〉 ≥ 0. Letting n→ ∞, we have
x∗ ∈ SD. If limsup j→∞〈Ayk j ,z−yk j〉= 0, we deduce from (3.3) that lim j→∞〈Ayk j ,z−yk j〉= 0. Let
ε j = |〈Ayk j ,z− yk j〉|+ 1

j+1 . Then, it follows that

〈Ayk j ,z− yk j〉+ ε j > 0. (3.4)

Set vk j = Ayk j

‖Ayk j‖2
for all j ≥ N0. Then, it is easy to see that 〈Ayk j ,vk j〉 = 1. Consequently, from

(3.4), we have that 〈Ayk j ,z+ ε jvk j − yk j〉> 0. By the quasimonotonicity of A, we have

〈A(z+ ε jvk j),z+ ε jvk j − yk j〉 ≥ 0,
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which in turn yields

〈Az,z+ ε jvk j − yk j〉

=〈Az−A(z+ ε jvk j),z+ ε jvk j − yk j〉+ 〈A(z+ ε jvk j),z+ ε jvk j − yk j〉

≥〈Az−A(z+ ε jvk j),z+ ε jvk j − yk j〉

≥−‖Az−A(z+ ε jvk j)‖‖z+ ε jvk j − yk j‖

≥− ε jL‖vk j‖‖z+ ε jvk j − yk j‖

=− ε j
L

‖Ayk j‖
‖z+ ε jvk j − yk j‖

≥− ε j
2L
M
‖z+ ε jvk j − yk j‖, ∀ j ≥ N0.

Letting j→ ∞ in the inequality above, and applying the fact that lim j→∞ ε j = 0 and the bounded-
ness of {‖z+ ε jvk j − yk j‖}, we obtain 〈Az,z− x∗〉 ≥ 0 for all z ∈ C, which implies that x∗ ∈ SD.
This completes the proof. �

Theorem 3.1. Assume that Conditions (3.1)-(3.4) hold. Let the sequence {xk} be generated by
Algorithm 1. If ωw(xk)∩ {x |Ax = 0} = /0, then {xk} converges strongly to p ∈ SD with ‖p‖ =
min{‖z‖ : z ∈ SD} .

Proof. Claim 1. We prove that {xk} is a bounded sequence. It is easy to see

‖wk− p‖= ‖xk +θk(xk− xk−1)− p‖ ≤ ‖xk− p‖+θk‖xk− xk−1‖ ∀p ∈ SD.

From Remark 3.1, we know that there exists N0 ∈N and M1 > 0 such that, for all k ≥ N0,

‖wk− p‖ ≤ ‖xk− p‖+αkM1.

Since limk→∞

(
1−µ2 λ 2

k
λ 2

k+1

)
= 1− µ2 > 0, then there exists N1 ∈ N such that, for all k ≥ N1,

‖zk− p‖ ≤ ‖wk− p‖. It follows by setting N = max{N0, N1} that

‖xk+1− p‖=‖(1−αk−βk)wk +βkzk− p‖

≤(1−αk−βk)‖wk− p‖+βk‖zk− p‖+αk‖p‖

≤(1−αk)‖wk− p‖+αk‖p‖

≤(1−αk)‖xk− p‖+αk(‖p‖+M1)

≤max
{
‖xk− p‖,‖p‖+M1

}
...

≤max
{
‖xN− p‖,‖p‖+M1

}
, ∀k ≥ N,

which implies that {xk} is bounded. Thus sequences {wk} and {zk} are also bounded.
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Claim 2. It holds there exists N2 ∈N and M3 > 0 such that, for all k ≥ N2,

‖xk+1− p‖2 ≤‖xk− p‖2 +αk

(
3M2

θk

αk
‖xk− xk−1‖+‖p‖2

)
−βk

(
1−µ

2 λ 2
k

λ 2
k+1

)
‖yk−wk‖2−βkM3‖wk− zk‖2,

where p ∈ SD, and M2 = supk∈N{‖xk− p‖,θk‖xk−xk−1‖}. From Lemma 2.2 (b), the definition of
xk implies that

‖xk+1− p‖2

=(1−αk−βk)‖wk− p‖2 +βk‖zk− p‖2 +αk‖p‖2

−βk(1−αk−βk)‖wk− zk‖2−αk(1−αk−βk)‖wk‖2−αkβk‖zk‖2

≤(1−αk−βk)‖wk− p‖2 +βk‖zk− p‖2 +αk‖p‖2−βk(1−αk−βk)‖wk− zk‖2.

It is easy to see that

‖wk− p‖2 ≤‖xk− p‖2 +2θk‖xk− p‖‖xk− xk−1‖+θ
2
k ‖xk− xk−1‖2

≤‖xk− p‖2 +3M2θk‖xk− xk−1‖,
(3.5)

where M2 = supk∈N{‖xk− p‖,θk‖xk− xk−1‖}. From this and Lemma 3.2, we arrive at

‖xk+1− p‖2

≤(1−αk−βk)‖wk− p‖2 +βk‖wk− p‖2−βk

(
1−µ

2 λ 2
k

λ 2
k+1

)
‖yk−wk‖2

+αk‖p‖2−βk(1−αk−βk)‖wk− zk‖2

≤‖wk− p‖2−βk

(
1−µ

2 λ 2
k

λ 2
k+1

)
‖yk−wk‖2 +αk‖p‖2−βk(1−αk−βk)‖wk− zk‖2

≤‖xk− p‖2 +αk

(
3M2

θk

αk
‖xk− xk−1‖+‖p‖2

)
−βk

(
1−µ

2 λ 2
k

λ 2
k+1

)
‖yk−wk‖2−βk(1−αk−βk)‖wk− zk‖2.

Using Condition (3.4), we know that there exists N2 ∈N and M3 > 0 such that

‖xk+1− p‖2 ≤‖xk− p‖2 +αk

(
3M2

θk

αk
‖xk− xk−1‖+‖p‖2

)
−βk

(
1−µ

2 λ 2
k

λ 2
k+1

)
‖yk−wk‖2−βkM3‖wk− zk‖2, ∀k ≥ N2.

Claim 3. It holds

‖xk+1− p‖2 ≤ (1−αk)‖xk− p‖2 +αkbk,
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where p ∈ SD, and bk = 3M2
θk
αk
‖xk− xk−1‖+2βk‖zk−wk‖‖xk+1− p‖+2〈p, p− xk+1〉. Using the

definition of xk+1, we know

xk+1 = (1−αk−βk)wk +βkzk = (1−βk)wk +βkzk−αkwk. (3.6)

Letting uk = (1−βk)wk +βkzk, we see that uk−wk = βk(zk−wk). Applying this equation to (3.6),
we find that there is

xk+1 = (1−αk)uk +αk(uk−wk) = (1−αk)uk +αkβk(zk−wk).

From this and Lemma 2.2 (a), it is easy to see

‖xk+1− p‖2 =‖(1−αk)(uk− p)+αk(βk(zk−wk)− p)‖2

≤(1−αk)‖uk− p‖2 +2αk〈βk(zk−wk)− p,xk+1− p〉

≤(1−αk)‖uk− p‖2 +2αkβk〈zk−wk,xk+1− p〉−2αk〈p,xk+1− p〉.

(3.7)

By Lemma 3.2, we obtain

‖uk− p‖2 ≤ (1−βk)‖wk− p‖2 +βk‖zk− p‖2 ≤ ‖wk− p‖2.

Applying this inequality and (3.5) to (3.7), we obtain

‖xk+1− p‖2 ≤(1−αk)‖wk− p‖2 +2αkβk‖zk−wk‖‖xk+1− p‖−2αk〈p,xk+1− p〉

≤(1−αk)
(
‖xk− p‖2 +3M2θk‖xk− xk−1‖

)
+2αkβk‖zk−wk‖‖xk+1− p‖

−2αk〈p,xk+1− p〉

≤(1−αk)‖xk− p‖2 +αk

(
3M2

θk

αk
‖xk− xk−1‖+2βk‖zk−wk‖‖xk+1− p‖

+2〈p, p− xk+1〉
)
.

Claim 4. We have that sequence {‖xk− p‖2} converges to zero for all p ∈ SD. Setting

η
k = βk

((
1−µ

2 λ 2
k

λ 2
k+1

)
‖yk−wk‖2 +M3‖wk− zk‖2

)
,

and

ν
k = αk

(
3M2

θk

αk
‖xk− xk−1‖+‖p‖2

)
,

we find that Claim 2 can be rewritten as

‖xk+1− p‖2 ≤ ‖xk− p‖2−η
k +ν

k, ∀k ≥ N2.

From Remark 3.1 and Condition (3.4), we know that ∑
∞
k=0 αk = 0 and limk→∞ νk = 0. By Claim

3 and Lemma 2.3, in order to complete the proof via Lemma 2.3, we just need to prove that
lim j→∞ ηk j = 0 implies that limsup j→∞ bk j ≤ 0 for any subsequence {k j} ⊂ {k}. From the bound-
edness of {xk} and limk→∞

θk
αk
‖xk− xk−1‖ = 0, we just need to prove limsup j→∞ ‖zk j −wk j‖ ≤ 0

and limsup j→∞〈p, p− xk j+1〉 ≤ 0. In fact, using lim j→∞ ηk j = 0, we obtain that

lim
j→0
‖yk j −wk j‖= 0, lim

j→0
‖wk j − zk j‖= 0. (3.8)
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According the definition of wk, we have

lim
j→0
‖xk j −wk j‖= lim

j→0
αk j

θk j

αk j

‖xk j − xk j−1‖= 0. (3.9)

On the other hand, we see

lim
j→0
‖xk j+1−wk j‖= lim

j→0
αk j‖w

k j‖+ lim
j→0

βk j‖w
k j − zk j‖= 0.

This together with (3.9), we obtain

lim
j→∞
‖xk j+1− xk j‖= 0. (3.10)

Since sequence {xk j} is bounded, it follows that there exists a subsequence {xk ji} of {xk j}, which
converges weakly to some x∗ ∈H . Without loss of generality, we can assume that xk j ⇀ x∗. Then,
it follows that

limsup
j→∞

〈p, p− xk j〉= lim
j→∞
〈p, p− xk j〉= 〈p, p− x∗〉.

Because ‖wk j−xk j‖→ 0, we know wk j converges weakly to x∗. From ‖wk j−yk j‖→ 0 and Lemma
3.3, we have x∗ ∈ SD or Ax∗ = 0. By ωw(xk)∩{x |Ax = 0} = /0, we have Ax∗ 6= 0 and x∗ ∈ SD.
Observe that ‖p‖= min{‖z‖ : z ∈ SD} , that is, p = PSD0. If x∗ ∈ SD, we obtain

limsup
j→∞

〈p, p− xk j〉= 〈p, p− x∗〉 ≤ 0. (3.11)

Combining (3.10) and (3.11), we have

limsup
j→∞

〈p, p− xk j+1〉= limsup
j→∞

〈p, p− xk j〉= 〈p, p− x∗〉 ≤ 0. (3.12)

Consequently, it follows from (3.8), (3.12), Claim 3, and Lemma 2.3 that limk→∞ ‖xk− p‖= 0. �

4. NUMERICAL EXPERIMENTS

In this section, we provide three numerical examples to test the proposed algorithm and compare
it with the Algorithm 3.2 in [1], which proves the practicability of our proposed algorithm. All the
codes were written in Matlab (R2016a) and run on PC with Intel(R) Core(TM) i3-370M Processor
2.40 GHz.

Take θ = 0.3, λ1 = 1, µ = 0.6, and αk =
4
k in Algorithm 1 and Algorithm 3.2 in [1]. Choose

ξk = ρk =
1
k2 in Algorithm 3.2 in [1] and εk = ξk =

1
k2 , βk = 0.9(1−αk) in Algorithm 1.

Example 4.1. [15] Let C = [−1,1] and

Ax =


|2x−4|, x > 1,
x2 +1, x ∈ [−1,1],
−2x, x <−1.

Then A is quasi-monotone and Lipschitz continuous and SD = S = {−1}.

Let x0 = x1 = 0.9 and take Error= ‖xk + 1‖ ≤ 10−2 as the stopping criterion in Figure 1. The
numerical result is described in Figure 1.
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FIGURE 1. Comparison results of this algorithms in example 4.1.

Example 4.2. [1] Let A : R2→ R2 be defined by

A(x1,x2) = (−x1ex2
,x2)

and C = {x ∈ R2 : x2
1 + x2

2 ≤ 1,0≤ x1}. Then, (1,0)T ∈ SD and S = {(1,0)T ,(0,0)T}.

It can easily be verified that all the conditions of Algorithms 1 and Algorithm 3.2 in [1] are
satisfied.

The initial point is randomly selected. Take k = 5000 as the stopping criterion and Error=
‖xk− x∗‖, where x∗ = (1,0)T . The numerical result is described in Figure 2.
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FIGURE 2. Comparison results of this algorithms in example 4.2.

Finally, we consider an example in infinite dimensional space.

Example 4.3. [20] Let

H =

{
x = (x1,x2, ...,xi, ...) :

∞

∑
i=1
| xi |2<+∞

}
.
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Take Cq = {x ∈H : ‖x‖ ≤ q} and

Ap(x) = (p−‖x‖)x,

where p,q ∈ R is such that p > q > p
2 > 0. Then A is quasi-monnotone and Lipschitz continuous.

Furthermore, SD = S = {0}.

We take p = 3 and q = 2 and choose the initial values x0 = et and x1 = sin(2πt2). Take k = 500
as the stopping criterion and Error= ‖xk‖. The numerical result is described in Figure 3.
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FIGURE 3. Comparison results of this algorithms in example 4.3.

The numerical results in Figure 1, Figure 2, and Figure 3 illustrate that the performance of
Algorithm 1 is better than Algorithm 3.2 in [1].

5. CONCLUSION

In this paper, we introduced a Mann type self-adaptive Tseng’s extragradient method for solv-
ing the variational inequality problem in real Hilbert spaces with A being a quasi-monotone and
Lipschitz contiuous mapping. In this method, we does not need to know the Lipschitz constant of
the operator A. We proved that the sequence {xk} generated by the proposed algorithm strongly
converges to some soluiton. Finally, three numerical examples demonstrated that the proposed
algorithm is better than an existing algorithm.
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