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Abstract. In this paper, we propose a boosted proximal difference-of-convex algorithm for solving a
minimization problem composed of the sum of a smooth convex function and a continuously differen-
tiable convex function minus a continuous and strongly convex function. By adding an additional line
search step, the convergence of proximal difference-of-convex algorithm is accelerated. We prove that
any limit point of iterative sequence is a critical point of generalized difference-of-convex programming,
and the corresponding objective value decreases monotonically and converges. By assuming that the ob-
jective function satisfies the strong Kurdyka–Łojasiewicz inequality, we prove the convergence of whole
sequence of the proposed algorithm and give the convergence rate. The strong convexity of the convex
part of the minimization problem in [F.J. Aragón Artacho, P.T. Vuong, The boosted difference of con-
vex functions algorithm for nonsmooth functions, SIAM J. Optim. 30 (2020), 980-1006] is substituted
by the Lipschitz continuity of the gradient of one convex function. Numerical experiments are given
to demonstrate the performance of the proposed algorithm compared with the proximal difference-of-
convex algorithm.
Keywords. Boosted proximal difference-of-convex algorithm; Difference-of-convex programming; Prox-
imal difference-of-convex algorithm; Strong Kurdyka-Łojasiewicz inequality.
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1. INTRODUCTION

In this paper, we are concerned with a class of generalized difference-of-convex (DC) pro-
gramming originally introduced by Tao et al. [1] in 1986

min
x∈Rn

F(x) := f (x)+g(x)−h(x), (1.1)

where f and g are proper, lower semi-continuous, and convex functions, and h is a convex func-
tion. Problem (1.1) has been successfully applied to many problems in science and engineering
fields in the last decades, such as compressed sensing [2], machine learning [3, 4, 5, 6], image
processing [7], and dimensionality reduction [8]. For the image processing and the compressed
sensing, f is a loss function representing data fidelity, while g−h is a regularizer for inducing
desirable structures in the solution [9, 10].

The popular methods to solve problem (1.1) are the difference-of-convex algorithm (DCA)
and its variants [11, 12, 13]. The core idea of these algorithms is to linearize the concave part of
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the objective function. So we only need to solve one convex optimization subproblem at each
iteration. The iterative format of the DCA for solving problem (1.1) is as follows

xk+1 ∈ argmin
x∈Rn

{ f (x)+g(x)−〈ξ k,x〉}, (1.2)

where ξ k ∈ ∂h(xk). To solve the subproblem in (1.2) by fully using its separable structure,
Gotoh et al. [14] introduced the proximal DC algorithm (pDCA) whose scheme is given below

xk+1 = argmin
x∈Rn

{g(x)+ 〈∇ f (xk)−ξ
k,x〉+

L∇ f

2
‖x− xk‖2}, (1.3)

where ξ k ∈ ∂h(xk) and L∇ f is the Lipschitz continuity constant of ∇ f . When the nonconvex
part of the objective function in (1.1) is zero, pDCA reduces to the classical proximal gradient
algorithm for convex programming [15]. Because of this, pDCA may take a lot of iterations in
practice as special cases.

Since their inception, how to speed up DC algorithm and the pDCA is a hot issue. In 2018,
wen et al. [16] combined the pDCA with inertial extrapolation technology and introduced
a proximal difference-of-convex algorithm with extrapolation. The convergence speed of the
pDCA is greatly accelerated. Recently, by introducing a new auxiliary function, the authors in
[17] relaxed the conditions on h needed for the convergence of the whole iterative sequence.

If g = 0, then problem (1.1) reduces to

min
x∈Rn

F(x) := f (x)−h(x). (1.4)

Under the assumption that f and h are differentiable and strongly convex in (1.4), Aragón
Artacho et al. [18] proposed a boosted DC algorithm (BDCA), which can be used to accelerate
the convergence of DC algorithm. Recently, Aragón Artacho et al. [19] proposed an improved
version of BDCA for the case that h is not differentiable in (1.4). Numerical experiments
in [18, 19] demonstrated that the BDCA outperforms the DC algorithm. This advantage has
been also confirmed when the BDCA was used to the indefinite kernel support vector machine
problem [20].

Inspired by these work, in this paper, we propose a boosted proximal difference-of-convex
algorithm (BpDCA) to solve the generalized DC programming (1.1). We prove that any limit
point of our iterative sequence is a critical point of the generalized DC programming, and the
corresponding objective value decreases monotonically and converges. Under the assumption
that F satisfies the strong Kurdyka–Łojasiewicz inequality and ∇g is locally Lipschitz, we prove
the convergence of the sequence generated by the BpDCA and give the convergence rate. The
strongly convexity of the convex part of the minimization problem in [19] is substituted by the
Lipschitz continuity of the gradient of one convex function.

The organization of the paper is as follows. In Section 2, we recall some definitions and
known results for further analysis. Section 3 introduces a boosted proximal difference-of-
convex algorithm to solve problem (1.1). In this section, the global subsequential convergence,
the convergence of the whole sequence, and the convergence rate are established. In Section 4,
we present two numerical experiments to demonstrate that the proposed algorithm is superior
to the pDCA.
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2. PRELIMINARIES

Throughout this paper, the sets of positive integers and real numbers are denoted by N and
R. Rn is borrowed to denote the n-dimensional Euclidean space with inner product 〈·, ·〉 and
Euclidean norm ‖ · ‖. The closed ball with center x and radius r > 0 is presented by B(x,r).

Now we recall some definitions of the function. The domain of the function f : Rn →
(−∞,+∞] is defined by dom f := {x ∈ Rn : f (x)<+∞}. We say that f is proper if dom f 6= /0.
Function f is said to be coercive if f (x)→+∞ whenever ‖x‖→+∞. The one-sided directional
derivative of f at x ∈ dom f for the direction d ∈ Rn is defined by

f ′(x;d) := lim
t↓0

f (x+ td)− f (x)
t

.

Definition 2.1. (i) A function f is called convex if dom f is a convex set and if, for all x,y ∈
dom f , α ∈ [0,1], it holds

f (αx+(1−α)y)≤ α f (x)+(1−α) f (y).

(ii) A function f is said to be θ -strongly convex with θ > 0 if f − θ

2 ‖ · ‖
2 is convex, i.e.,

f (αx+(1−α)y)≤ α f (x)+(1−α) f (y)− θ

2
α(1−α)‖x− y‖2,

for all x,y ∈ dom f and α ∈ [0,1].

If f is convex, then

f (x)≥ f (y)+ 〈ξ ,x− y〉, ∀x,y ∈ dom f , (2.1)

where ξ ∈ ∂ f (y) is arbitrary. If function f is convex and differentiable, then

f (x)≥ f (y)+ 〈∇ f (y),x− y〉, ∀x,y ∈ dom f .

Moreover, f is θ -strongly convex with θ > 0, then

f (x)≥ f (y)+ 〈ξ ,x− y〉+ θ

2
‖x− y‖2, ∀x,y ∈ dom f ,

where ξ ∈ ∂ f (y) is arbitrary. If function f is θ -strongly convex and differentiable, then

f (x)≥ f (y)+ 〈∇ f (y),x− y〉+ θ

2
‖x− y‖2, ∀x,y ∈ dom f . (2.2)

Definition 2.2. [21] Let A : Rn→ 2R
n

be a set-valued mapping. One says that
(i) A is monotone if 〈u− v,x− y〉 ≥ 0 for any u ∈ A(x) and v ∈ A(y).

(ii) A is maximal monotone if there exists no monotone operator B : Rn → 2R
n

such that
graB properly contains graA, i.e., for every (x,u) ∈ Rn×Rn

(x,u) ∈ graA ⇔ 〈u− v,x− y〉 ≥ 0 ∀(y,v) ∈ graA.

(iii) A is ρ-strongly monotone (ρ > 0) if 〈u−v,x−y〉 ≥ ρ‖x−y‖2 for all x,y ∈Rn, u ∈ A(x)
and v ∈ A(y).

Lemma 2.1. A function f : Rn → R is strongly convex with modulus ρ if and only if ∂ f is
strongly monotone with modulus ρ .

Lemma 2.2. (Descent lemma [21]) Let f : Rn→ R be continuous, convex, and differentiable.
Suppose that ∇ f is L-Lipschitz continuous. Then it holds that

f (y)≤ f (x)+ 〈y− x,∇ f (x)〉+ L
2
‖y− x‖2, ∀x,y ∈ Rn.
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When dealing with nonconvex and nonsmooth functions, we have to consider Clarke subd-
ifferential, which can be defined in several equivalent ways [22]. For a given locally Lipschitz
continuous function f : Rn→ (−∞,+∞], the Clarke subdifferential of f at x̄ is given by

∂C f (x̄) = co
{

lim
x→x̄,x/∈Ω f

∇ f (x)
}
,

where co stands for the convex hull and Ω f denotes the set of Lebesgue measure zero (by
Rademacher’s theorem), where f fails to be differentiable. If f is also convex on a neighborhood
of x̄, then ∂C f (x̄) = ∂ f (x̄). If f is strictly differentiable at x̄, then ∂C f (x̄) = {∇ f (x̄)} [22]. The
following lemma is helpful to the calculation of Clarke subdifferential.

Lemma 2.3. [22] The following assertions hold:

(i) For any scalar s, one has ∂C(s f )(x) = s∂C f (x).
(ii) ∂C( f +g)(x) ⊂ ∂C f (x)+∂Cg(x), and equality holds if either f or g is strictly differen-

tiable.

Definition 2.3. (strong Kurdyka–Łojasiewicz property) Let f : Rn→ R be a locally Lipschitz
function. One says that f satisfies the strong Kurdyka–Łojasiewicz inequality at x̂ ∈Rn if there
exist σ ∈ (0,+∞], a neighborhood U of x̂ and a concave function φ : [0,σ)→ [0,+∞) such that

(i) φ(0) = 0;
(ii) φ is of class C on (0,σ);

(iii) φ ′ > 0 on (0,σ);
(iv) for all x ∈U with f (x̂)< f (x)< f (x̂)+σ , one has φ ′

(
f (x)− f (x̂)

)
dist
(
0,∂C f (x)

)
≥ 1.

3. BOOSTED PROXIMAL DIFFERENCE-OF-CONVEX ALGORITHM

In this section, a boosted proximal difference-of-convex algorithm (BpDCA) is introduced
and its convergence is established with the aid of strong Kurdyka–Łojasiewicz inequality.

3.1. Algorithm. Throughout this paper, the following three assumptions are made.
Assumption 1. The function h is strongly convex with modulus ρ > 0.
Assumption 2. The function f is smooth convex with a Lipschitz continuous gradient whose

Lipschitz continuity modulus is L∇ f > 0. The function g is continuously differentiable on an
open set containing domh. The function h is subdifferentiable at every point in domh, i.e.,
∂h(x) 6= /0 for all x ∈ domh.

Assumption 3. The function F is lower bounded, i.e., ν := infx∈Rn F(x)>−∞.

Definition 3.1. Let F be given in (1.1). One says that x̄ is a critical point of F if

∇ f (x̄)+∇g(x̄) ∈ ∂h(x̄).

To accelerate the pDCA, we propose the following boosted proximal difference-of-convex
algorithm.

Remark 3.1. We review the relation of the BpDCA to previous work.
(i) If one sets λk ≡ 0 for any k ∈ N, the iterations of the BpDCA and the pDCA coincide.

Hence, our convergence results for the BpDCA apply in particular to the pDCA.
(ii) If one sets f = 0 and L∇ f = 0, the BpDCA becomes the BDCA in [19].
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Algorithm 1 BpDCA

Input: Fix α > 0, λ̄ > 0 and 0 < β < 1. Let x0 be any initial point.
for k = 0,1,2, . . . , do

1. Take any ξ k ∈ ∂h(xk) and solve the strongly convex minimization problem

yk = argmin
x∈Rn

g(x)+ 〈∇ f (xk)−ξ
k,x〉+

L∇ f

2
‖x− xk‖2. (3.1)

2. Set dk := yk− xk. If dk = 0, STOP and RETURN xk. Otherwise, go to Step 3.
3. Set λk := λ̄ .

WHILE F(yk +λkdk)> F(yk)−αλ 2
k ‖dk‖2 DO λk := βλk.

4. Set xk+1 := yk+λkdk. If xk+1 = xk then STOP and RETURN xk, otherwise set k := k+1,
and go to Step 1.

end for

3.2. Global subsequential convergence. In the following proposition, we prove that dk :=
yk− xk is a descent direction for F at yk. Since the value of F is always reduced at yk with
respect to that at xk, one can achieve a larger decrease by moving along the direction dk. This
simple fact, which is the key idea of the BpDCA, improves the performance of the pDCA in
many applications.

Proposition 3.1. For all k ∈ N, the following statements hold:

(i) F(yk)≤ F(xk)− L∇ f
2 ‖dk‖2;

(ii) F ′(yk;dk)≤−ρ‖dk‖2;
(iii) there exists some δk > 0 such that F(yk +λkdk)≤ F(yk)−αλ 2‖dk‖2 ∀λ ∈ [0,δk], so the

backtracking step 3 of BpDCA terminates finitely.

Proof. (i) In view of the facts that g(x)+ 〈∇ f (xk)− ξ k,x〉+ L∇ f
2 ‖x− xk‖2 in (3.1) is an L∇ f -

strongly convex function and yk is its global minimizer, by (2.2), we have

g(yk)+ 〈∇ f (xk)−ξ
k,yk〉+

L∇ f

2
‖yk− xk‖2

≤g(xk)+ 〈∇ f (xk)−ξ
k,xk〉+

L∇ f

2
‖xk− xk‖2−

L∇ f

2
‖xk− yk‖2,

which implies

g(yk)≤g(xk)+ 〈∇ f (xk)−ξ
k,xk− yk〉−L∇ f ‖xk− yk‖2. (3.2)

From Lemma 2.2 and the fact that ∇ f is L∇ f -Lipschitz continuous, it follows

f (yk)≤ f (xk)+ 〈∇ f (xk),yk− xk〉+
L∇ f

2
‖yk− xk‖2. (3.3)

Due to ξ k ∈ ∂h(xk), (2.1) implies

h(yk)≥ h(xk)+ 〈ξ k,yk− xk〉. (3.4)
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Putting (3.2), (3.3) and (3.4) together yields

F(yk) = f (yk)+g(yk)−h(yk)

≤ f (xk)+ 〈∇ f (xk),yk− xk〉+
L∇ f

2
‖yk− xk‖2 +g(xk)+ 〈∇ f (xk)−ξ

k,xk− yk〉

−L∇ f ‖xk− yk‖2−
(

h(xk)+ 〈ξ k,yk− xk〉
)

= f (xk)+g(xk)−h(xk)−
L∇ f

2
‖xk− yk‖2

=F(xk)−
L∇ f

2
‖dk‖2.

The proof is completed.
(ii) It follows from the definition of the one-sided directional derivative F ′(yk;dk) that

F ′(yk;dk)

= lim
t↓0

F(yk + tdk)−F(yk)

t

= lim
t↓0

f (yk + tdk)− f (yk)

t
+ lim

t↓0

g(yk + tdk)−g(yk)

t
− lim

t↓0

h(yk + tdk)−h(yk)

t

≤〈∇ f (yk),dk〉+ 〈∇g(yk),dk〉−〈v,dk〉
=〈∇ f (yk)+∇g(yk)− v,yk− xk〉,

where v ∈ ∂h(yk). From the first-order optimality condition of (3.1), we obtain

∇g(yk)+∇ f (xk)+L∇ f (y
k− xk) = ξ

k ∈ ∂h(xk). (3.5)

By Lemma 2.1 and the fact that h is ρ-strongly convex, we have that ∂h is ρ-strongly monotone.
Combining this and (3.5), it holds that

〈∇g(yk)+∇ f (xk)+L∇ f (y
k− xk)− v,xk− yk〉 ≥ ρ‖xk− yk‖2.

Therefore, we deduce that

〈∇ f (yk)+∇g(yk)− v,xk− yk〉+ 〈∇ f (xk)−∇ f (yk),xk− yk〉−L∇ f ‖xk− yk‖2 ≥ ρ‖xk− yk‖2,

which implies that

〈∇ f (yk)+∇g(yk)− v,yk− xk〉
≤〈∇ f (xk)−∇ f (yk),xk− yk〉− (L∇ f +ρ)‖xk− yk‖2

≤−ρ‖xk− yk‖2,

where the last inequality comes from Cauchy-Schwarz inequality and the L∇ f -Lipschitz conti-
nuity of ∇ f . Hence, F ′(yk;dk)≤−ρ‖dk‖2 holds.

(iii) If dk = 0, the conclusion is obviously valid. So let us consider the case of dk 6= 0. From
the definition of the one-sided directional derivative F ′(yk;dk), we have

lim
λ↓0

F(yk +λdk)−F(yk)

λ
= F ′(yk;dk)≤−ρ‖dk‖2 <−ρ

2
‖dk‖2 < 0.
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Thus there exists λ̃k > 0 such that F(yk+λdk)−F(yk)
λ

≤−ρ

2‖dk‖2 for all λ ∈ (0, λ̃k], which yields

F(yk +λdk)≤ F(yk)− ρλ

2
‖dk‖2, ∀λ ∈ (0, λ̃k].

Setting δk := min{λ̃k,
ρ

2α
}, we obtain

F(yk +λdk)≤ F(yk)−αλ
2‖dk‖2, ∀λ ∈ (0,δk].

The proof is completed. �

Theorem 3.1. For any x0 ∈ Rn, either BpDCA returns a critical point of problem (1.1) or it
generates an infinite sequence such that the following holds:

(i) {F(xk)}k∈N is monotonically decreasing and convergent to some F∗.
(ii) Any limit point of {xk}k∈N is a critical point to problem (1.1). In addition, if F is coercive,

then there exists a subsequence of {xk}k∈N which converges to a critical point of problem (1.1).
(iii) ∑

+∞

k=0 ‖dk‖2 < +∞. Further, if there is some λ̄ such that λk ≤ λ̄ for all k ∈ N, then
∑
+∞

k=0 ‖x
k+1− xk‖2 <+∞.

Proof. If BpDCA stops at step 2 and returns xk, then xk = yk. Combining this and (3.5) yields

∇g(xk)+∇ f (xk) = ξ
k ∈ ∂h(xk).

Thus xk is a critical point of the problem (1.1). Otherwise, BpDCA will produce an infinite
sequence.

(i) By Proposition 3.1 and step 3 of BpDCA, we obtain

F(xk+1)≤ F(yk)−αλ
2
k ‖dk‖2 ≤ F(xk)−

(
αλ

2
k +

L∇ f

2

)
‖dk‖2. (3.6)

Therefore, we see that {F(xk)}k∈N is monotonically decreasing. Since function F is lower
bounded, it holds that {F(xk)}k∈N converges to some F∗.

(ii) From (3.6), we deduce

L∇ f

2
‖dk‖2 ≤

(
αλ

2
k +

L∇ f

2

)
‖dk‖2 ≤ F(xk)−F(xk+1). (3.7)

Because of the convergence of {F(xk)}k∈N, we have

lim
k→+∞

‖yk− xk‖2 = lim
k→+∞

‖dk‖2 = 0. (3.8)

If x̄ is a limit point of {xk}k∈N, then there exists a subsequence {xki}i∈N ⊂ {xk}k∈N such that
limi→+∞ xki → x̄. Furthermore, by (3.8), we have limi→+∞ yki → x̄. Substituting ki for k in (3.5)
yields

∇g(yki)+∇ f (xki)+L∇ f (y
ki− xki) ∈ ∂h(xki). (3.9)

Taking the limit in (3.9) and combining the closedness of ∂h and the continuity of ∇ f and
∇g, we deduce ∇g(x̄)+∇ f (x̄) ∈ ∂h(x̄). Thus x̄ is a critical point of problem (1.1). When F is
coercive, it follows from (i) that {xk}k∈N is bounded, which implies that the limit point set of
{xk}k∈N is not empty. Therefore, there exists a subsequence of {xk}k∈N which converges to a
critical point of problem (1.1).
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(iii) Summing (3.7) from k = 0 to K, we have

L∇ f

2

K

∑
k=0
‖dk‖2 ≤ F(x0)−F(xK+1)≤ F(x0)−ν <+∞,

thanks to the lower boundedness of F . Let K→+∞. It holds that ∑
+∞

k=0 ‖dk‖2 <+∞. It follows
from the Step 4 of BpDCA that xk+1− xk = yk− xk +λkdk = (1+λk)dk. So, we have

+∞

∑
k=0
‖xk+1− xk‖2 =

+∞

∑
k=0

(1+λk)
2‖dk‖2 ≤ (1+ λ̄ )2

+∞

∑
k=0
‖dk‖2 <+∞.

�

3.3. Global convergence and convergence rate. Firstly, we prove the convergence of the se-
quence generated by BpDCA as long as the sequence has a cluster point at which F satisfies the
strong Kurdyka-Łojasiewicz inequality and ∇g is locally Lipschitz.

Theorem 3.2. For any x0 ∈ Rn, consider the sequence {xk}k∈N generated by the BpDCA. Sup-
pose that {xk}k∈N has a cluster point x∗, that ∇g is locally Lipschitz continuous around x∗ and
that F satisfies the strong Kurdyka–Łojasiewicz inequality at x∗. Then {xk}k∈N converges to x∗,
which is a critical point to problem (1.1).

Proof. Since x∗ is a cluster point of {xk}k∈N, there exists a subsequence {xkm}m∈N of {xk}k∈N
such that limm→+∞ xkm → x∗. From Theorem 3.1 (i), we have limk→+∞ F(xk)→ F∗. Therefore,
it follows from the continuity of F that

F(x∗) = lim
m→∞

F(xkm) = lim
k→∞

F(xk) = F∗.

Thus F is finite and has the same value F∗ at every cluster point of {xk}k∈N.
Assume F(xk) = F∗ for some k > 1. Since {F(xk)}k∈N is decreasing and convergent to F∗,

we have F(xk) = F(xk+1). From (3.7), we deduce that dk = 0, which implies that BpDCA
terminates after a finite number of steps. Next, we assume that F(xk)> F∗ for all k ∈ N. Since
∇g is locally Lipschitz around x∗, there exist some constants L∇g ≥ 0 and δ1 > 0 such that

‖∇g(x)−∇g(y)‖ ≤ L∇g‖x− y‖, ∀x,y ∈ B(x∗,δ1). (3.10)

Further, since F satisfies the strong Kurdyka-Łojasiewicz inequality at x∗, there exist σ ∈
(0,+∞), a neighborhood U of x∗ and a continuous and concave function φ : [0,σ ]→ [0,+∞)
such that

φ
′(F(x)−F∗

)
dist
(
0,∂CF(x)

)
≥ 1 (3.11)

for all x ∈ Λ, where

Λ = {x ∈ Rn : x ∈U}∩{x ∈ Rn : F∗ < F(x)< F∗+σ} .

Take δ2 small enough that B(x∗,δ2)⊂U and set δ := 1
2 min{δ1,δ2}. Let

M := max
λ≥0

2(L∇g +L∇ f )(1+λ )

2αλ 2 +L∇ f
, (3.12)

which is attained at λ̂ = −1+
√

1+ L∇ f
2α

. Since limk→+∞ F(xk) = F∗ and F(xk) > F∗ for all
k ∈ N, there exists an index N1 such that

F∗ < F(xk)< F∗+σ , ∀k ≥ N1.
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From Theorem 3.1 (iii), we obtain dk = yk− xk→ 0. Thus there exists an index N2 such that

‖yk− xk‖ ≤ δ , ∀k ≥ N2.

Because limm→+∞ xkm = x∗ and φ is continuous, one sees that there exists an index N≥max{N1,N2}
such that

xN ∈ B(x∗,δ ) (3.13)

and

‖xN− x∗‖+Mφ
(
F(xN)−F∗

)
< δ . (3.14)

For all k ≥ N such that xk ∈ B(x∗,δ ), we deduce

‖yk− x∗‖ ≤ ‖yk− xk‖+‖xk− x∗‖ ≤ 2δ ≤ δ1.

which implies that yk ∈ B(x∗,δ1). Therefore, by (3.10), it holds

‖∇g(yk)−∇g(xk)‖ ≤ L∇g‖yk− xk‖. (3.15)

On the other hand, for all k≥N such that xk ∈B(x∗,δ ), we have xk ∈Λ. Therefore, from (3.11),
for all k ≥ N such that xk ∈ B(x∗,δ ), we have

φ
′(F(xk)−F∗

)
dist
(
0,∂CF(xk)

)
≥ 1. (3.16)

Using the definition of xk+1, we obtain

xk+1 =yk +λkdk

=yk +λk(yk− xk)

=(1+λk)yk− (1+λk)xk + xk

=(1+λk)(yk− xk)+ xk

(3.17)

which implies that yk− xk = 1
1+λk

(xk+1− xk). From (3.5) and Lemma 2.3, we obtain

∇g(yk)−∇g(xk)+L∇ f (y
k− xk) ∈∂h(xk)−∇ f (xk)−∇g(xk)

=∂C
(
−F(xk)

)
=−∂CF(xk).

(3.18)

Combining (3.15), (3.17) and (3.18), we deduce

dist
(
0,∂CF(xk)

)
≤‖∇g(xk)−∇g(yk)+L∇ f (x

k− yk)‖
≤‖∇g(xk)−∇g(yk)‖+L∇ f ‖xk− yk‖
≤(L∇g +L∇ f )‖yk− xk‖

=
L∇g +L∇ f

1+λk
‖xk+1− xk‖.

(3.19)
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For all k ≥ N such that xk ∈ B(x∗,δ ), it follows from (3.19) that
L∇g +L∇ f

1+λk
‖xk+1− xk‖

(
φ(F(xk)−F∗)−φ(F(xk+1)−F∗)

)
≥dist

(
0,∂CF(xk)

)(
φ(F(xk)−F∗)−φ(F(xk+1)−F∗)

)
≥dist

(
0,∂CF(xk)

)
φ
′(F(xk)−F∗

)(
F(xk)−F(xk+1)

)
≥F(xk)−F(xk+1)

≥
(

αλ
2
k +

L∇ f

2

)
‖yk− xk‖2

=
2αλ 2

k +L∇ f

2(1+λk)2 ‖x
k+1− xk‖2,

(3.20)

where the second inequality comes the fact that φ is a concave function, the third and fourth
inequalities hold due to (3.16) and (3.7), and the last equality originates from (3.17). Using
(3.20) and (3.12), we have

‖xk+1− xk‖ ≤
2(L∇g +L∇ f )(1+λk)

2αλ 2
k +L∇ f

(
φ(F(xk)−F∗)−φ(F(xk+1)−F∗)

)
≤M

(
φ(F(xk)−F∗)−φ(F(xk+1)−F∗)

)
.

(3.21)

Next, we prove that xk ∈ B(x∗,δ ) for all k ≥ N. From (3.13), the claim holds for k = N. we
suppose that it holds for k = N,N +1, . . . ,N + p−1 with p ≥ 1. Then, we know that (3.21) is
valid for k = N,N +1, . . . ,N + p−1. Hence,

‖xN+p− x∗‖ ≤‖xN− x∗‖+
p

∑
i=1
‖xN+i− xN+i−1‖

≤‖xN− x∗‖+M
p

∑
i=1

[
φ
(
F(xN+i−1)−F∗

)
−φ
(
F(xN+i)−F∗

)]
≤‖xN− x∗‖+Mφ

(
F(xN)−F∗

)
< δ ,

(3.22)

where the last inequality follows from (3.14). We can conclude from (3.22) that xN+p ∈
B(x∗,δ ). Therefore, it holds that xk ∈ B(x∗,δ ) for all k ≥ N. Summing (3.21) from k = N
to J, we have

J

∑
k=N
‖xk+1− xk‖ ≤Mφ

(
F(xN)−F∗

)
<+∞.

Taking the limit as J→+∞, we deduce ∑
+∞

k=1 ‖x
k+1−xk‖<+∞, which implies that {xk}k∈N is

a Cauchy sequence. Further, the sequence {xk}k∈N converges to x∗. From Theorem 3.1 (ii), x∗

is a critical point to problem (1.1). �

Employing arguments which are similar to those used in the proof of [19, Theorem 4.9], we
can easily obtain the following rate of convergence of BpDCA.

Theorem 3.3. (Rate of Convergence) Let the sequence {xk}k∈N be generated by BpDCA and
suppose further that {xk}k∈N converges to some x∗. Suppose that ∇g is locally Lipschitz con-
tinuous around x∗ and that F satisfies the strong Kurdyka-Łojasiewicz inequality at x∗ with
φ(s) = cs1−θ for some c > 0 and θ ∈ [0,1). Then
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(i) If θ = 0, the sequence {xk}k∈N converges to x∗ in a finite number of steps.
(ii) If θ ∈ (0, 1

2 ], the sequence {xk}k∈N converges linearly to x∗.

(iii) If θ > (1
2 ,1), then there exists η > 0 such that for all sufficiently large k, ‖xk− x∗‖ <

ηk−
1−θ

2θ−1 .

4. NUMERICAL EXPERIMENTS

In this section, we illustrate performance of our algorithm BpDCA and compare it with the
pDCA (1.3) through two numerical examples. All the codes are written in MATLAB (version
R2017a) and run on a personal ASUS computer with Intel(R) Core(TM) m3-7Y30 CPU @
1.00GHz 1.61GHz and RAM 8.00GB.

In our numerical tests, we focus on the following DC regularized least squares problem:

min
x∈Rn

Ψ(x) =
1
2
‖Ax−b‖2 +g(x)−h(x), (4.1)

where A ∈ Rm×n, b ∈ Rm, g is a continuously differentiable convex function, and h is a contin-
uous and strongly convex function. Observe that L = λmax(AT A).

We present numerical experiments for solving the problem (4.1) on random instances gener-
ated as follows. We first generate an m× n matrix A with i.i.d. standard Gaussian entries, and
then normalize this matrix so that the columns of A have unit norms. A subset D of the size K
is then chosen uniformly at random from {1,2,3, . . . ,n} and a K-sparse vector y having i.i.d.
standard Gaussian entries on D is generated. Finally, we set b = Ay.

We next consider two different classes of regularizers: the `1−2 regularizer and the logarith-
mic regularizer. In the numerical results listed in the following tables, we consider (m,n,K) =
(120i,512i,20i) for i = 1,2, . . . ,10. We run 10 instances randomly for each (m,n,K) and re-
port the number of iterations (Iter), CPU times in seconds (CPU time) and the function values
at termination (fval), averaged the 10 random instances. We terminate the algorithms in the
experiments when

‖xk− xk−1‖
max

{
1,‖xk‖

} < 10−2.

4.1. The least squares problem with the `1−2 regularizer. In this subsection, we consider
the `1−2 regularized least squares problem:

min
x∈Rn

Ψ`1−2(x) =
1
2
‖Ax−b‖2 +µ‖x‖1−µ‖x‖2, (4.2)

where µ > 0 is the regularization parameter. This problem takes the form of (1.1) with f (x) =
1
2‖Ax−b‖2, g(x) = µ‖x‖1, and h(x) = µ‖x‖2. In addition, we suppose that A in (4.2) does not
have zero columns. Using this hypothesis, we see that if we choose µ < 1

2‖A
T b‖∞, then the

assumptions in Theorem 3.2 are satisfied (see Subsection 5.1 in [16]). We set µ = 0.5 in (4.2).

We now make comparisons of two algorithms with a randomly initial point belonging to the
product space (0,1)n. We take λ̄ = 50 for BpDCA and the parameters of different problem
sizes are selected as shown in Table 1. In the process of numerical experiments, we find that the
different parameters have an influence on the search time of the step 3 in Algorithm 1. Table 2
illustrates that BpDCA behaves better than pDCA in Iter, CPU time and fval. As the problem
size becomes larger, the advantages become more obvious. In addition, the number of iterations
of pDCA is about 6 times that of BpDCA, and the CPU times is about 1.5 times.
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TABLE 1. Selection of parameters α and β of different problem sizes in BpDCA.

i α β

1, 2, 3, 4 0.6 0.6

5, 6, 7 0.8 0.5

8, 9, 10 0.5 0.6

TABLE 2. Comparison of BpDCA and pDCA for solving (4.2).

Problem size Iter CPU time fval

m n K BpDCA pDCA BpDCA pDCA BpDCA pDCA

120 512 20 1056 6043 1.45 3.4984 2.8895e-2 3.1042e-2

240 1024 40 2188 12463 4.3875 10.6422 3.8662e-2 4.0173e-2

360 1536 60 3243 18835 29.1016 41.7219 4.4610e-2 4.5929e-2

480 2048 80 4395 25461 64.2281 87.0922 4.9500e-2 5.0210e-2

600 2560 100 5329 31499 108.475 181.7094 5.4036e-2 5.4408e-2

720 3072 120 6275 36903 214.6484 367.4141 5.3719e-2 5.4202e-2

840 3584 140 7880 46682 340.1516 575.8125 5.6342e-2 5.6830e-2

960 4096 160 8929 52438 575.2766 797.3859 5.5155e-2 5.6359e-2

1080 4608 180 10387 60342 855.2875 1160.1922 5.7326e-2 5.8441e-2

1200 5120 200 11714 68040 1146.0766 1565.7125 5.7869e-2 5.8674e-2

To illustrate the ability of recovering the original sparse solution by BpDCA and pDCA,
we plot in Figure 1 the true solution and the solutions obtained on a random instance with
(m,n,K) = (480,2048,80). The true solution is represented by asterisks, while circles are the
estimates obtained by BpDCA and pDCA. We see that the estimates obtained by BpDCA and
pDCA are quite close to the true values.

4.2. The least squares problem with the logarithmic regularizer. The least squares problem
with the logarithmic regularization function is defined as:

min
x∈Rn

Ψlog(x) =
1
2
‖Ax−b‖2 +

n

∑
i=1

[µ log(|xi|+ ε)−µ logε] , (4.3)
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FIGURE 1. The true solution and the solution by BpDCA (left) and pDCA (right)

where ε > 0 is a constant, and µ > 0 is the regularization parameter. Take f (x) = 1
2‖Ax−b‖2,

g(x) = µ

ε
‖x‖1 and h(x) = ∑

n
i=1 µ

[
|xi|
ε
− log(|xi|+ ε)+ logε

]
. It is not hard to demonstrate that

assumptions in Theorem 3.2 are satisfied (see Subsection 5.2 in [16]). We set µ = 0.5 and ε = 3
in (4.3).

TABLE 3. Comparison of BpDCA and pDCA for solving (4.3).

Problem size Iter CPU time fval

m n K BpDCA pDCA BpDCA pDCA BpDCA pDCA

120 512 20 3269 17126 5.5688 11.6859 4.8309e-3 5.1096e-3

240 1024 40 6730 34357 29.8844 40.7406 5.9484e-3 6.1199e-3

360 1536 60 10545 53789 93.9156 162.3656 6.3557e-3 6.4732e-3

480 2048 80 14669 74857 219.6922 404.0094 6.4069e-3 6.7847e-3

600 2560 100 17995 90230 369.5703 677.7266 6.6728e-3 6.9916e-3

720 3072 120 21519 108831 627.7609 1058.9016 6.3252e-3 7.0984e-3

840 3584 140 24387 122795 889.2719 1519.7547 7.1042e-3 7.4170e-3

960 4096 160 28089 141383 1294.7156 2267.0359 6.5396e-3 7.3894e-3

1080 4608 180 32225 163572 1745.0188 3215.6313 6.8676e-3 7.5324e-3

1200 5120 200 35586 178893 2355.1281 4203.2953 7.0109e-3 7.6203e-3
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We now make comparisons of two algorithms with a randomly initial point belonging to
the product space (0,1)n. We take λ̄ = 50, α = 0.5 and β = 0.2 for BpDCA. From Table
3, we draw the conclusions similar to that in Section 4.1. Figure 2 demonstrates the ability
of recovering the original sparse solution by BpDCA and pDCA for a random instance with
(m,n,K) = (480,2048,80).
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FIGURE 2. The true solution and the solution by BpDCA (left) and pDCA (right)
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