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1. INTRODUCTION

In nondifferentiable convex optimization theory, it is well-known that, in addition to conju-
gate duality and the saddle point approach, the classical sum and composition rules of subdiffer-
ential calculus can be used to derive optimality conditions for a constrained convex composed
optimization problems; see, e.g., [1, 2, 3, 4, 5]. In this paper, we are interested in developing a
more general calculus rule of subdifferential of multi-composed convex functions. The origin
of interest in such calculus rules comes from the recent contribution of Wanka and Wilfer [6]
that introduced and examined the optimality conditions of the so-called multi-composed convex
optimization problems via conjugate duality approach in 2016. For more details regarding this
new branch of convex optimization, we refer to a recent book on multi-composed programming
[7].

To attain our goal, a recent result due to Laghdir et al. [8] will be exploited in the direction
to reduce the calculus of subdifferential of multi-composed convex function to that of sums of
convex functions. It is important to note that such a calculus rule of subdifferentials needs a
regularity condition or the so-called constraint qualification (like the Moreau-Rockafellar con-
straint qualification or the one of Attouch-Brézis [2, 5, 9], etc). So, an appropriate regularity
condition, like Moreau-Rockafellar constraint qualification, is employed in this paper. We give
an application to study optimality conditions for a constrained convex minmax location prob-
lems.

This paper is organized as follows. The remainder of this section is addressed to present
some basic notations and definitions, used throughout this paper. In Section 2, we give some
definitions and tools, which are necessary later. The main result of this paper is provided in
Section 3. Finally, Section 4 is devoted to deriving optimality conditions for a constrained
convex minmax location problems.
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2. PRELIMINARIES

Let X1 and X2 be two real Banach spaces whose topological dual spaces are X∗1 and X∗2
paired in duality by 〈., .〉 and equipped respectively with the weak-star topology w(X∗1 ,X1) and
w(X∗2 ,X2). We denote by intC the topological interior of subset C ⊆ X1 and we assume that X2
is equipped with a convex cone K ⊆ X2, which induces a partial preorder 5K by

∀ a,b ∈ X2, a5K b ⇐⇒ b−a ∈ K.

The positive polar cone of K is defined by

K∗ := {y∗ ∈ Y ∗ : 〈y∗,y〉 ≥ 0, ∀ y ∈ K}.

To X2, we attach an abstract maximal element denoted by +∞X2 such that

y5K +∞X2, y+(+∞X2) := (+∞X2)+ y :=+∞X2, ∀y ∈ X2∪{+∞X2}

and
y∗(+∞X2) :=+∞, t.(+∞X2) :=+∞X2, ∀y

∗ ∈ K∗, ∀t ≥ 0.

Let f : X1 → R∪{+∞} be a function. Then f is said to be proper if its effective domain
dom f := {x ∈ X1 : f (x) ∈ R} 6= /0, and it is said to be convex if f (tx+(1− t)y)≤ t f (x)+(1−
t) f (y) for all x,y∈ X1 and all t ∈ [0,1]. Moreover, function f is said to be lower semicontinuous
if liminfy→x f (y)≥ f (x) for all x ∈ X1. The conjugate function of f is defined by

f ∗ : X∗1 → R∪{±∞}, f ∗(x∗) := sup
x∈X1

{〈x∗,x〉− f (x)}.

In view of the definition of f ∗, one has the so-called Young-Fenchel inequality

f ∗(x∗)+ f (x)≥ 〈x∗,x〉, ∀ (x,x∗) ∈ X×X∗.

The subdifferential of f at x ∈ X1 is defined by

∂ f (x) := {x∗ ∈ X∗1 : f (x)≥ f (x)+ 〈x∗,x− x〉, ∀x ∈ X}.

The indicator function of a nonempty subset C ⊆ X1 is defined by

δC(x) :=

{
0, if x ∈C,

+∞, otherwise

The normal cone of C at x is defined by

NC(x) := ∂δC(x̄) = {x∗1 ∈ X∗ : 〈x∗,x− x〉 ≤ 0, ∀x ∈C}.

Let X3 be another real Banach space partially ordered by a nonempty and convex cone Q⊆X3.
The mapping g : X2→ X3∪{+∞X3} is called proper if its effective domain domg := {y ∈ X2 :
g(y) ∈ X3} 6= /0 and it is called Q-epi closed (resp. Q-convex) if its epigraph

epig := {(y,z) ∈ X2×X3 : g(y)5Q z}

is a closed (resp. convex) subset of X2×X3. The mapping g is said to be (K,Q)-nondecreasing
on A⊆ X2 if

∀ x,y ∈ A, x5K y =⇒ g(x)5Q g(y).
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In particular, we call it K-nondecreasing on A⊆X2 when X3 =R and Q=R+. Let h : X1→X2∪
{+∞X2} be another vector mapping. The composed vector mapping g◦h : X1 −→ X3∪{+∞X3}
is defined by

(g◦h)(x) :=

{
g(h(x)), if x ∈ domh,

+∞X3 , otherwise.
Let us note that if g : X2→ X3∪{+∞X3} is Q-convex and (K,Q)-nondecreasing on domg and h
is K-convex with h(domh)⊆ domg, then g◦h is Q-convex.

3. MAIN RESULTS

This section is devoted to the calculus rule of the subdifferential for multi-composition func-
tion.

Let X and Xi be real Banach spaces, i = 0, ...,m (m ≥ 2). Moreover, we assume that Xi is
partially ordered by the nonempty convex cone Ki ⊆ Xi, i = 0, ...,m. Let f +ϕ ◦ψ +g◦h1 ◦h2 ◦
...◦hm : X → R∪{+∞} be a multi-composed function defined on X , where

• f : X → R∪{+∞} is proper, convex, and lower semicontinuous,
• ϕ : X0→R∪{+∞} is proper, convex, K0-nondecreasing on domϕ , and lower semicon-

tinuous,
• ψ : X → X0∪{+∞X0} is proper, K0-convex, K0-epi closed, and ψ(domψ)⊆ domϕ ,
• g : X1→ R∪{+∞} is proper, convex, K1-nondecreasing on domg, and lower semicon-

tinuous,
• h1 : X2→ X1∪{+∞X1} is proper, K1-convex, (K2,K1)-nondecreasing on domh1, K1-epi

closed, and h1(domh1)⊆ domg,
• hi : Xi+1→Xi∪{+∞Xi} is proper, Ki-convex, (Ki+1,Ki)-nondecreasing on domhi, Ki-epi

closed, and hi(domhi)⊆ domhi−1, i = 2, ...,m−1,
• hm : X→Xm∪{+∞Xm} is proper, Km-convex, Km-epi closed, and hm(domhm)⊆ domhm−1,
• dom f ∩ψ−1(domϕ)∩domψ ∩ (h−1

m ◦h−1
m−1 ◦ ...◦h−1

1 )(domg)∩domhm 6= /0,
• ϕ(+∞X0) = +∞, g(+∞X1) = +∞, hi(+∞Xi+1) = +∞Xi , i = 1, ...,m−1.

Remark 3.1. Under the above assumptions, the multi-composed function f +ϕ ◦ψ + g ◦ h1 ◦
h2 ◦ ...◦hm : X → R∪{+∞} is convex.

To achieve the goal of this section, we consider the following auxiliary functions

F : X×∏
m
k=0 Xk → R∪{+∞}

(x,x0,x1, ...,xm) 7→ f (x)
, Φ : X×∏

m
k=0 Xk → R∪{+∞}

(x,x0,x1, ...,xm) 7→ ϕ(x0)

Ψ : X×∏
m
k=0 Xk → R∪{+∞}

(x,x0,x1, ...,xm) 7→ δepiψ(x,x0)
, G : X×∏

m
k=0 Xk → R∪{+∞}

(x,x0,x1, ...,xm) 7→ g(x1)

Hi : X×∏
m
k=0 Xk → R∪{+∞}

(x,x0,x1, ...,xm) 7→ δepihi(xi+1,xi),
(i = 1, ...,m−1)

Hm : X×∏
m
k=0 Xk → R∪{+∞}

(x,x0,x1, ...,xm) 7→ δepihm(x,xm)

and also introduce the following regularity condition

(RC )

∣∣∣∣∣∣∣
∃ (x,x1, ...,xm−1) ∈ X×∏

m−1
k=1 Xm such that x ∈ dom f ∩domψ ∩domhm,

ψ(x) ∈ int domϕ , x1 ∈ domg, (xi+1,xi) ∈ int epihi, i = 1, ...,m−2, and

(hm(x),xm−1) ∈ int epihm−1.
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Remark 3.2. (1) Let us note that F , Φ, Ψ, G, and Hi, i = 1, ...,m, are all convex and lower
semicontinuous.

(2) In the absence of g and h1, ...,hm, (RC ) becomes the classical Moreau-Rockafellar
constraint qualification

(MR)
∣∣ ∃ x ∈ dom f ∩domψ such ψ(x) ∈ int domϕ .

The following lemmas play a crucial role in our investigation.

Lemma 3.1 ([8]). Assume that x∈ dom f ∩ψ−1(domϕ)∩domψ∩(h−1
m ◦h−1

m−1◦ ...◦h−1
1 )(domg)∩

domhm, xm := hm(x), xm−1 := hm−1(xm), ..., x1 := h1(x2) and x0 := ψ(x). Then

x∗ ∈ ∂ ( f +ϕ ◦ψ +g◦h1 ◦h2 ◦ ...◦hm)(x)

⇐⇒ (x∗,0,0, ...,0) ∈ ∂ (F +Φ+Ψ+G+
m

∑
i=1

Hi)(x,x0,x1, ...,xm).

Lemma 3.2. Let x ∈ dom f ∩ψ−1(domϕ)∩ domψ ∩ (h−1
m ◦ h−1

m−1 ◦ ... ◦ h−1
1 )(domg)∩ domhm,

xm = hm(x), xm−1 = hm−1(xm), ...,x1 = h1(x2) and x0 = ψ(x). Under condition (RC ), one has

∂ (F +Φ+Ψ+G+
m

∑
i=1

Hi)(x,x0,x1, ...,xm)

= ∂ (F +Ψ+G+Hm)(x,x0,x1, ...,xm)

+∂Φ(x,x0,x1, ...,xm)+
m−1

∑
i=1

∂Hi(x,x0,x1, ...,xm).

Proof. Observe that (RC ) implies the existence of (x,ψ(x),x1, ...,xm−1,hm(x))∈ X×∏
m
k=0 Xk,

which is in domF = dom f ×∏
m
k=0 Xk, domΨ = Λ

−1
(X ,X0)

(epiψ), domG = X × X0 × domg×
∏

m
k=2 Xk, domHm =Λ

−1
(X ,Xm)

(epihm), int domΦ=X×int domϕ×∏
m
k=1 Xk, and Λ

−1
(Xi+1,Xi)

(int epihi)

⊆ int domHi = int Λ
−1
(Xi+1,Xi)

(epihi), i = 1, ...,m− 1, where Λ(X ,X0), Λ(X ,Xm), and Λ(Xi+1,Xi), i =
1, ...,m−1, are continuous mappings defined by

Λ(Xi+1,Xi) : X×∏
m
k=0 Xk → Xi+1×Xi

(x,x0,x1, ...,xm) 7→ (xi+1,xi),
(i = 1, ...,m−1)

Λ(X ,X0) : X×∏
m
k=0 Xk → X×X0

(x,x0,x1, ...,xm) 7→ (x,x0),

and
Λ(X ,Xm) : X×∏

m
k=0 Xk → X×Xm

(x,x0,x1, ...,xm) 7→ (x,xm).

Thus, by [1, Theorem V.2], we obtain the desired statement. �

Lemma 3.3. (1) Let (x,x0,x1, ...,xm) ∈ domF ∩domΨ∩domG∩domHm. Then

(x∗,x∗0,x
∗
1, ...,x

∗
m) ∈ ∂ (F +Ψ+G+Hm)(x,x0,x1, ...,xm)

⇐⇒



x∗ ∈ ∂ ( f − x∗0 ◦ψ− x∗m ◦hm)(x),

−x∗0 ∈ K∗0 , 〈−x∗0,x0−ψ(x)〉= 0,

x∗1 ∈ ∂g(x1), x∗k = 0, k = 2, ...,m−1,

−x∗m ∈ K∗m, 〈−x∗m,xm−hm(x)〉= 0.
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(2) Let (x,x0,x1, ...,xm) ∈ domΦ. Then

∂Φ(x,x0,x1, ...,xm) = {0}×∂ϕ(x0)×{0}× ...×{0}.
(3) Let i ∈ {1, ...,m−1} and (x,x0,x1, ...,xm) ∈ domHi. Then

(x∗,x∗0,x
∗
1, ...,x

∗
m) ∈ ∂Hi(x,x0,x1, ...,xm)

⇐⇒


x∗ = 0, x∗k = 0, k ∈ {0, ...,m}\{i, i+1},

−x∗i ∈ K∗i , 〈−x∗i ,xi−hi(xi+1)〉= 0,

x∗i+1 ∈ ∂ (−x∗i ◦hi)(xi+1).

Proof. (1) Let (x,x0,x1, ...,xm) ∈ domF ∩ domΨ∩ domG∩ domHm. Then, by a simple com-
putation, one can easily check that, for all (x∗,x∗0,x

∗
1, ...,x

∗
m) ∈ X∗×∏

m
k=0 X∗k , (F +Ψ+G+

Hm)
∗(x∗,x∗0,x

∗
1, ...,x

∗
m) = ( f −x∗0◦ψ−x∗m◦hm)

∗(x∗)+g∗(x∗1), if−x∗0 ∈K∗0 , x∗k = 0, k = 2, ...,m−
1, −x∗m ∈ K∗m, and (F +Ψ+G+Hm)

∗(x∗,x∗0,x
∗
1, ...,x

∗
m) = +∞, otherwise. Therefore, it follows

that
(x∗,x∗0,x

∗
1, ...,x

∗
m) ∈ ∂ (F +Ψ+G+Hm)(x,x0,x1, ...,xm)

⇐⇒


[( f − x∗0 ◦ψ− x∗m ◦hm)

∗(x∗)+( f − x∗0 ◦ψ− x∗m ◦hm)(x)−〈x∗,x〉]

+[〈−x∗0,x0−ψ(x)〉]+ [g∗(x∗1)+g(x1)−〈x∗1,x1〉]+ [〈−x∗m,xm−hm(x)〉] = 0,

−x∗0 ∈ K∗0 , x∗k = 0, k = 2, ...,m−1, −x∗m ∈ K∗m.

(3.1)

By observing that 〈−x∗0,x0−ψ(x)〉≥ 0 and 〈−x∗m,xm−hm(x)〉≥ 0 and using the Young-Fenchel
inequality, we deduce that

(3.1) ⇐⇒



x∗ ∈ ∂ ( f − x∗0 ◦ψ− x∗m ◦hm)(x),

−x∗0 ∈ K∗0 , 〈−x∗0,x0−ψ(x)〉= 0,

x∗1 ∈ ∂g(x1), x∗k = 0, k = 2, ...,m−1,

−x∗m ∈ K∗m, 〈−x∗m,xm−hm(x)〉= 0.

This completes the proof. For (2) and (3), we refer the reader to [8, Lemma 4.5]. �

Now, we state the main result of this work.

Theorem 3.1. Let x ∈ dom f ∩ψ−1(domϕ)∩domψ ∩ (h−1
m ◦h−1

m−1 ◦ ...◦h−1
1 )(domg)∩domhm,

xm = hm(x), xm−1 = hm−1(xm), ...,x1 = h1(x2), and x0 = ψ(x). Under condition (RC ),

∂ ( f +ϕ ◦ψ +g◦h1 ◦h2 ◦ ...◦hm)(x)

=
⋃

x∗0∈K∗0∩∂ϕ(x0), z∗0∈K∗1∩∂g(x1),
z∗i ∈K∗i+1∩∂ (z∗i−1◦hi)(xi+1), i=1,...,m−1

∂ ( f + x∗0 ◦ψ + z∗m−1 ◦hm)(x).

Proof. Clearly, by Lemma 3.1 and Lemma 3.2, one sees that x∗ ∈ ∂ ( f +ϕ ◦ψ +g◦h1 ◦h2 ◦ ...◦
hm)(x) if and only if

(x∗,0,0, ...,0) ∈ ∂ (F +Ψ+G+Hm)(x,x0,x1, ...,xm)

+∂Φ(x,x0,x1, ...,xm)+
m−1

∑
i=1

∂Hi(x,x0,x1, ...,xm),
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which yields that there exist
(u∗,u∗0,u

∗
1, ...,u

∗
m) ∈ ∂ (F +Ψ+G+Hm)(x,x0,x1, ...,xm),

(v∗,v∗0,v
∗
1, ...,v

∗
m) ∈ ∂Φ(x,x0,x1, ...,xm),

(wi∗,wi∗
0 ,w

i∗
1 , ...,w

i∗
m) ∈ ∂Hi(x,x0,x1, ...,xm), i = 1, ...,m−1,

such that 

u∗+ v∗+
m−1

∑
i=1

wi∗ = x∗,

u∗0 + v∗0 +
m−1

∑
i=1

wi∗
0 = 0,

u∗1 + v∗1 +
m−1

∑
i=1

wi∗
1 = 0,

u∗2 + v∗2 +
m−1

∑
i=1

wi∗
2 = 0,

...

u∗m + v∗m +
m−1

∑
i=1

wi∗
m = 0.

By virtue of Lemma 3.3, we assert that x∗ ∈ ∂ ( f +ϕ ◦ψ +g◦h1 ◦h2 ◦ ...◦hm)(x) if and only if
there exist{

u∗ ∈ ∂ ( f −u∗0 ◦ψ−u∗m ◦hm)(x), −u∗0 ∈ K∗0 , u∗1 ∈ ∂g(x1), −u∗m ∈ K∗m,

v∗0 ∈ ∂ϕ(x0), −wi∗
i ∈ K∗i , wi∗

i+1 ∈ ∂ (−wi∗
i ◦hi)(xi+1), i = 1, ...,m−1,

(3.2)

such that 

u∗ = x∗,

v∗0 +u∗0 = 0,

u∗1 +w1∗
1 = 0,

w1∗
2 +w2∗

2 = 0,
...

w(m−2)∗
m−1 +w(m−1)∗

m−1 = 0,

w(m−1)∗
m +u∗m = 0.

(3.3)

By taking x∗0 :=−u∗0 and w0∗
1 := u∗1, one concludes that

(3.2) and (3.3) ⇐⇒



x∗ ∈ ∂ ( f + x∗0 ◦ψ +w(m−1)∗
m ◦hm)(x),

x∗0 ∈ K∗0 ∩∂ϕ(y0),

w0∗
1 ∈ K∗1 ∩∂g(x1),

wi∗
i+1 ∈ K∗i+1∩∂ (w(i−1)∗

i ◦hi)(xi+1), i = 1, ...,m−1.
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We deduce the desired statement by taking z∗0 := w0∗
1 and z∗i := wi∗

i+1, i = 1, ...,m−1. Therefore,
the proof is complete. �

By taking Ki = Xi, hi ≡ 0 (i ∈ {1,2...m}) and g ≡ 0 in Theorem 3.1, we obtain the classical
sum rule as well as the classical composition rule in convex subdifferential calculus; see, e.g.,
[2].

Corollary 3.1. Let x ∈ dom f ∩ψ−1(domϕ)∩domψ and x0 = ψ(x). If condition (RC ) holds,
then

∂ ( f +ϕ ◦ψ)(x) =
⋃

x∗0∈K∗0∩∂ϕ(x0)

∂ ( f + x∗0 ◦ψ)(x).

4. APPLICATIONS

In this section, we apply Theorem 3.1 to the optimality conditions of a constrained convex
minmax location problem with perturbed minimal time functions and set-up costs. Such prob-
lems were recently investigated via conjugate duality approach; see [10] for more details.

Let X and Y be two real Banach spaces, where Y is partially ordered by a nonempty closed
convex cone K. We consider now a constrained convex minmax location problems with per-
turbed minimal time functions and set-up costs denoted by (ML P) and defined as follows

(ML P) inf
x∈S

h(x)5K 0

max
1≤i≤n

{
li(T

Ci
Ωi, fi

(x))+ai

}
,

where
• a1, ...,an are positive set-up costs,
• S,Ci ⊆ X are nonempty, closed and convex with 0 ∈ int Ci, i = 1, ...,n,
• Ωi ⊆ X is nonempty, convex and compact, i = 1, ...,n,
• h : X → Y ∪{+∞Y} is proper, K-convex and K-epi closed,
• T Ci

Ωi, fi
: X → R∪{+∞} is a perturbed minimal time function defined by

T Ci
Ωi, fi

(x) := inf
y∈X ,z∈Ω

{γCi(x− y− z)+ fi(y)},

with fi : X → R∪{+∞} is proper, positive, convex and lower semicontinuous function
and γCi : X → R∪{+∞} is the well-known Minkowski functional of Ci defined by

γCi(x) :=

{
inf{λ > 0 : x ∈ λCi}, if {λ > 0 : x ∈ λCi} 6= /0,

+∞, otherwise, i = 1, ...,n,

• li : R→ R∪{+∞} with li(x) ≥ 0, if x ≥ 0, li(x) = +∞, otherwise, is a proper, convex,
lower semicontinuous and nondecreasing function on R+, i = 1, ...,n,
• S∩h−1(−K)∩domh 6= /0.

In order to obtain optimality conditions for problem (ML P), we transform it as an uncon-
strained convex multi-composed optimization problem by setting X0 = Y , K0 = K, X1 = X2 :=
Rn, K1 = K2 := Rn

+ and introducing the following auxillary functions
• g : Rn→ R defined by

g(x1, ...,xn) := max
1≤i≤n

{|x+i |}, x+i := max{0,xi}, i = 1, ...,n,
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• h1 : Rn→ Rn∪{+∞Rn} defined by

h1(x1, ...,xn) :=

{
(l1(x1)+a1, ..., ln(xn)+an), if (x1, ...,xn) ∈ Rn

+,

+∞Rn , otherwise,

• h2 : X → Rn defined by

h2(x) :=
(
T C1

Ω1, f1
(x), ...,T Cn

Ωn, fn(x)
)
.

Thus problem (ML P) can be written equivalently as an unconstrained convex multi-composed
optimization problem

(ML P) inf
x∈X

(δS +δ−K ◦h+g◦h1 ◦h2)(x).

Remark 4.1. Note that the decomposition of the objective function of problem (ML P) is
completely different from that of [10], that is, the special construction of g, h1 and h2.

Remark 4.2. It is clear that g is proper, convex, continuous, and Rn
+-nondecreasing (see [8, Re-

mark 5.2]). In addition, one can easily see that h1 is proper, Rn
+-convex, (Rn

+,Rn
+)-nondecreasing

on domh1 =Rn
+ and Rn

+-epi closed with h1(domh1)⊆Rn
+. On other hand, as T C1

Ω1, f1
, ...,T Cn

Ωn, fn
are all finite, positive, convex, and continuous (see [10, Theorem 2.1]), one can immediately
deduce that h2 is proper, Rn

+-convex, and Rn
+-epi closed with h2(domh2) = h2(X) ⊆ Rn

+. In
addition, since S and −K are closed and convex, it is immediate that δC and δ−K are proper,
convex, lower semicontinuous, and δ−K is K-nondecreasing on Y (see [2, Lemma 5.1]).

Lemma 4.1. (1) Let (x1, ...,xn) ∈ Rn. Then

∂g(x1, ...,xn) =
{
(x∗1, ...,x

∗
n) ∈ Rn

+ :
n

∑
i=1

x∗i ≤ 1 and max
1≤i≤n

{x+i }=
n

∑
i=1

x∗i xi

}
.

(2) Let x ∈ X and i ∈ {1, ...,n}. Then

∂T Ci
Ωi, fi

(x) = Si(x) := ∂γCi(x− yi− zi)∩∂ fi(yi)∩NΩi(zi),

where (yi,zi) ∈ dom fi∩Ωi such that T Ci
Ωi, fi

(x) = γCi(x− yi− zi)+ fi(yi).

Proof. (1) See [8, Lemma 5.3].
(2) See [10, Remark 2.3]. �

Remark 4.3. Since Theorem 3.1 is employed to derive the main result of this section, we point
out that, for the fulfillment of the regularity (RC ), we may ask that problem (ML P) satisfies
the following assumption

(H )
∣∣∣ ∃ x ∈ S∩domh such that h(x) ∈ −int K and T Ci

Ωi, fi
(x)> 0, i = 1, ...,n.

Now, we are in a position to provide optimality conditions for problem (ML P) via the
multi-composition rule in Theorem 3.1.

Theorem 4.1. Let x ∈ S∩ h−1(−K)∩ domh and assume that problem (ML P) satisfies the
assumption (H ). Then x is an optimal solution of (ML P) if and only if there exist y∗ ∈ K∗,
(λ1, ...,λn) ∈ Rn

+, and (α1, ...,αn) ∈ Rn
+ such that

(i) 0 ∈ ∂ (δS + y∗ ◦h)(x)+
n

∑
i=1

αiSi(x),
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(ii) αi ∈ ∂

(
λili
)(

T Ci
Ωi, fi

(x)
)

, i = 1, ...,n,

(iii)
n

∑
i=1

λi ≤ 1, max
1≤i≤n

{
li
(
T Ci

Ωi, fi
(x)
)
+ai

}
=

n

∑
j=1

λ j

[
l j

(
T

C j
Ω j, f j

(x)
)
+a j

]
,

(iv) 〈y∗,h(x)〉= 0.

Proof. Observe that x is an optimal solution to (ML P) if and only if

0 ∈ ∂ (δS +δ−K ◦h+g◦h1 ◦h2)(x).

On other hand, Remark 4.2 and assumption (H ) demonstrate that functions f := δS, ϕ := δ−K ,
ψ := h, g, h1 and h2 satisfy all the assumptions of Theorem 3.1. Hence, by applying the multi-
composition rule in Theorem 3.1, we assert that there exist y∗ ∈ K∗, (λ1, ...,λn) ∈ Rn

+ and
(α1, ...,αn) ∈ Rn

+ such that

0 ∈ ∂

(
δS + y∗ ◦h+

n

∑
i=1

αiT
Ci

Ωi, fi

)
(x), (4.1)

(α1, ...,αn) ∈ ∂

( n

∑
i=1

λi[li(.)+ai]
)(

T C1
Ω1, f1

(x), ...,T Cn
Ωn, fn(x)

)
, (4.2)

(λ1, ...,λn) ∈ ∂g
(

l1
(
T C1

Ω1, f1
(x)
)
+a1, ..., ln

(
T Cn

Ωn, fn(x)
)
+an

)
, (4.3)

y∗ ∈ N−K(h(x)).

Since functions T C1
Ω1, f1

, ...,T Cn
Ωn, fn are all finites and continuous and ∂T Ci

Ωi, fi
(x) = Si(x), i =

1, ...,n (see Lemma 4.1), we have

(4.1) ⇐⇒ 0 ∈ ∂ (δS + y∗ ◦h)(x)+
n

∑
i=1

αi∂T Ci
Ωi, fi

(x) = ∂ (δS + y∗ ◦h)(x)+
n

∑
i=1

αiSi(x).

By using [5, Corollary 2.4.5] and Lemma 4.1, respectively, it follows that

(4.2) ⇐⇒ αi ∈ ∂

(
λili
)(

T Ci
Ωi, fi

(x)
)
, i = 1, ...,n,

and

(4.3) ⇐⇒
n

∑
i=1

λi ≤ 1, max
1≤i≤n

{
li
(
T Ci

Ωi, fi
(x)
)
+ai

}
=

n

∑
j=1

λ j

[
l j

(
T

C j
Ω j, f j

(x)
)
+a j

]
.

Finally, it results by [11, Lemma 2.1] that

(4.3) ⇐⇒ 〈y∗,h(x)〉= 0.

Hence, the proof is complete. �
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