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Abstract. Our purpose in this paper is to propose an iterative method involving a step-size selected
in such a way that its implementation does not require the computation or an estimate of the spectral
radius. Using our algorithm, we state and prove a strong convergence theorem of a common solution to
a monotone inclusion problem and a fixed point problem of multi-valued Lipschitz hemicontractive-type
mappings, whose image under a bounded linear operator is a fixed point of a demicontractive mapping.
Our result generalizes some important and recent results in the literature.
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1. INTRODUCTION

Let H be a real Hilbert space, and let C be a nonempty, convex, and closed subset of H. Let
T : C→C be a mapping, and let F(T ) := {x ∈C : x = T x} denote the set of fixed points of T.
Recall that T is said to be

(i) nonexpansive if ‖T (x)−T (y)‖ ≤ ‖x− y‖ for all x,y ∈C;
(ii) quasi-nonexpansive if F(T ) is not empty and ‖T (x)− q‖ ≤ ‖x− q‖ fr all x ∈ C and

q ∈ F(T );
(iii) µ-demicontractive if F(T ) is not empty and there exists a constant µ ∈ [0,1) such that

‖T (x)−q‖2 ≤ ‖x−q‖2 + k‖T (x)−q‖2 ∀ x ∈C, q ∈ F(T ),

which is equivalent to

〈T x−T q,x−q〉 ≤ ‖x−q‖2− 1− k
2
‖T x− x‖2 ∀ x ∈C, q ∈ F(T ). (1.1)

Let CB(C) denote the family of nonempty, closed, and bounded subset of C. The Hausdorff
metric on CB(C) is defined by

H (A,B) = max{sup
x∈A

d(x,B),sup
y∈B

d(y,A)}
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for all A,B ∈ CB(C), where d(x,B) = inf{‖x− b‖ : b ∈ B}. A multi-valued mapping S : C→
CB(C) is called Lipschitzian if there exists L≥ 0 such that H (Sx,Sy)≤ L‖x−y‖ for all x,y∈C.
If L = 1, then S is called a nonexpansive mapping. If L ∈ (0,1), then S is called a contraction.
An element x ∈C is called a fixed point of S : C→CB(C) provide x ∈ Sx. Let T : H→ H be a
mapping. We denote the fixed point set of T by F(T ), that is, F(T ) := {x ∈H : T x = x}. Fixed
point problems of single-valued or set-valued nonlinear operator have various applications; see,
e.g., [1, 2, 3, 4, 5] and the references therein.

Recall that a mapping S : C → CB(C) is said to be a multivalued hemicontractive-type if
F(S) 6= /0 and, for all p ∈ F(S), x ∈ C, H 2(Sx,Sp) ≤ ‖x− p‖2 + ‖x−u‖2 for all u ∈ Sx. For
any point u∈H, there exists a unique point PCu∈C such that ‖u−PCu‖ ≤ ‖u−y‖ for all y∈C,
where PC is called the metric projection of H onto C. We recall that PC is nonexpansive from H
onto C and satisfies 〈x−y,PCx−PCy〉 ≥ ‖PCx−PCy‖2 for all x,y ∈H. PCx is also characterized
by 〈x−PCx,PCx− y〉 ≥ 0 for all y ∈C.

Recall that a mapping T : H→ H is said to be
(i) α-strongly monotone if there exists a constant α > 0 such that 〈T x−Ty,x−y〉≥α||x−y||2

for all x,y ∈ H;
(ii) β -inverse strongly monotone (β -ism) if there exists a constant β > 0 such that 〈T x−

Ty,x− y〉 ≥ β ||T x−Ty||2 for all x,y ∈ H.
Recall that a set valued mapping M : H → 2H is called monotone if, for all x,y ∈ H with

u ∈M(x) and v ∈M(y), 〈x− y,u− v〉 ≥ 0. A monotone mapping M is said to be maximal if the
graph of M, denoted as G(M), is not properly contained in the graph of any other monotone
mapping, where for multi-valued mapping M, G(M) = {(x,y) : y ∈M(x)}. It is known that M
is maximal if and only if, for (x,u) ∈ H ×H, 〈x− y,u− v〉 ≥ 0 for all (y,v) ∈ G(M) implies
u ∈M(x). Its resolvent operator with λ , introduced by Moreau [6], is the mapping JM

λ
: H →

H defined by JM
λ
(x) = (I + λM)−1x for all x ∈ H,λ > 0. One knows that JM

λ
(x) is single-

valued, nonexpansive, and 1-inverse strongly monotone. The inverse-strongly monotone (also
referred as co-coercive) operators were widely used to solve optimization problems; see, e.g.,
[7, 8, 9, 10, 11] and the references therien. It can be easily seen that (i) if T is nonexpansive,
then I−T is monotone; (ii) the projection mapping PC is 1-ism.

A fundamental problem is to find a zero of a maximal monotone operator M : H→ 2H in real
Hilbert space H. That is,

find x ∈ H : 0 ∈Mx. (1.2)

It includes non-smooth convex optimization problems and convex-concave saddle-point prob-
lems as special cases and finds various applications in machine learning. It is known that the
solution of (1.2) is a fixed point of JM

λ
and the set M−1(0) := {x∈H : 0∈ T x} is closed and con-

vex. The classical algorithm to solve (1.2) is the proximal point algorithm, which can be traced
back to Minty [12] and Martinet [13]. The proximal point algorithm generates a sequence {xn}
by xn+1 = (I +λnM)−1(xn), where λn is a positive regularization parameter. Recall that Rock-
afellar [14] proved that the sequence {xn} generated by the proximal point algorithm converges
weakly to a point x∗ with 0 ∈Mx∗. To reduce the computational complexity, T can be written
as the sum of two monotone operators, i.e., T = M+B, where (I+λA)−1 or (I+λB)−1 is eas-
ier to compute than (I +λT )−1. Let us recall two splitting algorithm: the Peaceman-Rachford
splitting algorithm [15],

xn+1 = (I +λB)−1(I−λA)(I +λM)−1(I−λB)(xn),
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and the Douglas-Rachford splitting algorithm [16],

xn+1 = (I +λB)−1[(I +λM)−1(I−λB)+λB](xn).

Observe that the two splitting algorithm were originally proposed in the context of linear op-
erators and systems. In [17], Lion and Mercier analysed and developed the splitting algo-
rithms. Their idea was to perform a change of variables xn = (I + λB)−1(vn) such that the
Peaceman-Rachford and Douglas-Rachford splitting algorithms are efficient for A and B be-
ing multi-valued operators. Regarding convergence of the algorithms, the Peaceman-Rachford
algorithm still needs to assume that B is single-valued but the Douglas-Rachford algorithm con-
verges even in the general setting, where M +B is just maximally monotone. Another impor-
tant line of splitting methods was given by the so-called forward-backward splitting technique
[17, 18]. In contrast to the more complicated splitting technique discussed above, the forward-
backward scheme is only based on the recursive application of an explicit forward step with
respect to B, followed by an implicit backward step with respect to M. The forward-backward
algorithm is written as: xn+1 = (I +λnM)−1(I−λnB)(xn). In the most general setting, the con-
vergence result is rather weak [19] if both M and B are general monotone operators. Basically,
λn has to fulfil the same step-size restrictions as unconstrained subgradient descend schemes. In
addition, if B is single-valued and Lipschtz, that is, B is the gradient of a smooth convex func-
tion, the situation becomes much more beneficial. In fact, if B is L- Lipschitz, and λn is chosen
such that λn < 2

L , the forward-backward algorithm converges to zero of T = M +B [20, 21].
Recently, the forward-backward algorithm is under the spotlight of research. It has been pro-
posed and further improved in the context of sparse signal recovery, image processing, and
machine learning. One refers to [22, 23, 24, 25] for various modifications of the modifications
of forward-backward algorithm.

Let C be a nonempty, convex, and closed set in a Hilbert space H1, and let Q a nonempty,
convex, and closed set in Hilbert space H2. Let A : H1→ H2 be an operator, which is assumed
to be both bounded and linear. A Split Feasibility Problem (SFP) is to find a point x in C with
Ax in Q. The SFP was first introduced by Censor and Elfving [26] for the problems arising from
medical image reconstruction. Moreover, it has been found that the SFP can also be used in
image restoration, computer tomograph, and radiation therapy treatment planning [27, 28]. In
the past decade, various efficient solution methods were devised and investigated for solving
the SFP and its related optimization problems; see, e.g, [29, 30, 31, 32, 33] and the references
therein.

Let B : H1→ 2H1 be a multivalued mapping, and let T : H2→H2 be a single-valued mapping.
Let A : H1 → H2 be a bounded linear operator. Recently, Takahashi et al. [33] studied the
following problems: find x ∈ H1 such that 0 ∈ B(x) and Ax ∈ F(T ). We denote its solution set
by Ω, that is, Ω := {x ∈ H1 : 0 ∈ B(x) and Ax ∈ F(T )}. Takahashi et al. [33] stated and proved
the following two weak convergence results.

Theorem 1.1. ([33]) Let H1 and H2 be Hilbert spaces. Let B : H1→ 2H1 be a maximal monotone
mapping and let JB

λ
= (I+λB)−1 be the resolvent for B for λ > 0. Let T : H2→H2 be a nonex-

pansive mapping and A : H1→H2 a bounded linear operator. Suppose B−1(0)∩A−1F(T ) 6= /0.
For any x1 = x ∈ H1, define xn+1 = JB

λn
(I− γnA∗(I−T )A)xn for all n ∈ N, where the sequences

{λn} and {γn} satisfy the following conditions:

(i) 0 < liminfn→∞ λn limsupn→∞ λn < ∞,
(ii) 0 < liminfn→∞ γn limsupn→∞ γn <

1
‖A‖2 .
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Then {xn} converges weakly to a point z0 ∈ B−1(0)∩A−1F(T ), which is a strong limit of the
projections of {xn} onto B−1(0)∩A−1F(T ), that is z0 = limn→∞ PB−1(0)∩A−1F(T )xn.

Theorem 1.2. [33] Let H1 and H2 be Hilbert spaces. Let B : H1→ 2H1 be a maximal monotone
mapping and let JB

λ
= (I+λB)−1 be the resolvent for B for λ > 0. Let T : H2→H2 be a nonex-

pansive mapping and A : H1→H2 a bounded linear operator. Suppose B−1(0)∩A−1F(T ) 6= /0.
For any x1 = x ∈H1, define xn+1 = βnxn+(1−βn)JB

λn
(I−γnA∗(I−T )A)xn for all n ∈N, where

the sequences {βn} ⊂ (0,1) and {λn} ⊂ (0,∞) satisfy the conditions:
(a1) ∑

∞
n=1 βn(1−βn)< ∞,

(a2) 0 < a≤ γn ≤ 1
‖A‖2 and ∑

∞
n=1 |λn−λn+1|< ∞.

Then xn ⇀ z0 ∈ B−1(0)∩A−1F(T ), where z0 = limn→∞ PB−1(0)∩A−1F(T )xn.

In this paper, we introduce an iterative algorithm and proved a strong convergence theorem
for finding a fixed point of a multi-valued Lipschitz hemicontractive-type mapping, which is
also a solution to monotone variational inclusion problem (1.2), where T = M+B with M being
a maximal monotone operator and B an α-inverse strongly monotone mapping and whose image
under a bounded linear operator is a fixed point of a demicontractive mapping. In our result, the
step-size is selected in such a way that its implementation does not involve the computation or
an estimate of the operator norm. Hence Our result improve and extend many known results in
this direction.

2. PRELIMINARIES

In this section, we give some definitions, lemmas, and results that are needed in the main
results.

Let H be a real Hilbert space. For all xi ∈ H and αi ∈ [0,1] for i = 1,2, ...,n such that
α1 +α2 + ...+αn = 1, the following equality holds:

‖α1x1 +α2x2 + ...+αnxn‖2 =
n

∑
i=1

αi‖xi‖2− ∑
1≤i, j≤n

αiα j‖xi− x j‖2.

One the other hand, one also has the following celebrated identities
(i) ‖x+ y‖2 = ‖x‖2 +‖y‖2 +2〈x,y〉;

(ii) ‖x+ y‖2 ≤ ‖x‖2 +2〈y,x+ y〉;
(iii) ‖λx+(1−λ )y− z‖2 = λ‖x− z‖2 +(1−λ )‖y− z‖2−λ (1−λ )‖x− y‖2, for any λ ∈

(0,1), x,y,z ∈ H.

Lemma 2.1. [34] Let C be a nonempty, convex, and closed set in a real Hilbert space H. Let
T : C→C be a nonexpansive mapping. Then I−T is demiclosed at 0, (i.e., if xn ⇀ x ∈C and
xn−T xn→ 0, then x = T x).

Lemma 2.2. [35] Let H be a real Hilbert space. Let M : H → 2H be a maximal monotone
operator, and let B : H→ H be an α-inverse strongly monotone mapping. Then
(i) for r > 0, F(Tr) = (M+B)−1(0) := {x ∈ H : 0 ∈ (M+B)x},
(ii) for 0 < s ≤ r and x ∈ E, ||x− Tsx|| ≤ 2||x− Trx||, where Tr := (I + rM)−1(I− rB) =

JM
r (I− rB).

Lemma 2.3. [36] Let H be a Hilbert space. Let A,B ∈ CB(H) and a ∈ A. Then, for ε > 0,
there exists a point b ∈ B such that ‖a− b‖ ≤H (A,B)+ ε. If ε = H (A,B), then ‖a− b‖ ≤
2H (A,B).
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Lemma 2.4. [37] Let {an} be a sequence of non-negative real numbers such that an+1 ≤ (1−
αn)an +αnσn +δn for all n≥ 0, where limsupσn ≤ 0, {αn} ⊂ [0,1], ∑

∞
n=0 αn = ∞, δn ≥ 0, and

∑
∞
n=0 δn < ∞. Then an→ 0 as n→ ∞.

Lemma 2.5. [38] Let {an} be a real sequence with its subsequence {n j} of {n} such that
an j < an j+1 for all j ∈ N. Then there exists a nondecreasing sequence {mk} ⊂ N such that
mk → ∞ and the following properties are satisfied by all (sufficiently large) number k ∈ N :
amk ≤ amk+1 and ak ≤ amk+1. In fact, mk = max{ j ≤ k : a j < a j+1}.

3. MAIN RESULTS

We now state and prove the following theorem.

Theorem 3.1. Let H1 and H2 be two real Hilbert spaces, and let C be a nonempty, convex
and closed subset of H1. Let A : H1 → H2 be a bounded and linear operator, and let A∗ be
the adjoint of A. Let M : H1→ 2H1 be a maximal monotone operator, and let B : C→ H1 be a
τ-inverse strongly monotone mapping. Let S : H1→CB(H1) be a L-Lipschitz hemicontractive-
type mapping, and let T : H2 → H2 be an µ-demicontractive mapping such that ϒ := F(S)∩
(M +B)−1(0)∩A−1F(T ) 6= /0. Let the step size γn be chosen such that for some ε > 0, γn ∈(

ε, (1−µ)‖TAxn−Axn‖2

‖A∗(T−I)Axn‖2 − ε

)
, if TAxn 6= Axn; otherwise γn = γ (γ being any nonnegative real num-

ber). Suppose that {αn}, {βn}, and {δn} are sequences in (0,1), and the following conditions
are satisfied:

(i) αn +βn +δn = 1;
(ii) lim

n→∞
αn = 0 and ∑

∞
n=0,αn = ∞;

(iii) 0 < liminfn→∞ rn ≤ limsupn→∞ rn < 2τ;
(iv) αn +βn ≤ λn ≤ λ ≤ 1√

1+4L2+1
,

(v) Sp = {p} ∀p ∈ ϒ, (I−T ) and (I−S) are demiclosed at 0.

Then the sequence {xn} generated below for any x1,u ∈ H1 by


wn = PC(xn + γnA∗(T − I)Axn),

zn = (I + rnM)−1(wn− rnBwn),

yn = (1−λn)zn +λnun,

xn+1 = αnu+βnvn +δnzn, n≥ 1,

(3.1)

where un ∈ Szn, and vn ∈ Syn converges strongly to q ∈ ϒ where q = Pϒu.

Proof. We first demonstrate that {xn} is a bounded sequence. Let q = Pϒu, and define Tn :=
JM

rn
(I− rnB) for all n≥ 1. Then, Tn is nonexpansive for all n≥ 1 and

‖zn−q‖= ‖Tnwn−Tnq‖ ≤ ‖wn−q‖.
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From (1.1), (3.1), and q ∈ ϒ, we have

‖wn−q‖2 = ‖PC(xn + γnA∗(T − I)Axn)−q‖2

= ‖xn−q‖2 + γ
2
n‖A∗(T − I)Axn‖2 +2γn〈xn−q,A∗(T − I)Axn〉

= ‖xn−q‖2 + γ
2
n‖A∗(T − I)Axn‖2

+2γn[〈Axn−Ap,TAxn−Aq〉+ 〈Axn−Aq,Aq−Axn〉]
= ‖xn−q‖2 + γ

2
n‖A∗(T − I)Axn‖2

+2γn[〈Axn−Aq,TAxn−Aq〉−‖Axn−Aq‖2]

≤ ‖xn−q‖2 + γ
2
n‖A∗(T − I)Axn‖2

+2γn[‖Axn−Aq‖2− (1−µ)

2
‖TAxn−Axn‖2−‖Axn−Aq‖2]

= ‖xn−q‖2 + γn[γn‖A∗(T − I)Axn‖2 +(µ−1)‖TAxn−Axn‖2]. (3.2)

From the choice of γn and (3.2), we see that ‖wn−q‖2≤‖xn−q‖2. Since S is a hemicontractive-
type mapping and un ∈ Szn, we obtain from (3.1) that

‖yn−q‖2 = (1−λn)‖zn−q‖2 +λn‖un−q‖2−λn(1−λn)‖zn−un‖2

≤ (1−λn)‖zn−q‖2 +λnH
2(Szn,Sq)−λn(1−λn)‖zn−un‖2

≤ (1−λ )‖zn−q‖2 +λn

(
‖zn−q‖2 +‖zn−un‖2

)
−λn(1−λn)‖zn−un‖2

= ‖zn−q‖2 +λn‖zn−un‖2−λn(1−λn)‖zn−un‖2

≤ ‖xn−q‖2 +λ
2
n ‖zn−un‖2.

Since S is hemicontractive-type and vn ∈ Syn, we conclude from (3.1) that

‖vn−q‖2 = (d(vn,Sq))2 ≤H 2(Syn,Sq)

≤ ‖yn−q‖2 +‖yn− vn‖2

≤ ‖xn−q‖2 +λ
2
n ‖zn−un‖2 +‖yn− vn‖2. (3.3)

In view of (3.1), we have

‖zn− yn‖2 = ‖zn− ((1−λn)zn +λnun)‖2 = λ
2
n ‖zn−un‖2. (3.4)

Since S is L-Lipschitzian mapping and ‖un− vn‖ ≤ 2H (Szn,Syn), we obtain from (3.4) that

‖yn− vn‖2 = (1−λn)‖zn− vn‖2 +λn‖un− vn‖2−λn(1−λn)‖zn−un‖2

≤ (1−λn)‖zn− vn‖2 +λn‖un− vn‖2−λn(1−λn)‖zn−un‖2

≤ (1−λn)‖zn− vn‖2 +4λnH
2(T zn,Tyn)−λn(1−λn)‖zn−un‖2

≤ (1−λn)‖zn− vn‖2 +4λ
3
n L2‖zn−un‖2−λn(1−λn)‖zn−un‖2. (3.5)

Hence, substituting (3.5) into (3.3), we obtain that

‖vn−q‖2 = ‖xn−q‖2 +(1−λn)‖zn− vn‖2 +λn(4L2
λ

2
n +2λn−1)‖zn−un‖2. (3.6)
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Thus, from (3.1) and (3.6), we have that

‖xn+1−q‖2

= αn‖u−q‖2 +βn‖vn−q‖2 +δn‖zn−q‖2−βnδn‖zn− vn‖2

≤ ‖u−q‖2 +βn

[
‖xn−q‖2 +(1−λn)‖zn− vn‖2 +λn(4L2

λ
2
n +2λn−1)‖zn−un‖2

]
+δn‖zn−q‖2−βnδn‖zn− vn‖2

≤ αn‖u−q‖2 +(1−αn)‖xn−q‖2 +βn(1−δn−λn)‖zn− vn‖2

−βnλn(1−4L2
λ

2
n −2λn)‖zn−un‖2. (3.7)

From assumption (iv), we have

1−4L2
λ

2
n −2λn ≥ 1−4L2

λ
2−2λ > 0 and (αn +βn)−λn ≤ 0, ∀n≥ 1. (3.8)

Therefore, from (3.7) and (3.8), we have

‖xn+1−q‖2 ≤ αn‖u−q‖2 +(1−αn)‖xn−q‖2

≤ max{‖u−q‖2,‖xn−q‖2}
...
≤ max{‖u−q‖2,‖x1−q‖2}.

Hence, {xn} is bounded. It follows from (3.1) that

‖xn+1−q‖2 = ‖αnu+βnvn +δnzn−q‖2

≤ ‖βn(vn−q)+δn(zn−q)‖2 +2αn〈u−q,xn+1−q〉
≤ βn‖vn−q‖2 +δn‖zn−q‖2−βnδn‖zn−un‖2 +2αn〈u−q,xn+1−q〉

≤ βn

[
‖xn−q‖2 +λn(4L2

λ
2
n +2λn−1)‖zn−un‖2 +(1−λn)‖zn− vn‖2〉

]
+δn‖xn−q‖2−βnδn‖zn−un‖2 +2αn〈u−q,xn+1−q〉

= (1−αn)‖xn−q‖2−βnλn(1−4λ
2
n L2−2λn)‖zn−un‖2

+βn(αn +βn−λn)‖zn− vn‖2 +2αn〈u−q,xn+1−q〉, (3.9)

which implies that

‖xn+1−q‖2 ≤ (1−αn)‖xn−q‖2 +2αn〈u−q,xn+1−q〉. (3.10)

Now, to obtain the strong convergence, we divide the proof into two cases
Case 1. Suppose that there exists n0 ∈N such that {‖xn−q‖} is decreasing for all n≥ n0. Thus
{‖xn−q‖} is convergent, and

‖xn+1−q‖2−‖xn−q‖2→ 0, n→ ∞. (3.11)

In view of (3.8) and (3.9), we have that

βnλn(1−4L2
λ

2
n −2λn)‖zn−un‖2 ≤ (1−αn)‖xn−q‖2−‖xn+1−q‖2 +2αn〈u−q,xn+1−q〉.

Form (3.8), (3.11), and the fact that αn→ 0 as n→ ∞, we have that ‖zn−un‖→ 0 as n tends to
∞, which implies that

d(zn,Szn)≤ ‖zn−un‖→ 0 as n→ ∞. (3.12)
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Since S is Lipschitz, we obtain from (3.4) that

‖zn− vn‖ ≤ ‖zn−un‖+‖un− vn‖
≤ ‖zn−un‖+2L‖zn− yn‖= ‖zn−un‖+2Lλn‖zn−un‖→ 0 (3.13)

as n→ ∞. If TAxn 6= Axn, then γn ∈
(

ε, (1−µ)‖TAxn−Axn‖2

‖A∗(T−I)Axn‖2 − ε

)
. From (3.2), we have

‖wn−q‖2 ≤ ‖xn−q‖2 + γn[γn‖A∗(T − I)Axn‖2 +(µ−1)‖TAxn−Axn‖2]

≤ ‖xn−q‖2− γnε‖A∗(T − I)Axn‖2. (3.14)

By using (3.1), (3.6), and (3.14), we have

‖xn+1−q‖2

≤ αn‖u−q‖2 +βn‖vn−q‖2 +δn‖zn−q‖2−βnδn‖zn− vn‖2

≤ αn‖u−q‖2 +δn‖wn−q‖2−δnβn‖zn− vn‖2

+βn

[
‖xn−q‖2 +(1−λn)‖zn− vn‖2 +λn(4L2

λ
2
n +2λn−1)‖zn−un‖2

]
≤ αn‖u−q‖2 +βn‖xn−q‖2 +βn(1−λn)‖zn− vn‖2−δnβn‖zn− vn‖2

+βnλn(4L2
λ

2 +2λn−1)‖zn−un‖2 +δn‖xn−q‖2

−δnγnε‖A∗(T − I)Axn‖2, (3.15)

which implies that

δnγnε‖A∗(T − I)Axn‖2

≤ αn‖u−q‖2− (1−αn)‖xn−q‖2−‖xn+1−q‖2

+βn(1−δn−λn)‖zn− vn‖2 +βnλn(4L2
λ

2
n +2λn−1)‖zn−un‖2. (3.16)

From (3.11), (3.13), and the fact that αn→ 0 as n→ ∞, we obtain

lim
n→∞
‖A∗(T − I)Axn‖= 0. (3.17)

It also from (3.14) and (3.15) that

δnγn‖TAxn−Axn‖2

≤ αn‖u−q‖2 +(1−αn)‖xn−q‖2−‖xn+1−q‖2 +βn(1−δn−λn)‖zn− vn‖2

+βnλn(4L2
λ

2
n +2λn−1)‖zn−un‖2 +δnγn‖A∗(T − I)Axn‖2. (3.18)

From (3.11), (3.13), (3.17), and the fact that αn→ 0 as n→ ∞, we obtain

lim
n→∞
‖TAxn−Axn‖= 0. (3.19)

Now, from (3.1), we have

‖wn−q‖2 ≤ 〈wn−q,xn + γnA∗(T − I)Axn−q〉

=
1
2
[‖wn−q‖2 +‖xn−q‖2 + γn[γn‖A∗(T − I)Axn‖2

+(µ−1)‖TAxn−Axn‖2]−‖wn− xn− γnA∗(T − I)Axn−q‖2]

≤ 1
2
[‖wn−q‖2 +‖xn−q‖2−‖wn− xn‖2 + γn‖Awn−Axn‖‖(T − I)Axn‖].
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That is,

‖wn−q‖2 ≤ ‖xn−q‖2−‖wn− xn‖2 +2γn‖Awn−Axn‖‖(T − I)Axn‖. (3.20)

From (3.16) and (3.20), we obtain

‖xn+1−q‖2

≤ αn‖u−q‖2 +βn

[
‖xn−q‖2 +(1−λn)‖zn− vn‖2 +λn(4L2

λ
2
n +2λn−1)‖zn−un‖2

]
+δn‖wn−q‖2−δnβn‖zn− vn‖2

≤ αn‖u−q‖2 +βn‖xn−q‖2 +βn(1−δn−λn)‖zn− vn‖2

+βnλn(4L2
λ

2
n +2λn−1)‖zn−un‖2 +δn‖xn−q‖2−δn‖wn− xn‖2

+δnγn‖Awn−Axn‖‖(T − I)Axn‖,

which implies that

δn‖wn− xn‖2 ≤ αn‖u−q‖2 +(1−αn)‖xn−q‖2−‖xn+1−q‖2

+βn(1−δn−λn)‖zn− vn‖2 +βnλn(4L2
λ

2
n +2λn−1)‖zn−un‖2

+δnγn‖Awn−Axn‖‖(T − I)Axn‖.

From (3.11), (3.13), and the fact that αn → 0 as n→ ∞, we obtain limn→∞ ‖wn− xn‖ = 0.
Observe that

‖xn+1−q‖2

≤ αn‖u−q‖2 +βn‖vn−q‖2 +δn‖zn−q‖2−δnβn‖zn− vn‖2

≤ αn‖u−q‖2 +βn

[
‖xn−q‖2 +(1−λn)‖zn− vn‖2 +λn(4L2

λ
2
n +2λn−1)‖zn−un‖2

]
+δn

[
‖(wn− rnBwn)− (q− rnBq)‖2

]
−βnδn‖zn− vn‖2

= αn‖u−q‖2 +βn(1−δn−λn)‖zn− vn‖2 +βnλn(4L2
λ

2
n +2λn−1)‖zn−un‖2

+βn‖xn−q‖2 +δn

[
‖wn−q‖2−2rn〈wn−q,Bwn−Bq〉+ r2

n‖Bwn−Bq‖2
]

≤ αn‖u−q‖2 +(1−αn)‖xn−q‖2 +δnrn(rn−2τ)‖Bwn−Bq‖2

+βn(1−δn−λn)‖zn− vn‖2 +βnλn(4L2
λ

2
n +2λn−1)‖zn−un‖2,

and then

δnrn(2τ− rn)‖Bwn−Bq‖2

≤ αn‖u−q‖2 +(1−αn)‖xn−q‖2−‖xn+1−q‖2

+βn(1−δn−λn)‖zn− vn‖2 +βnλn(4L2
λ

2
n +2λn−1)‖zn−un‖2.
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Condition (iii) yields that limn→∞ ‖Bwn−Bq‖= 0. Observe that (I− rnB) is nonexpansive and
JM

rn
is firmly nonexpansive mapping. Thus

‖zn−q‖2 = ‖JM
rn
(q− rnBq)− JM

rn
(wn− rnBwn)‖2

≤ 〈(wn− rnBwn)− (q− rnBq,zn−q〉

=
1
2

[
‖wn− rnBwn− (q− rnBq)‖2 +‖zn−q‖2

−‖(wn− rnBwn)− (q− rnBq)− (zn−q)‖2
]

≤ 1
2

[
‖wn−q‖2 +‖zn−q‖2−‖(wn− zn)− rn(Bwn−Bq)‖2

]
=

1
2

[
‖wn−q‖2 +‖zn−q‖2−‖wn− zn‖2 +2rn〈wn− zn,Bwn−Bq〉

−r2
n‖Bwn−Bq‖2

]
.

Therefore

‖zn−q‖2 ≤ ‖wn−q‖2−‖wn− zn‖2 +2rn〈wn− zn,Bwn−Bq〉− r2
n‖Bwn−Bq‖2,

which together with (3.1) yields

‖xn+1−q‖2 ≤ αn‖un−q‖2 +(1−αn)‖xn−q‖2 +βn(1−δn−λn)‖zn− vn‖2

+βnλn(4L2
λ

2
n +2λn−1)‖zn−un‖2−δn‖wn− zn‖2

+2δnrn‖wn− zn‖‖Bwn−Bq‖− r2
n‖Bwn−Bq‖2.

Thus

δn‖wn− zn‖2 ≤ αn‖u−q‖2 +(1−αn)‖xn−q‖2−‖xn+1−q‖2

+βn(1−δn−λn)‖zn− vn‖2 +βnλn(4L2
λ

2
n +2λn−1)‖zn−un‖2

+2δnrn(‖wn‖+‖zn‖)‖Bwn−Bq‖.
Since lim

n→∞
αn = 0 and both {zn} and {wn} are bounded, we have

lim
n→∞
‖Tnwn−wn‖= lim

n→∞
‖wn− zn‖= 0. (3.21)

It follows from (3.21) that

‖zn− xn‖ ≤ ‖zn−wn‖+‖wn− xn‖→ 0, n→ ∞. (3.22)

The fact that αn→ 0 as n→ ∞, (3.1), and (3.22) demonstrate that

‖xn+1− xn‖ ≤ ‖xn+1− zn‖+‖zn− xn‖
= αn‖u− zn‖+βn‖vn− zn‖+‖zn− xn‖→ 0, as n→ ∞. (3.23)

Now, let z = Pϒu. We claim that lim
n→∞
〈u− z,xn+1− z〉 ≤ 0. Since {xn+1} is a bounded vector

sequence in a Hilbert space H, which is a reflexive space, there exists a subsequence {xn j+1} of
{xn+1} and an element in H, say p, such that

xn j+1 ⇀ p and limsup
n→∞

〈u− z,xn+1− z〉= lim
j→∞
〈u− z,xn j+1− z〉.

Since C is weakly closed, we have p ∈C and from (3.23), which demonstrates that xn j ⇀ p as
j→ ∞. From (3.22), we obtain that zn j ⇀ p as j→ ∞. Using the fact that (I−S) is demiclosed
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at zero and (3.12), we conclude that p ∈ F(S). Since liminf
n→∞

rn > 0, there exists ε > 0 such that

rn≥ ε for all n≥ 1. By Lemma 2.2, we have limn→∞ ||Tεwn−wn|| ≤ 2limn→∞ ||Tnwn−wn||= 0.
In view of Lemma 2.1, we conclude that p ∈ F(Tε) = (M +B)−1(0). Moreover, since ‖wn−
xn‖ → 0, as n→ ∞, we have that Awn j converges weakly to Ax∗. From (3.19) and the fact that
I−T is demiclosed at 0, we arrive at Ap ∈ F(T ). Hence p ∈ ϒ. Since z = PCu and xn j ⇀ p, we
conclude that

limsup
n→∞

〈u− z,xn+1− z〉= lim
j→∞
〈u− z,xn+1− z〉= 〈u− z, p− z〉 ≤ 0.

From z ∈ ϒ, (3.10), condition (ii), and Lemma 2.4, we see that ‖xn− z‖ → 0 as n→ ∞. Hence,
xn→ z = Pϒu.
Case 2. Assume that{‖xn−q‖} is not a monotonically decreasing sequence. Set Γn = ‖xn−q‖2

and let τ : N→ N be a mapping for all n≥ n0 ( for some n0 large enough) defined by

τ(n) := max{k ∈ N : k ≤ n,Γk ≤ Γk+1}.
Clearly, τ is non decreasing sequence such that τ(n)→∞ as n→∞ and 0≤ Γτ(n) ≤ Γτ(n)+1 for
all n ≥ n0, which implies that ‖xτ(n)− q‖ ≤ ‖xτ(n)+1− q‖ for all n ≥ n0. Thus lim

n→∞
‖xτ(n)− q‖

exists. Again, from (3.16), one has

δτ(n)γτ(n)ε‖A∗(T − I)Axτ(n)‖
2

≤ ατ(n)‖u−q‖2− (1−ατ(n))‖xτ(n)−q‖2−‖xτ(n)+1−q‖2

+βτ(n)(1−δτ(n)−λτ(n))‖zτ(n)− vτ(n)‖2 +βτ(n)λτ(n)(4L2
λ

2
τ(n)+2λτ(n)−1)‖zτ(n)−uτ(n)‖2.

Thus limn→∞ ‖A∗(T − I)Axτ(n)‖= 0. From (3.18), we have

δτ(n)γτ(n)‖TAxτ(n)−Axτ(n)‖2

≤ ατ(n)‖u−q‖2 +(1−ατ(n))‖xτ(n)−q‖2−‖xτ(n)+1−q‖2

+βτ(n)(1−δτ(n)−λτ(n))‖zτ(n)− vτ(n)‖2 +βτ(n)λτ(n)(4L2
λ

2
τ(n)

+2λτ(n)−1)‖zτ(n)−uτ(n)‖2 +δτ(n)γτ(n)‖A∗(T − I)Axτ(n)‖
2.

Hence limn→∞ ‖TAxτ(n)−Axτ(n)‖= 0. By using the same argument as in Case 1, we obtain that
there exists a subsequence {xτ(n j)} of {xτ(n)}, which converges weakly to x∗ ∈ ϒ as τ(n j)→∞.
From (3.10), we see that, for all n≥ n0,

0≤ ‖xτ(n)+1− x∗‖2−‖xτ(n)− x∗‖2

≤ ατ(n)

[
2〈u− x∗,xτ(n)+1− x∗〉−‖xτ(n)− x∗‖2

]
,

which implies that (due to ατ(n) > 0) ‖xτ(n)− x∗‖2 ≤ 2〈u− x∗,xτ(n)+1− x∗〉. Thus

limsup
n→∞

‖xτ(n)− x∗‖2 ≤ 2limsup
n→∞

〈u− x∗,xτ(n)+1− x∗〉 ≤ 0.

which demonstrates that limn→∞ ‖xτ(n)− x∗‖= 0. It follows from (3.23) that

‖xτ(n)+1− xτ(n)‖ ≤ ατ(n)‖u− zτ(n)‖+βτ(n)‖vτ(n)− zτ(n)‖+‖zτ(n)− xτ(n)‖→ 0

as n→ ∞. Hence, we deduce that

‖xτ(n)+1− x∗‖ ≤ ‖xτ(n)+1− xτ(n)‖+‖xτ(n)− x∗‖→ 0
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as n → ∞, so lim
n→∞

Γτ(n) = lim
n→∞

Γτ(n)+1 = 0. Furthermore, for n ≥ n0, it is easy to see that

Γτ(n) ≤ Γτ(n)+1 if n 6= τ(n) (that is, τ(n) < n ) because Γ j ≥ Γ j+1 for τ(n)+ 1 ≤ j ≤ n. As
a consequence, we obtain, for all n≥ n0,

0≤ Γn ≤max{Γτ(n),Γτ(n)+1}= Γτ(n)+1.

Hence lim
n→∞

Γn = 0, which demonstrates that {xn} converges strongly to x∗. This completes the
proof. �

Corollary 3.1. Let H1 and H2 be two real Hilbert spaces, and let C be a nonempty, convex, and
closed subset of H1. Let A : H1→H2 be a bounded and linear operator, and let A∗ be the adjoint
of A. Let M : H1 → 2H1 be a maximal monotone operator, and let B : C→ H1 be a τ-inverse
strongly monotone mapping. Let S : H1→CB(H1) be a L-Lipschitz hemicontractive-type map-
ping, and let T : H2→ H2 be a nonexpansive mapping such that ϒ := F(S)∩ (M +B)−1(0)∩
A−1F(T ) 6= /0. Let the step size γn be chosen such that for some ε > 0, γn ∈

(
ε, ‖TAxn−Axn‖2

‖A∗(T−I)Axn‖2 − ε

)
,

if TAxn 6= Axn; otherwise γn = γ (γ being any nonnegative real number). Suppose {αn}, {βn},
and {δn} are sequences in (0,1) and the following conditions are satisfied:

(i) αn +βn +δn = 1;
(ii) lim

n→∞
αn = 0 and ∑

∞
n=0,αn = ∞;

(iii) 0 < liminfn→∞ rn ≤ limsupn→∞ rn < 2τ;
(iv) αn +βn ≤ λn ≤ λ ≤ 1√

1+4L2+1
,

(v) Sp = {p} ∀p ∈ ϒ, (I−T ) and (I−S) are demiclosed at 0.
Then the sequence {xn} generated below for any x1,u ∈ H1 by

wn = PC(xn + γnA∗(T − I)Axn),

zn = (I + rnM)−1(wn− rnBwn),

yn = (1−λn)zn +λnun,

xn+1 = αnu+βnvn +δnzn, n≥ 1,

where un ∈ Szn, and vn ∈ Syn converges strongly to q ∈ ϒ where q = Pϒu.

Next, we give some theoretical applications of our main results. In particular, we apply our
main results to the solution of minimization problems and equilibrium problems.

Let f and g two lower semi-continuous and convex functions from H to R∪{+∞} such that
f is differentiable with L-Lipschitz continuous gradient, and g is ”simple”, that is, its ”proximal
map” can be directly computed

x→ argmin
y∈H

{
g(y)+

||x− y||2

2τ

}
.

Let us consider the following minimization problem

min
x∈H

F(x) := min
x∈H
{ f (x)+g(x)} (3.24)

and assume that this problem has at least a solution.
Recall that the subdifferential of a function g : H → R at x is the set-valued operator on a

Hilbert space H defined by

∂ f (x) = {z ∈ H : f (y)≥ f (x)+ 〈z,y− x〉}; ∀y ∈ H,
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and proxγg(x) = (I+ γ∂g)−1(x), γ > 0. It is known that a point x∗ ∈H is a solution to problem
(3.24), that is, x∗ is a minimizer of f (x)+g(x), if and only if 0 ∈ ∇ f (x∗)+ ∂g(x∗), where ∇ f
is the gradient of f . For any γ > 0, this optimality condition holds if and only if the following
equivalent statements hold:

0 ∈ γ∇ f (x∗)+ γ∂g(x∗)
0 ∈ γ∇ f (x∗)− x∗+ x∗+ γ∂g(x∗)

(I + γ∂g)(x∗) ∈ (I− γ∇ f )(x∗)

x∗ = (I + γ∂g)−1(I− γ∇ f )(x∗)
x∗ = proxγg(x

∗− γ∇ f (x∗)).

The last two expressions hold with equality because the proximal operator is single-valued. The
final statement says that x∗ minimizes f +g if and only if it is a fixed point of proxγg(I− γ∇ f ).

Recall that a mapping T : H→H is said to be averaged if it can be written as T = (1−α)I+
αS, where α ∈ (0,1) and S : H → H is a nonexpansive mapping. The condition γ ∈ (0, 2

L ],
where L is the Lipschitz constant of ∇ f , guarantees that proxγg(I− γ∇ f ) is averaged, which
indicates that it is nonexpansive.

In Corollary 3.1, If T := proxγng(I− γn∇ f ) with γn ∈ (0, 2
L ], then we obtain a strong con-

vergence result of the fixed points of multivalued Lipschitz Hemicontractive mappings and the
solution of monotone variational inclusion problems and the image under a bounded linear op-
erator is a minimizer of the sum of two functions in real Hilbert spaces.

Let C be a nonempty, convex and closed subset of a real Hilbert space H, and let F : C×C→
R be a bifunction. Consider the equilibrium problem: find x∗ satisfying

F(x∗,y)≥ 0, ∀ y ∈C. (3.25)

Denote the solution set of problem (3.25) by EP(F). For solving equilibrium problem (3.25),
one assumes that F satisfies the following properties:

(A1) F(x,x) = 0, ∀ x ∈C;
(A2) F is monotone, i.e F(x,y)+F(y,x)≤ 0,∀ x ∈C;
(A3) for each x,y,z ∈C, limsupt→0+ F(tz+(1− t)x,y)≤ F(x,y);
(A4) for each x ∈C, y 7−→ F(x,y) is convex and lower semicontinuous;

Lemma 3.1. [39] Let C be a nonempty closed convex subset of a real Hilbert space H, and let
F : C×C→ R be a bifunction satisfying (A1)− (A4) let r > 0 be a positive real number and
x ∈ H. Then there exists z ∈C, such that F(y,x)+ 1

r 〈y− x,x− z〉< 0 for all y ∈C.

Lemma 3.2. [40] Assume that the bifunction F : C×C→R satisfy (A1)− (A4). For r > 0 and
for all x ∈ H, define a mapping JF

r : H→C as follows:

T F
r x = {z ∈C : F(z,y)+

1
r
〈y− z,z− x〉 ≥ 0, ∀y ∈C}.

Then the following hold:
(i) T F

r is a single-valued firmly nonexpansive mapping;
(ii) F(T F

r ) = EP(F) EP(F) is closed and convex.

In Corollary 3.1, taking T := T F
r , we obtain a strong convergence result for a common solu-

tion of a fixed point of multivalued Lipschitz Hemicontractive mappings and monotone varia-
tional inclusion problems whose image under a bounded linear operator is a solution of some
equilibrium problem.
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4. CONCLUDING REMARK

We studied the monotone inclusion and fixed point problems of multi-valued Lipschitz hemi-
contractive-type mappings in real Hilbert spaces. We proposed an iterative method with a step-
size selected in such a way that its implementation does not require the computation or an esti-
mate of the spectral radius. Moreover, under some mild conditions on the control sequences, we
proved that the sequence generated by our proposed method converges strongly to the common
solution of the two problems. Finally, we applied our result to the minimization and equilibrium
problems. Our result generalizes some important results in the literature.
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