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Abstract. Deep neural networks require correct label annotation during supervised learning. It is in-
evitable, however, that some labels are noisy during the labeling process. A deep neural network retains
incorrect labels during training, resulting in a degradation of performance. Therefore, it is essential
to identify samples with potentially correct labels. In state-of-the-art methods, small-loss samples are
chosen for subsequent training through a sample selection strategy. Howerver, it typically ignores the
imbalance in noise ratios between mini-batches when performing sample selection within each mini-
batch. Further, numerous valuable samples with high losses are discarded, which adversely affects the
generalization performance of the model, particularly under conditions of high noise ratios. To this end,
this paper proposes IdentifyMix, an effective two-stage learning approach for noisy robust learning that
combines an unique sample selection strategy and the semi-supervised learning technique. By observing
how the dynamics of network training are changing, AUM (Area Under the Margin) provides a criterion
that is applied in this research to identify mislabeled data. Moreover, by combining semi-supervised
learning with contrastive learning and data augmentation, it is possible to extract more useful infor-
mation from mislabeled samples. Experiments on several synthetic and real-world noise benchmarks
demonstrate the effectiveness of IdentifyMix compared with state-of-the-art methods.

Keywords. Image classification; Contrastive learning; Noisy labels; Semi-supervised learning; Sam-
pling strategy.
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1. INTRODUCTION

Deep neural networks (DNNs) led to substantial improvements in many computational ver-
sion tasks [1, 2]. However, the quality of the labels is an important determinant of the per-
formance of deep neural networks. Annotating large amounts of data correctly involves high
labour costs, expert knowledge, and a considerable amount of time. Human annotation of a
large amount of data with correct labels is inevitable to produce noisy labels. According to a
recent study [3], as a result of overfitting and performance reduction, DNNs tend to memorize
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noisy data during training. The challenge of learning noisy robustness for deep neural networks
is therefore considerable.

Noisy label comprises different noisy distributions in image classification tasks [4, 5, 6].
In-distribution noise types were composed of samples with incorrect labels, but the content of
samples is part of the classes of datasets. It was usually associated with either a symmetric or
asymmetric random distribution of noise when synthetic in-distribution noise was introduced.
The former indicates label flips to classes with a uniform probability, and the latter suggests
label flips to classes with a unique probability. The real-world label noise types were usually
out-of-distribution [5, 7], in which the content of images does not belong to the class of datasets.

Many recent studies have focused on learning noisy robustness recently; see, e.g., [6, 8, 9, 10]
and the references therein. In early approaches, losses are primarily corrected during training.
There are some methods that correct losses by introducing a noise transition matrix [11, 12].
Nevertheless, estimating the noise transition matrix is difficult, requiring either prior knowledge
or a subset of data that has been labeled. According to some methods, a noise robust loss
function could be designed that corrects losses according to predictions derived from DNNs
[13, 14]. The disadvantage of these methods is that they are prone to failure when the noise
ratio is high.

DNNs would also be trained with reweighted [15] or selected training samples as an effective
means of mitigating the negative effects of noisy labels [6, 8, 10]. To identify clean samples,
it is necessary and important to develop a proper criterion. Several studies have demonstrated
that DNNs tend to learn clean and simple patterns before overfitting noisy labels; see, e.g.,
[5, 8, 16, 17] and the references therein. Therefore, state-of-the-art methods (e.g., Co-teaching
[8], Co-teaching+ [17], and JoCoR [16]) attempt to select a human-defined percentage of sam-
ples with small losses as clean ones. Even though the small-loss sample selection strategy has
demonstrated promising performance gains, these methods assume that all mini-batches have
identical noise ratios. Thus, they select samples within each mini-batch based on an estimated
noise rate. Nevertheless, this assumption may not apply in real-world situations (e.g., Animal-
10N [18]), and estimating the noise rate accurately is also challenging. Comparison with the
above methods, AUM [19] adopts an unique sampling strategy that allows it to distinguish clean
samples from contaminated samples by observing the difference between correctly labeled sam-
ples and incorrectly labeled samples during dynamic model training. It has the advantage of
successfully overcoming the inability of the above methods based on the small-loss strategy to
sample effectively in real scenarios, as well as the reduced capability of distinguishing noisy
labeled samples from clean labeled samples in high noise rate scenarios due to the insufficient
number of clean samples taken between mini-batches. However, it should be noted that the
AUM sampling strategy with a weighted method may result in underfitting if the dataset has a
large number of its own categories and is contaminated with moderate or high noise rates.

Motivated by the semi-supervised learning (SSL) technique [20, 21], a simple yet effective
approach is presented in this paper named IdentifyMix, a novel two-stage learning approach that
combines an innovative sample selection mechanism with semi-supervised learning to address
aforementioned issues. Specifically, an AUM sampling strategy distinguishes clean samples
from noisy datasets in the first place, which is intended to enhance the AUM sampling mech-
anism and enhance the capability of the model to distinguish between labeled types of data
by implementing a threshold sampling strategy that would replace common cross-validation.
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Additionally, a semi-supervised learning approach is then applied to take full advantage of the
large amount of useful information available from samples with incorrect labels to address the
problem of underfitting of the model to clean samples. Ultimately, contrastive learning with
Mixup [22] data augmentation allows the model to learn from sample features with limited cor-
rect labels efficiently. There is no doubt that large deep neural networks are powerful, but they
also suffer from some shortcomings, such as memory and sensitivity to noisy examples. There-
fore, Mixup was proposed to relieve these problems. As a summary, the main contributions are
as follows:

• An innovative noise detection strategy distinguishes clean samples from noisy datasets.
The Area Under the Margin (AUM) statistic is employed as a criterion without applying
the small-loss measure, which relies on differences in training dynamics between clean
and mislabeled samples.
• In the SSL phase, the risk of noisy label memorization is minimized by performing su-

pervised feature learning using contrastive loss and applying Mixup to clean and labeled
samples to improve the performance of the model in real-world, synthetic noisy datasets
at various noise ratios.
• Experimental results demonstrate that IdentifyMix achieves significant performance im-

provements over state-of-the-art methods on multiple benchmarks with different noise
ratios. In addition to ablation studies, qualitative results were also provided to examine
the effect of different components.

2. RELATED WORKS

There have been several proposals for alleviating label noise. A summary of some recent
approaches to noise-robust learning and contrastive learning methods was provided.

Designing noise-robust loss. The mainly employed Cross Entropy(CE) loss is confirmed by
overfitting when there is noise in the label. Therefore, studies have been devoted to designing
novel loss functions that tolerate noise labels. NLNL [23] developed an novel loss, a form of
selective negative and positive learning for robust noisy learning. JNPL [24], an improvement
of NLNL, unified the filtering pipeline into a single stage instead of a three-stage pipeline. In
contrast to NLNL, JNPL [24] implemented a three-stage filtering pipeline in a single stage. APL
[13] built new loss functions(NCE+RCE, NFL+RCE) with theoretically guaranteed robustness
and sufficient learning properties to address the existing robust loss functions suffering from
an underfitting problem. One of the most representative methods is APL, which is capable of
combining two distinct existing noise robustness loss functions to enhance the noise robustness
of the network through parameter settings compared to the previous methods. Nevertheless,
most noise robustness loss functions still require performance enhancements in many classes
and in high noise cases.

Noisy samples refusion. Co-teaching [8] utilized small-loss data of one network to teach its
peer network for the further training in each mini-batch. Co-teaching+ [17] first predicted each
min-batch with two networks but uses disagreement of samples only to compute the training
loss. JoCoR [16] trained the two networks as a whole with a joint loss of weight goals: making
the two predictions argree with each other, and making the predictions stick to ground-true la-
bels as far as possible. MentorMix [6] provided a simple but effective method to overcome both
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synthetic and real noisy labels. Co-learning [5] trained a single shared encoder network with
two heads (the self-supervised and noisily-supervised) that constrain each other and maximizing
the agreement between them in the latent space. The main advantage of these proposed methods
mentioned above is that they can be applied to noise-robust learning by selecting some correctly
labelled samples based on a small-loss criterion and increasing their contribution while reduc-
ing the contribution of mislabeled samples. The disadvantage of these methods is that they are
unable to leverage mislabeled samples effectively in low-noise scenarios.

Selecting clean labels. Some studies [12, 19, 25] make contribute to seperating clean labels
from noisy dataset. AUM [19] was committed to automatically identifying, subsequently re-
moving mislabeled samples from the training datasets and mitigating their impact when train-
ing networks. INCV [25] was dedicated to applying cross-validation to randomly split noisy
datasets and iteratively filter training data, identifying the most samples with correct labels.
Then, adopting the Co-teaching [8] strategy to identify clean samples further. BMM [26] pro-
posed a beta mixture to estimate this probability and correct the loss by relying on the network
prediction. These approaches provide some advantages over dynamically and efficiently identi-
fying potentially clean labeled samples and separating noisy labeled samples during the training
process for a limited number of classes. Nevertheless, they often result in class imbalance and
fail to produce satisfactory results for a significant number of classes.

Noisy label rejection. Recently, several approaches have performed semi-supervised learning
by treating mislabeled samples as unlabeled samples, which could effectively exploit the con-
tent of samples and refuse their noisy labels. ELR [27] leveraged a semi-supervised learning
technique to produce target probabilities relying on the model outputs and designed a regu-
larization term that leads toward these targets, implicitly preventing memorization of incorrect
labels. MOIT [28] proposed a technique related to joint semi-supervised and contrastive learn-
ing. UNICON [29] proposed a noval sample selection mechanism which detects clean-noisy
samples and applies SSL to iterative training. An essential advantage of these approaches is
that they combine sample selection mechanisms with semi-supervised learning, which is mo-
tivated to train the network and improve the model’s generalization performance. As a result,
they achieve impressive results in high-noise scenarios as opposed to the previous methods.

Contrastive representation learning. In the recent results on self-supervised learning [30, 31,
32] contrastive similarity learning frameworks have been demonstrated to be effective in the
learning of representations. Maximizing (minimizing) similarity is the common denominator
among these methods between positive (negative) pairs. MOIT [28] incorporated contrastive
learning with classification to improve label noise performance. Co-learning [5] involved both
supervised and self-supervised learning cooperatively. CLIM [33] demonstrated that initializing
robust supervised methods using representations learned through contrastive learning results in
enhanced performance under label noise. By applying contrast feature learning to improve
the performance of the model under a dataset with noisy labels is one of the most effective
methods mentioned above. However, due to the need for positive and negative pairs required
for contrastive learning, a significant amount of memory is required during the training process,
which consumes a significant amount of resources.
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3. METHODOLOGY

In this section, we present IdentifyMix, an efficient two-stage learning method, for robust
learning from noisy datasets. An overall of the method is demonstrated in Figure 1. The overall
framework consists of two critical components, namely, an innovative sampling method and
SSL-training. In the first stage, a customized sample selection strategy is developed employ-
ing the AUM criteria, as demonstrated in Figure 1a, in which one network separates the noisy
training dataset into a clean labeled set X(Dclean) and a noisy unlabeled set U(Dnoisy). Dur-
ing the second stage, the other network incorporates both labeled and unlabeled samples for
semi-supervised learning. In their respective periods, the two networks are independent of one
another and executed sequentially. Algorithm 1 describes the complete algorithm.
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FIGURE 1. IdentifyMix consists of two modules: a) clean sample selection
and b) SSL-Training. IdentifyMix trains two networks separately in sequence.
For a) it is calculated that network M computes the aum values of each sam-
ple to separate the dataset into two training subsets, namely the labeled dataset
(mostly clean) and the unlabeled dataset (mostly noisy), on the basis of which
the other network is trained. For b) the other network is designed to perform
semi-supervised learning with a Mixup and contrastive loss on labeled data.

3.1. Identifying Mislabeled Data. Assuming training dataset Dtrain = {xi,yi}N
i=1 comprises

two data types. A mislabeled sample is one where a sample does not match the assigned label.
A correct-labeled sample has an allocated label matching the ground truth of the sample. Some
correctly labeled examples might be easy to learn if they are common. Others might be hard
to learn if they are rare occurrences. Assuming both easy and hard correctly-labeled samples
in Dtrain optimizes model generalization even through mislabeled samples hurt generalization.
The goal of the sample selection strategy is to identify noisy data in Dtrain simply by observing
differences in training dynamics among data.

3.1.1. Area Under the Margin (AUM) Ranking. Let (x,y)⊆Dtrain be a sample, and let z(t)⊆ Rc

be its logits vector at epoch t. The margin at epoch t indicates how much difference there is
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between the assigned logit and other logits which are not assigned:

M(t)(x,y) = z(t)y (x)−Maxi6=yz(t)i (x),

where z(t) is also a pre-softmax output at epoch t, i corresponds to class i, M(t) means the margin
at epoch t, and x denotes the sample and y is the corresponding label.

The negative margin corresponds to an incorrect prediction, whereas the positive margin
corresponds to a confidently correct prediction. The sample with an assigned label could be
considered incorrect if gradient updates from similar samples are compared to the sample with
a considerable negative margin. As stated in the hypothesis, it was desirable that a mislabeled
sample had a small margin or a negative margin when compared to a correct labeled sample.
Consequently, the assumption above could be satisfied by averaging the margin of the sample
measured at each training epoch. A metric is calculated to demonstrate the above assumption,
according to (3.2):

aum(x,y) =
1
T

T

∑
t=1

M(t)(x,y), (3.1)

where T is the total number of training epochs, and aum(x,y) denotes the weighted average of
the margins measured by sample x in each training epoch t. AUM refers to the area consisting
of the margins of sample x measured at each training epoch t, and is an intuitive presentation of
the aum training process.

This metric illustrates the logits for different Cifar-10N training samples over time during
the training of Resnet-32 demonstrated in Figure 2. As demonstrated in Figure 2a, the clean
automobile samples are easy to learn, while the clean automobile samples in Figure 2b are more
challenging. Figure 2a demonstrates the examples of cleanly labeled automobiles that are easy
to distinguish. It is difficult to identify the clean-labeled car samples in Figure 2b owing to their
blurry edges. AUM is assessed by comparing the automobile logical values with the largest
other logical values during the training process, and a larger area indicates that the model is
better able to distinguish between well-learned samples. Both in Figure 2a and Figure 2b, the
logical values for automobiles are much larger than those for other logical values. In general,
automobile logical values are higher than other logical values. Since the edges of the samples
in Figure 2b are blurred, the blue area(AUM) in Figure 2b becomes smaller during training
compared to the blue area in Figure 2a. Figure 2c demonstrates that the logical values of the
mislabeled automobile samples are negative and much smaller than the other logical values.

3.1.2. Creating threshold samples. As a complement to the AUM sample sampling strategy,
the threshold sample set are recommended as an alternative to the cross-validation set to en-
hance the capacity of the model to distinguish noisy samples. The training process relies on
threshold samples in order to mimic the training dynamics associated with mislabeled data.
As demonstrated in Figure 2d, threshold samples are assigned alternate labels during dynamic
training in order to simulate mislabeled samples. This procedure is designed to ensure that the
model could effectively distinguish between clean and incorrectly labeled samples. There is a
possibility of mislabeled data with aum values similar to or worse than threshold samples. Thus
threshold samples derived from a subset of training data are constructed by reassigning labels
to nonexistent classes.

For example, consider that the training set consists of N samples that belong to C categories.
Assign labels to C+1 at random for N/(C+1) samples that are selected as threshold samples
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FIGURE 2. An analysis of the Area Under the Margin (AUM) metric. An illus-
tration of logit values for easy-to-learn automobiles (a), hard-to-learn automo-
biles (b), horses mislabeled as automobiles (c) and automobiles with reassigned
labels (d). The AUM corresponds to the shaded region between the Automobile
logit and the Largest other logit. Purple and red lines indicate the aum value
for the sample at epoch t, these values are positive and negative, respectively.
The aum values of correctly labeled samples are larger than those of incorrectly
labeled samples.

to ensure that the extra class is on average as likely as other classes. Since threshold samples
are only capable of raising the assigned C+1 logits through memorization, threshold samples
are expected to have a small and likely negative margin.

There are two advantages for a threshold sample with an additional class C + 1. First, all
threshold samples are guaranteed to be simulated as mislabeled samples. However, the random
assignment of labels from 1 to C could result in mistakes, which would defeat the purpose of the
initial design. Moreover, additional C+1 classification tasks do not affect the main classifica-
tion tasks. Data with lower aum values than the 99th percentile threshold samples are identified
as mislabeled samples for Cifar-10N and Cifar-100N. With respect to Anmial-10N, this paper
identifies data with aum values less than the αth percentile threshold samples. Positive logit
values indicate correct samples, while negative logit values represent noisy samples. During
the experiment, the hyperparameters α and β were manipulated. It should be noted, however,
that the sample selection mechanism and weighting method can result in underfitting of the
model when there are high levels of noise and multiple classes in the dataset. Therefore, the
introduction of semi-supervised learning was intended to address this issue.
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Algorithm 1: IdentifyMix. Line 1-10: sample selection; Line 11-28: SSL training;
Input: θ1, θ2, training dataset (X ,Y ), MaxEpoch M1, MaxEpoch M2, noise type NT ,

margin metric strategy Aum, project head P(;), classfier head G(;), encoder
network F(;), positive clean samples strategy Pos s(;), negative clean samples
strategy Neg s(;), contrastive learning with supervision Supcon(;), data
augument Mixup, cross-entropy H(;), certainty threshold ζ , unsupervised loss
weight λu, contrastive loss weight λcl

Output: Dclean(X ,Y ), Dnoise(X ,Y ),θ2

1 Construct a modified training set D
′
train which includes Dthr

D
′
train = {(x,c+1) : x ∈ Dthr}∪ (Dtrain\Dthr)

2 Train a network on D
′
train until the first learning rate drop, measuring the AUM of all

data.
3 if NT is symmetric or asymmetric then
4 Compute γ ← 99% of aums of threshold samples
5 Identify mislabeled samples using γ:

Dnoise(x,y) = {(x,y) ∈ (Dtrain\Dthr),aums(x,y)≤ γ}
6 Get correct samples from difficult but benefit samples:

Dclean(x,y) = D
′
train−Dnoise(x,y)

7 else if NT is real world noise then
8 Dclean(x,y) = Pos s(x,y)+Neg s(x,y)
9 Dnoise(x,y) = D

′
train(x,y)−Dclean(x,y)

10 end
11 Set Dclean(X ,Y ), Dnoise(X ,Y ) as Dlabeled(X ,Y ), Dunlabeled(X ,Y )
12 while e ≤M2 do
13 Xe = {(xi,yi) ∈ Dclean(X ,Y )} , Ue = {ui ∈ Dnoise(X ,Y )}
14 for t = 1 to num iters do
15 x̂t,m = weak Augment(xt)(m = 1,2)
16 ût,1 = weak Augment(ut), ût,2 = strong Augment(ut)

17 f̂t,1← F(x̂t,1;θ2), zt,1← G( f̂t,1;θ2)

18 f̂t,2← F(x̂t,2;θ2), zt,2← G( f̂t,2;θ2)

19 vt,1← P( f̂t,1;θ2), vt,2← P( f̂t,2;θ2)

20 Xt = cat([vt,1,vt,2],dim = 0), Yt = cat([yt ,yt ],dim = 0)
21 Lcl = Supcon(Xt ,Yt), Lx = Mixup(zt,1,z

′
t,1)

22 f̂t,1← F(x̂u,1;θ2), ẑt,1← G( f̂t,1;θ2)

23 f̂t,2← F(x̂u,2;θ2), ẑt,2← G( f̂u,2;θ2)

24 Lu =
1

µB ∑
µB
b=1 H(ẑt,2, p̂u){max(p(ẑt,1;θ2))≥ ζ}

25 L = Lx +λuLu +λclLcl

26 θ2← SGD(L,θ2)

27 end
28 end
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3.2. SSL-Training. Figure 1b demonstrates the details of SSL-Training with contrastive learn-
ing and Mixup. FixMatch [34] was exploited for the SSL. It generates two copies of each sam-
ple with weak and strong augmentations [35] from Dnoise. Additionally, it would generate two
views of each sample with two random weak augmentations [35] from Dclean. Mixup [22] data
augmentation is also applied between two different copies of each mini-batch with weak aug-
mentation from Dclean. However, feature learning in such a SSL manner still suffers from noise
threats for memorization. As a consequence of the presence of noisy samples in the clean set,
DNNs memorize a certain portion of noisy samples during training.
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FIGURE 3. Analyze the test accuracy and training loss of IdentifyMix in com-
parison with Supcon and SimCLR on Cifar-100N with 60% symmetric noise.

3.2.1. Contrastive learning under supervision. To address the above issue, the SSL pipeline
incorporates contrastive representation learning [30, 31, 36] to promote feature learning under
clean labels. SimCLR [30] learns representations by maximizing agreement between different
augmented views of the same data example through contrastive loss in the latent space. Un-
der fully supervised conditions, Supcon [31] extends the self-supervised contrastive approach
by leveraging label information. As demonstrated in Figure 3, Supcon produced higher test
accuracy than SimCLR in the experimentation process. In the training process, it tends to con-
verge faster and the lower bound of convergence increases. Assume that the training minibatch
{(xi,yi)}2N

i=1 of image-label pairs xi and yi contains 2N images. Images are mapped to low-
dimensional representations zi by learning encoder networks Fθ and projection networks Hϑ

with parameters θ and ϑ . Specifically, an intermediate embedding vi = Fθ (xi) is generated and
subsequently transformed into the representation wi = Hϑ (vi). Finally, zi = wi/‖wi‖2 is the
L2-normalized low-dimensional representation used to learn based on the per-sample loss. In
accordance with (3.3):

Lcl = Li(zi,yi) =
1

2Nyi−1

2N

∑
j=1

Ii 6= jIi= jPi, j (3.2)

and

Pi, j =− log
exp(zi · z j/τ)

∑
2N
k=1 Γk 6=iexp(zi · zk/τ)

, (3.3)

where Pi, j denotes the j-th component of the temperature τ scaled softmax distribution of inner
products zi · z j of representations from the positive pair of samples xi and x j, which can be
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interpreted as a probability, Γk 6=i ⊆ {0,1} is an indicator function estimating to 1 iff k 6= i, and
Pi, j is summarized in (3.4) across all 2Nyi samples x j in the minibatch sharing label with xi(yi =
y j) expect for the self-contrast case (i = j). As defined by the indicator function IB⊆{0,1} that
returns 1 when condition B is satisfied and 0 otherwise. Minimizing Li means restructing Fθ and
Hϑ to put together the feature representations zi,z j when they share the same labels (yi = y j),
while pushing them apart when they do not.

3.2.2. Data augmentation: Mixup. As a means of mitigating the negative effects of noisy la-
bels, Mixup [22] data augmentation was introduced for semi-supervised learning from Dclean
to acquire labeled training subsets after each mini-batch data mixture augmentation X

′
. Con-

cretely, for a pair of mini-batch samples (xa,xb) on X
′

and their corresponding labels (ya,yb),
the mixed (x

′
i,y
′
i) is computed by:

x
′
i = λxa +(1−λ )xb, y

′
i = λya +(1−λ )yb,

where λ ⊆ [0,1]∼ Beta(α,α).
The loss function for FixMatch consists of two cross-entropy loss terms: a supervised loss

Lχ and an unsupervised loss Lu. A supervised loss Lχ , as demonstrated in Eq. (3.7), applied
clean and labeled samples with Mixup on X

′
:

Lχ =− 1∣∣X ′∣∣ ∑
x,y⊆X ′

∑
c

yclog(Pc
m(x;θ)), (3.4)

where Pc
m(;) represents the model’s predicted class distribution. θ is the parameters of the

model.
An unsupervised loss Lu is displayed in Eq. (3.8), which efficiently predicts the classes

of a large subset of unlabeled samples on the basis of their own representations. FixMatch
[34] computes an artificial label for each unlabeled and noisy sample on U

′
, which is then

exploited in standard cross-entropy loss. According to Eq. (3.9), an artificial label was obtained
by computing the model’s predicted class distribution from a weakly-augmented version of an
unlabeled sample u from U

′
. Thus Eq. (3.10) would be a pseudo-label for a strongly-augmented

version of u

Lu =−
1∣∣U ′∣∣ ∑

u⊆U ′
∑
c
A(max(qb)= ε)q̂blog(Pc

m(A(u);θ)), (3.5)

qb = pm(α(u);θ), (3.6)

and

q̂b = argmax(pm(α(u);θ)), (3.7)

where ε is a scalar hyperparameter meaning preserving pseudo labels for unlabeled samples
when fulfilling the threshold above and A⊆ {0,1} is an indicator function evaluating to 1 when
conditions are satisfied in Eq. (3.8).

As a result, the total loss is as follows: L = Lχ +λuLu +λclLcl . In experiments, setting λu as
1 and λcl as 2.5×10−2 and utilizing λu to control the strength of the unsupervised loss and λcl
to influence the strength of the contrastive loss.
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4. NUMERICAL EXPERIMENTS

In this section, comprehensive experiments are used to verify the effectiveness of the method
proposed in this paper.

4.1. Datasets and Implementation Details.

Simulated noisy datasets. A proposed algorithm in this paper is verified for feasibility on two
simulated noisy datasets, i.e., Cifar-10N [29] and Cifar-100N [29]. Both Cifar-10N and Cifar-
100N contain 50K training images and 10k test images of size 32×32×3. Following previous
works [28, 37, 38], two types of label noise are discussed: symmetric and asymmetric noise.
Symmetric noise is derived by randomly replacing the labels with all possible labels for a certain
percentage of the training data. In asymmetric noise, labels flip to incorrect classes as a result
of label flipping. (e.g., truck→ automobile, bird→ airplane).

For Cifar-10N/100N datasets, the first stage employs the Resnet-32 model and trains it through
SGD optimization with a momentum of 0.9, a weight decay of 10−4, and a batch size of 64.
The network is trained for 150 epochs and the warm-up training has 10 epochs. The learning
rate was initialized at 0.1. In the second stage, a wide Resnet convolutional neural network is
applied as the backbone network. Its width is set to 4 and depth to 28. The network is trained
for 350 epochs and the warm-up training has 20 epochs. Training it with SGD optimization
with a momentum of 0.9, a 5× 10−4 weight decay and a batch size of 128. Setting the ini-
tial learning rate as 3× 10−2, and reducing it by a factor of 10 after 150 and 500 epochs. All
images are resized to 32× 32. We alwagys use the Mixup parameter α = 1 and loss weights
λu = 1,λcl = 0.025.

Real-world noisy dataset. A proposed algorithm in this paper is evaluated for effectiveness on
a real-world noisy dataset. Animal-10N is a real scene noise dataset with manual annotation for
online images, which contains ten confusion classes with 50k image samples of size 64×64×3
in the training set and 5k image samples of size 64× 64× 3 in the test set. Noise labels are
imported due to manual labeling errors, and the noise ratio accounts for approximately 8% of
the dataset.

For Animal-10N dataset, the first stage employs the Resnet-50 model and trains it through
SGD optimization with a momentum of 0.9, an initial learning rate of 0.1, a 5× 10−4 weight
decay and a batch size of 64. The model is trained for 150 epochs and warm-ip training has
10 epochs in the first stage. In the second stage, a wide Resnet convolutional neural network is
applied as the backbone network. Its width is set to 6 and depth to 28. The network is trained
for 350 epochs and the warm-up training has 30 epochs. Training it with SGD optimization
with a momentum of 0.9, a 5× 10−4 weight decay and a batch size of 64. Setting the initial
learning rate as 3× 10−2, and reducing it by a factor of 20 after 150 and 500 epochs. All
images are resized to 64× 64. We always use the Mixup parameter α = 1 and loss weights
λu = 1,λcl = 0.025.

4.2. Comparison with state-of-the-art methods. In this section, we present empirical com-
parisons between SOTA approaches from five different perspectives, including noise-robust
loss methods (NFL+RCE [13], NLNL [23], and NCE+RCE [13]), noisy samples refusion ap-
proaches (Co-learning [5], JoCoR [16], and MentorMix [6]), selecting clean label strategies
(AUM [19], INCV [25], and BMM [26]), noisy label rejection techniques (ELR [27], JNPL
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[24], and MOIT [28]), and contrastive learning (Co-learning [5], MOIT [28], and CLIM [33]).
Note that we directly report their experimental results from related papers.

Results on Simulated Noisy Datasets. As demonstrated in Table 1 and Table 2, for the method
IdentifyMix proposed in this paper, it achieves competitive performance with symmetric noise
compared with other recent state-of-the-art algorithms in most cases, e.g., MOIT and CLIM.
Specifically, our algorithm outperforms the CLIM in most cases of symmetric noise when the
noise rate lies between 20% and 60%. However, when the noise rate reaches 80%, our algo-
rithm forfeits its performance advantage compared with the CLIM. There is approximately a
3%/12% performance loss for Cifar-10N/Cifar-100N. It is possible that the CLIM initializes the
data in a supervised scenario by contrasting feature learning so as to minimize the drop in the
number of cleanly labeled samples at high noise rates. In contrast, our algorithm employs semi-
supervised learning, while the number of clean samples obtained is limited when the noise rate
is 80%, resulting in underfitting of the model and reduced performance. For asymmetric noise,
IdentifyMix consistently achieves the best performance when noise ratio is 20%. Howerver,
MOIT could perform better when nosie ratio is 40%. The experimental results demonstrate the
effectiveness of our algorithm in most noisy scenarios.

TABLE 1. Comparison with state-of-the-art methods in test accuracy(%) on
Cifar-10N and Cifar-100N with symmetric noise. Note that the best results are
marked in bold.

Dataset Cifar-10N Cifar-100N
Methods/Noise ratio 20% 40% 60% 80% 20% 40% 60% 80%

Cross Entropy 83.95 67.58 43.55 17.32 57.32 45.64 24.30 8.06
AUM [19] 90.20 87.50 82.10 54.40 65.50 61.30 53.00 31.70
INCV [25] 89.50 86.80 81.10 53.30 58.60 55.40 43.70 23.70
BMM [26] 94.00 92.80 90.30 74.10 73.70 70.10 59.50 39.50
NLNL [23] 73.70 63.90 50.68 29.53 46.99 30.29 16.60 11.01

NCE+RCE [13] 90.25 86.81 79.92 57.06 65.31 58.67 46.82 27.42
NFL+RCE [13] 89.14 86.05 79.78 55.06 65.31 59.48 47.12 25.80

JoCoR [16] 91.84 88.15 59.2 20.72 71.75 63.96 37.84 7.32
MentorMix [6] 95.60 94.20 91.30 81.00 78.60 71.30 64.60 41.20
Co-learning [5] 92.52 90.49 80.30 62.49 66.78 55.03 49.38 36.12

ELR [27] 92.12 91.43 88.87 80.69 74.68 68.43 60.05 30.27
MOIT [28] 92.88 90.55 85.02 70.53 72.78 67.36 60.13 45.63
JNPL [24] 93.53 91.89 88.45 35.65 70.94 68.11 61.26 17.55
CLIM [33] 94.07 93.75 91.02 90.56 77.22 69.87 68.54 60.5

IdentifyMix(Ours) 95.88 95.13 91.35 87.64 78.67 76.37 70.62 48.44

Results on the Real-World Noisy Dataset. The method IdentifyMix is validated on the real-
world dataset Animal-10N [15], which contains noisily-labeled images collected from Web.
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As demonstrated in Table 3, IdentifyMix achieves the superior results than other state-of-the-
art methods, including three recent methods that also utilize contrastive learning. The results
suggest that our method is able to handle realistic scenes.

TABLE 2. Comparison with state-of-the-art methods in test accuracy(%) on
Cifar-10N and Cifar-100N with asymmetric noise. Note that the best results
are marked in bold.

Dataset Cifar-10N Cifar-100N
Methods/Noise ratio 20% 40% 20% 40%

Cross Entropy 87.67 76.37 62.12 44.55
AUM [19] 89.70 58.70 59.70 40.20
INCV [25] 88.30 79.80 56.80 44.40
BMM [26] 86.56 74.28 69.12 46.97
NLNL [23] 93.35 89.86 63.12 45.70

NCE+RCE [13] 88.56 79.59 62.68 46.79
NFL+RCE [13] 88.73 79.27 63.12 42.97

JoCoR [16] 91.19 83.61 65.05 45.14
MentorMix [6] 91.36 89.19 72.32 60.61
Co-learning [5] 91.07 81.42 65.26 47.62

ELR [27] 93.31 85.34 74.88 70.00
MOIT [28] 93.19 92.27 73.34 71.55
JNPL [24] 93.45 90.72 69.95 59.51
CLIM [33] 93.54 90.27 71.26 59.26

IdentifyMix(Ours) 95.09 89.69 76.82 62.55

4.3. Ablation Study and Discussions. To study the effects of each component of the method,
IdentifyMix on Cifar-10N with different noisy ratios was used in the experiment. Test accuracy
is reported for IdentifyMix and results are analyzed in Figure 4 as follows. Several components
of Figure 4 perform additive operations with the orange line representing the AUM sample se-
lection mechanism, and the red line illustrating the AUM sample selection mechanism in com-
bination with SSL training. The red line indicates the addition of contrastive learning. As can
be seen on the green line, the overall framework of the algorithm IdentifyMix is incorporated,
which also incorporates Mixup data augmentation.

Effect of semi-supervised learning. IdentifyMix relies heavily on semi-supervised learning as
part of its algorithm. As can be seen from the comparison of AUM with AUM + SSL, SSL is
capable of substantially improving the test accuracy of the Cifar-10N with different symmetric
noisy ratios. It has been demonstrated that the former and the latter produce significant perfor-
mance gains with an increase in noise rate, especially when the noise rate is 80%, the latter can
produce substantial gain, demonstrating the effectiveness of semi-supervised learning.
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TABLE 3. Comparison with state-of-the-art methods in test accuracy(%) on
Animal-10N. Note that the best results are marked in bold.

Dataset Animal-10N
Methods/Noise ratio 8%

Cross Entropy 79.40
AUM [19] 83.29
INCV [25] 79.54
BMM [26] 72.15
NLNL [23] 78.29

NCE+RCE [13] 71.48
NFL+RCE [13] 70.22

JoCoR [16] 82.82
MentorMix [6] 76.85
Co-learning [5] 84.77

ELR [27] 84.76
MOIT [28] 84.83
JNPL [24] 83.81
CLIM [33] 85.02

IdentifyMix(Ours) 85.76
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FIGURE 4. Test accuracy(%) on Cifar-10N with varying levels of symmetric
noise for the ablation study.
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Effect of Contrastive representation learning. Learning contrastive features is a crucial com-
ponent of IdentifyMix. Figure 4 illustrates how contrastive learning impacts the performance
of our method. Despite high levels of noise, it promotes performance enhancement by resisting
the memory of noisy labels. The red line exhibits an approximate 3% drop in test accuracy
respectively for Cifar-10N with an 80% noise rate.

Effect of Mixup data augmentation. It is impossible to overestimate the impact of the Mixup
component on semi-supervised learning. In the green line, the test accuracy of Cifar-10N with
80% noise rate drops by approximately 2%. A possible explanation could be that Mixup is less
effective due to class imbalances and a lack of labeled clean samples.

5. CONCLUSION

This paper proposed the IdentifyMix, a novel method to handle noisy labels in training data
by a two-stage learning. AUM was introduced in the sample selection process to ensure clean la-
beled samples were accurately selected. Semi-supervised learning makes full use of large num-
bers of noise-labeled samples for effective noise-robust learning. Through contrastive learning
and Mixup, the former compares data features in relation to limited samples with accurate la-
bels. The latter provides data diversity relative to samples with clean labels. Both are concerned
with reducing model memory noise and optimizing the performance of the model. The effec-
tiveness of IdentifyMix was demonstrated by experiments conducted on multiple noisy datasets.
The objective of future work is to extend our method to other tasks such as object detection and
text matching.
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