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Abstract. In this paper, we consider vector optimization problems via improvement sets and investigate
their existence and the stability. More precisely, we introduce Benson weakly efficient solutions for non-
convex vector optimization problems and investigate the existence of the solution via the scalarization
method. Based on generalized convexlikeness and relaxed continuity properties of mappings, we formu-
late sufficient conditions of the (semi) continuity for solution mappings of parametric vector optimization
problems. As an application, we investigate the special case of co-radiant vector optimization problems.

Keywords. Benson weakly efficient solution; Existence and stability conditions; Improvement set; Co-
radiant set; Scalarization method.

2020 Mathematics Subject Classification. 49K40, 90C31.

1. INTRODUCTION

The optimal theory is an important and interesting branch of mathematics, which is growing
and has increasingly real applications in the fields of modern science, engineering, technology,
and management. When studying the above fields, we are faced with the case of an objective
function with vector values [1, 2, 3, 4]. From the needs of practical uses, there are various kinds
of proper efficiency, such as the Edgeworth proper efficiency [5], the Pareto proper efficiency
[6], the Geoffrion proper efficiency [7], the Borwein proper efficiency [8], the Benson proper
efficiency [9], the Henig proper efficiency [10], and other efficiency [11, 12, 13, 14]. It is worth
noting here that the main difference of the solutions is due to the different cones used as criteria
for evaluating a variety of types of solutions. Therefore, the study of different types of ordered
cones in vector spaces is a topic of great interest. Motivated by this, Chicco et al. [15] intro-
duced the concept of improvement set E and a kind of optimality named as E-optimality in
finite-dimensional spaces, where the ordering relation of E-optimality is given by an improve-
ment set E, and E-optimality unifies some known concepts of exact and approximate solutions
of vector optimization problems. Because of the important role of improvement sets, Gutiér-
rez et al. [16] extended the notion of E-optimal point to a general quasi-ordered linear space
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and derived optimal conditions for E-optimal solution of vector optimization problems soon.
Since then, the topic of improvement sets has been extensively researched by the optimization
community and were used in optimization problems with many important topics. For instance,
Dhingra and Lalitha [17] discussed the optimization problems by using improvement set with
set optimization criterion. In [18, 19], Oppezzi and Rossi established the lower and upper con-
vergence results of E-optimal solution of a convergent set, presented several optimal conditions
for the E-optimal solution, and discussed the existence and stability of E-optimal point in the
context of optimization problems in infinite-dimensional spaces. Next, Gutiérrez et al. [20] in-
vestigated some characteristics of optimal solutions related to improvement sets in real linear
spaces. With topics about the optimization problem via the improvement set, the researchers
are also interested in investigating the stability. For example, by using the convergence of a
sequence of sets in the sense of Wijsman, Zhao and Yang [2] addressed the convergence of effi-
ciency and approximate efficiency by virtue of improvement sets in vector optimization, which
unified and extended previously known results. Lalitha and Chatterjee [3] studied the lower
and upper Painlevé–Kuratowski convergences of sequences of E-optimal and weak E-optimal
solution sets to perturbed vector optimization problems under perturbations both of the feasi-
ble set and objective mapping. In [21], Mao et al. investigated the Hausdorff continuity of the
solution mappings to parametric set optimization problems via improvement sets. As a result,
improvement sets are increasingly important in investigating optimization problems, such as set
optimization, vector optimization, and vector equilibrium problems.

Let us provide a brief overview of the Benson efficiency in vector optimization problem.
In 1968, Geoffrion [7] suggested a slightly restricted definition of efficiency that eliminated
efficient points of a certain anomalous type and lent itself to a more satisfactory characteri-
zation called proper efficiency. Then, in 1977, Borwein [8] proposed a generalization of the
Geoffrion’s concept of proper efficiency to the vector maximization problem in which the dom-
ination cone K is any nontrivial, closed convex cone. However, when K is the nonnegative
orthant, solutions may exist which are proper according to Borwein’s definition but improper
by Geoffrion’s definition. To rectify this situation, by strengthening Borwein’s requirement for
properness, Benson [9] proposed a definition of proper efficiency for the case when K is a
nontrivial, closed convex cone which would coincide with the Geoffrion’s definition when K
is the nonnegative orthant. Besides, Benson presented the equivalence of his definition and
Borwein’s under an appropriate concavity assumption, and also compared properties of proper
efficiency according to his proposed definition and according to Borwein’s definition. Although
these definitions yield identical extensions of Geoffrion’s fundamental results, when “K =Rp

+”
all properties of proper efficiency as defined by Geoffrion hold under Benson’s proposed def-
inition, but not under Borwein’s. From these results, Benson’s definition seems preferable to
Borwein’s for developing a theory of proper efficiency when K is a nontrivial, closed convex
cone. Thus, investigating the characteristic properties of Benson solutions in optimal problems
is a great significance. More precisely, Sheng [22] established the Hahn-Banach theorem under
weak Benson proper efficiency, from which the author proved the existence of weak Benson
proper efficient subgradient and presented the optimality conditions of set-valued optimization
with weak Benson proper efficient subgradient. Chen and Rong [23] characterized the Ben-
son proper efficiency in terms of scalarization, Lagrange multiplier, saddle-point criterion, and
duality under the assumption of generalized cone subconvexlikeness. In 2001, Yang et al. [24]
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considered existence conditions of Benson proper efficient element of vector optimization prob-
lem based on the class of generalized convex set-valued functions, termed nearly-subconvexlike
functions. Then, Xing et al. [25] investigated the dual problems under Benson efficiency of the
constrained vector set-valued optimization. In the meantime, they established corresponding
weakly and strongly dual theorems.

The Benson solution has also been considered widely in vector optimization problems via
the improvement sets. In 2015, Zhao and Yang [26] gave a kind of proper efficiency, named
as E-Benson proper efficiency, which unified some proper efficiency and approximate proper
efficiency, was proposed via the improvement sets in vector optimization. In addition, the con-
cept of E-subconvexlikeness of set-valued mappings was introduced via the improvement sets,
an alternative theorem was proved and some scalarization theorems and Lagrange multiplier
theorems of E-Benson proper efficiency were established for a vector optimization problem
with set-valued mappings. Recently, Benson proper efficiency was suggested and researched
for vector equilibrium problems. Chen et al. [27] proposed and studied the Benson proper effi-
ciency of vector equilibrium problems via linear scalarization functions. The author introduced
gerneralized concepts of monotonicity and convexity, and then by using them together with the
linear scalarization approach, the authors established stability conditions for the Benson proper
efficiency of vector equilibrium problem. After that, motivated by the work [27], Liang et al.
[28] developed the Benson proper efficiency defined in [27] for set-valued vector equilibrium
problem and also applied scalarization results to consider the connectedness conditions for this
solution set. To the best of our knowledge, there have not been any works on the stability for the
Benson proper efficiency mappings to vector optimization problems via improvement sets.

Motivated by this research stream, in this paper, we aim to consider vector optimization prob-
lems via improvement sets and study the existence and stability for the concerning problems.
First, we propose the Benson weakly efficient solutions to non-convex vector optimization prob-
lems and study the existence of solutions as well as their scalarization characterizations. Next,
we use generalized convexity conditions proposed in [26, 29, 30, 31] to formulate sufficient
conditions of the (semi) continuity of the Benson weakly efficient mappings to the parametric
vector optimization problems via improvement sets. Finally, we apply the obtained results to
co-radiant vector optimization problems as an application.

2. PRELIMINARIES

Let X be a normed space, and let Y be a real locally convex topological linear space. Assume
that Y∗ is the dual space of Y and K is a pointed closed convex cone in Y with a nonempty
interior (intK 6= /0). The family of all nonempty subsets of X and the family of all nonempty
subsets of Y are presented as P(X) and P(Y), respectively. The positive polar cone K∗ of K is
denoted by K∗ := {` ∈ Y∗ : `(y)≥ 0,∀y ∈ K}. Based on [13, P. 77], one has

intK = {y ∈ Y : `(y)> 0,∀` ∈ K∗ \{0Y∗}}. (2.1)

Let B be a nonempty subset of Y, and denote the closure of B by clB. The cone hull of B is
defined by cone(B) := {ta : t ≥ 0,a ∈ B}.

Let us recall a version of separation theorem for convex sets, which is used in the next sec-
tions.
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Lemma 2.1. [13, P. 74] Let B and D be two nonempty convex subsets of a real topological
linear space Y with intB 6= /0. Then, D∩ intB = /0 if and only if there are a linear functional
l ∈ Y∗\{0Y∗} and a real number α with l(b) ≤ α ≤ l(d) for all b ∈ B and all d ∈ D, and
l(b)< α, for all b ∈ intB.

Lemma 2.2. [32, P. 22] Assume that C⊂Y is a convex cone with intC 6= /0, and let B⊂Y. Then,
cl(B+C) is convex if and only if B+ intC is convex.

We now recall the notions and characterizations of upper semicontinuity and lower semicon-
tinuity for set-valued mappings, which are used in the sequel.

Definition 2.1. [11, P. 51] A set-valued mapping Q : X⇒ Y is said to be

(a) upper semicontinuous (usc) at x0 ∈X if, for any neighborhood U of Q(x0), there is a neigh-
borhood N of x0 such that Q(N)⊂U ;

(b) lower semicontinuous (lsc) at x0 ∈ X if, for any open subset U of Y with Q(x0)∩U 6= /0,
there exists a neighborhood N of x0 such that for all x ∈ N,Q(x)∩U 6= /0;

(c) continuous at x0 if it is both usc and lsc at x0.

Lemma 2.3. [33, P. 37] Let a set-valued mapping Q : X⇒ Y be given. Then,

(a) Q is lsc at x0 if and only if, for all xn→ x0 and y0 ∈Q(x0), there exists yn ∈Q(xn) such that
yn→ y0.

(b) Q is lsc at x0 if and only if, for all xn → x0, then one has Q(x0) ⊂ liminfQ(xn), where
liminfQ(xn) := {y0 ∈ Y : ∃yn ∈ Q(xn),yn→ y0}.

Lemma 2.4. [33, P. 41] If Q(x0) is compact, then Q is usc at x0 if and only if, for any sequence
{xn} converging to x0 and yn ∈ Q(xn), there is a subsequence {ynk} converging to y0 ∈ Q(x0).

Definition 2.2. [12, P. 22] A vector-valued mapping g : X→ Y is said to be

(a) K-lower semicontinuous (K-lsc) at x0 ∈ X if, for any neighborhood V of g(x0), there exists
some neighborhood U of x0 such that g(x) ∈V +K for all x ∈U ;

(b) K-upper semicontinuous (K-usc) at x0 ∈ X if −g is K-lsc at x0;
(c) K-continuous at x0 ∈ X if it is both K-usc and K-lsc at x0.

Remark 2.1. When Y = R and K = R+, the K-lower semicontinuity reduces to the ordinary
lower semicontinuity. To be more specify, a function g is said to be lower semicontinuous at
x0 ∈ X if, for every real number r < g(x0), there exists some neighborhood U of x0 such that
r < g(x) for all x ∈U.

We are in a position to study the continuity properties of a composition function, which play
important roles in our analysis.

Lemma 2.5. Let x0 ∈X, ` ∈ K∗ be given, and let f : X→Y be a vector-valued mapping. Then,

(a) `◦ f is lower semicontinuous at x0 if f is K-lower semicontinuous at x0;
(b) `◦ f is upper semicontinuous at x0 if f is K-upper semicontinuous at x0;
(c) `◦ f is continuous at x0 if f is K-continuous at x0.

Chứng minh. In view of the same techniques in the proof, we only prove the first statement.
By Remark 2.1, we need to present that, for each γ ∈ R with γ < `( f (x0)), there exists some
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neighborhood U of x0 such that γ < `( f (x)) for all x ∈U. Since γ < `( f (x0)) and ` is lower
continuous at f (x0), we can choose a neighborhood V of f (x0) such that

γ < `(y), ∀y ∈V. (2.2)

For the neighborhood V , there is a neighborhood U of x0 such that f (x)∈V +K for all x∈U as f
is K-lower semicontinuous at x0. Then, for any x∈U , there is some y∈V such that f (x)∈ y+K.
It follows from ` ∈ K∗ that

`(y)≤ `( f (x)). (2.3)

Combining (2.2) and (2.3), we obtain γ < `( f (x)), ∀x ∈U. Therefore, `◦ f is lower semicon-
tinuous at x0. �

Definition 2.3. [16, P. 305] The set E ∈ P(Y) is called an improvement set with respect to (wrt)
K if 0Y /∈ E and E +K = E. The class of the improvement sets wrt K in Y is denoted by IK. It
is clear that K\{0Y} ∈ IK, intK ∈ IK and Y\(−K) ∈ IK.

Lemma 2.6. [26, P. 741] If E ∈ IK is solid, then intE = E + intK = clE + intK.

Lemma 2.7. [31, P. 1290] If E ∈ IK and /0 6=B⊂Y, then cl(cone(B+E)) = cl(cone(B+ intE)).

Next, we investigate some properties of the improvement sets.

Lemma 2.8. For any nonempty subset B of Y, one has int(B+E) = B+ intE.

Chứng minh. For any y ∈ int(B+E), there exists ε > 0 such that y+ εBY ⊂ B+E, where BY
is the closed unit ball of Y. Taking arbitrarily b ∈ εBY∩ (− intK), one concludes by Lemma
2.6 that

y ∈ −εb+B+E ⊂ intK +B+E ⊂ B+ intE,

which implies that int(B+E)⊂ B+ intE. Conversely, since B+ intE is an open subset of B+E,
one has B+ intE ⊂ int(B+E). �

Lemma 2.9. Let B be a nonempty subset of Y. Then,

B∩ intK = /0 implies that clB∩ intK = /0.

Chứng minh. If clB∩ intK 6= /0, then there is y ∈ clB∩ intK. Since y ∈ intK and intK is open,
there is a neighbourhood of zero V such that y+V ⊂ intK. On the other hand, since y ∈ clB, we
have (y+V )∩B 6= /0, which implies that intK∩B 6= /0 which leads to a contradiction. �

Definition 2.4. [29, P. 408, 409] Let A be a nonempty subset of X and x1,x2 ∈ A. Then,
(a) the continuous mapping Γx1,x2 : [0,1]→ X satisfying Γx1,x2(0) = x1 and Γx1,x2(1) = x2 is

called an arc on A with endpoints x1,x2;
(b) A is said to be arcwise connected if, for each pair of points x1,x2 ∈ A, there is an arc Γx1,x2

on A.

Definition 2.5. [29, P. 409] Let A be an arcwise connected subset of X. A vector-valued map-
ping g : X→ Y is said to be
(a) arcwise connected K-convex on A if, for all x1,x2 ∈ A, there exists an arc Γx1,x2 on A such

that
g(Γx1,x2(t)) ∈ (1− t)g(x1)+ tg(x2)−K, ∀t ∈ [0,1].
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(b) naturally arcwise connected K-quasiconvex on A if, for all x1,x2 ∈ A, there exists an arc
Γx1,x2 on A such that, for each t ∈ [0,1], there exists some s ∈]0,1[ satisfying

g(Γx1,x2(t)) ∈ (1− s)g(x1)+ sg(x2)−K.

Motivated by [26, 30, 31], we propose generalized convexlikeness properties of a vector-
valued map as follows.

Definition 2.6. Let A ∈ P(X),B ∈ P(Y) be given. The vector-valued mapping g : X→Y is said
to be

(a) B-convexlike on A if g(A)+B is a convex set in Y;
(b) nearly B-convexlike on A if cl(g(A)+B) is a convex set in Y;
(c) B-subconvexlike on A if g(A)+ intB is a convex set in Y;
(d) nearly B-subconvexlike on A if cl(cone(g(A)+B)) is a convex set in Y.

Remark 2.2. If B = E ∈ IK , then Definition 2.6 (d) is reduced to Definition 3.1 of [31] while
Definition 2.6 (c) coincides with Definition 6.1 in [26]. Moreover, when B = K, the statements
of Definition 2.6 are reduced to the concepts of convexlikeness via cones provided in [30].

We now finalize this section with a result that provides relationships between the concepts
defined in the above definition.

Lemma 2.10. Let A ∈ P(X), and let B ∈ P(Y) and E ∈ IK be given. If E is convex, then the
following statements hold true:

(a) every B-convexlike mapping on A is nearly B-convexlike on A;
(b) every E-subconvexlike mapping on A is nearly E-subconvexlike on A;
(c) every nearly K-convexlike mapping on A is nearly E-subconvexlike on A;
(d) every K-subconvexlike mapping on A is nearly E-subconvexlike on A.

Chứng minh. (a) If g is B-convexlike on A, then g(A)+B is convex. Hence, cl(g(A)+B) is also
convex, and thus g is nearly B-convexlike on A.
(b) Because g is E-subconvexlike on A, g(A)+ intE is convex. Then, cl(cone(g(A)+ intE)) is
also a convex subset of Y. Combining this with Lemma 2.7, we conclude that

cl(cone(g(A)+E)) = cl(cone(g(A)+ intE))

is convex. Therefore, g is nearly E-subconvexlike on A.
(c) Due to the near K-convexlikeness of g, we achieve the convexity of cl(g(A)+K). By em-
ploying Lemma 2.2, the set g(A)+ intK is convex, which together with the convexity of E would
imply that g(A)+ intK +E is convex. Then, Lemmas 2.6 and 2.7 lead to

cl(cone(g(A)+E)) = cl(cone(g(A)+ intE))

= cl(cone(g(A)+ intK +E)).

Hence, g is nearly E-subconvexlike on A.
(d) In view of the K-subconvexlike of g, we obtain the convexity of g(A)+ intK. By using the
same arguments as in the proof of (c), we also have conclusion (d). �
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3. THE EXISTENCE TO VECTOR OPTIMIZATION PROBLEMS VIA IMPROVEMENT SETS

Let X,Y,K be defined as in Section2, and let E ∈ IK be fixed. We consider the following
vector optimization problem:

(VOP) min f (x) subject to x ∈ A,

where f : X→ Y is a vector-valued mapping and A is a nonempty subset of X.
Motivated by [22], we propose a solution concept of the reference problem via the improve-

ment set E as follows.

Definition 3.1. The vector x0 ∈ A is called a Benson weakly efficient solution to (VOP) with
respect to E, written as x0 ∈WBEff(A, f ) if cl(cone( f (A)− f (x0)+E))∩ (− intK) = /0.

Example 3.1. Let X = R,Y = R2,K = R2
+,A = [0,2],E = (1,1)+R2

+, and let the mapping
f : R→ R2 be defined by f (x) = (x,x). Then, f (A) = {(x,x) ∈ R2 : 0 ≤ x ≤ 2}. For each
x0 ∈ A, one has

f (A)− f (x0)+E = {(x− x0 +1,x− x0 +1) : 0≤ x≤ 2}+R2
+.

If x0 ∈WBEff(A, f ), then, for all t ≥ 0 and x ∈ A, t(x− x0 +1)≥ 0, which implies that x0 ≤ 1.
Conversely, for x0 ≤ 1, one has x0 ≤ x+1, ∀x ∈ [0,2], which means that x− x0 +1≥ 0 for

all x ∈ [0,2]. So, for all x ∈ [0,2], we obtain(
{(x− x0 +1,x− x0 +1) : 0≤ x≤ 2}+R2

+

)
∩ (− intR2

+) = /0.

Therefore, x0 ∈WBEff(A, f ). As a result, WBEff(A, f ) = [0,1].

For each ` ∈ Y∗, we consider the following set

S` := {x ∈ A : `( f (z))+ `(e)≥ `( f (x)) for all (z,e) ∈ A×E},
and discuss the intimate associations between it and WBEff(A, f ).

Lemma 3.1. Let E ∈ IK be given. Then, S ˆ̀⊂WBEff(A, f ), for all ˆ̀∈ K∗ \{0Y∗}.

Chứng minh. Let x̄ ∈ S ˆ̀ be arbitrary, that is,

ˆ̀( f (x))+ ˆ̀(e)≥ ˆ̀( f (x̄)), ∀(x,e) ∈ A×E. (3.1)

If x̄ /∈WBEff(A, f ), then

cl(cone( f (A)− f (x̄)+E))∩ (− intK) 6= /0.

By using Lemma 2.9, we derive

cone( f (A)− f (x̄)+E)∩ (− intK) 6= /0.

For any y ∈ cone( f (A)− f (x̄)+E)∩ (− intK), it follows from (2.1) that
ˆ̀(y)< 0, (3.2)

as y ∈ (− intK).
On the other hand, y ∈ cone( f (A)− f (x̄)+E), there exist (ẑ, ê) ∈ A×E and t̂ > 0 such that

y = t̂( f (ẑ)− f (x̄)+ ê). Combining this with (3.2) and the linear property of ̂̀, we have
ˆ̀( f (ẑ))− ˆ̀( f (x̄))+ ˆ̀(ê)< 0,

or equivalently ˆ̀( f (ẑ))+ ˆ̀(ê)< ˆ̀( f (x̄)) which contradicts (3.1). Thus x̄ ∈WBEff(A, f ). �
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We discuss sufficient conditions of the existence of the Benson weakly efficient solutions
of non-convex vector optimization problems via the linear scalarization function and the cone-
lower semicontinuity property of the objective functions.

Theorem 3.1. Assume that
(i) E ∩ (− intK) = /0;

(ii) A is compact;
(iii) f is K-lower semicontinuous on A.
Then, WBEff(A, f ) is nonempty. Moreover, if f is nearly E-subconvexlike on A, then

WBEff(A, f ) =
⋃

`∈K∗\{0Y∗}
S`.

Chứng minh. By (i) and Lemma 2.1, there exist `0 ∈ Y∗ \{0Y∗} and γ ∈ R such that

`0(e)≥ γ ≥−`0(k), (3.3)

for all e ∈ E,k ∈ K. If there is some k̄ ∈ K such that `0(k̄)< 0, then (3.3) leads to

γ ≥−`0(k̄)> 0. (3.4)

On the other hand, we have α k̄ ∈ K for all α ≥ 0 as K is a cone. Applying (3.3) again, we
obtain

γ ≥−`0(α k̄) = α(−`0(k̄)), ∀α ≥ 0 (3.5)
By employing (3.4) and (3.5), we see a contradiction due to the existence of γ . Hence, `0(k)≥ 0
for all k ∈ K, and so `0 ∈ K∗ \{0Y∗}. Letting k→ 0 in (3.3), we achieve `0(e)≥ 0 for all e ∈ E.
By the cone-lower semicontinuity of f and the continuity of `0, Lemma 2.5 yields that `0 ◦ f is
lower semicontinuous, which together with the compactness of A implies that S`0 is nonempty.
Combining this with Lemma 3.1, we conclude that WBEff(A, f ) is nonempty. Then, for any
x̄ ∈WBEff(A, f ), one has

cl(cone( f (A)− f (x̄)+E))∩ (− intK) = /0.

Since f is nearly E-subconvexlike on A, the set cl(cone( f (A)− f (x̄)+E)) is convex. Applying
Lemma 2.1, there exist ¯̀∈ Y∗ \{0Y∗} and γ̄ ∈ R such that

¯̀( f (x))− ¯̀( f (x̄))+ ¯̀(e)≥ γ̄ ≥−α ¯̀(k), (3.6)

for all (x,e)∈ A×E,k ∈K,α > 0. By using the same arguments as above, one also has ¯̀(k)≥ 0
for all k ∈ K, and so ¯̀∈ K∗ \{0Y∗}. Letting α → 0 in (3.6), we obtain

¯̀( f (x))+ ¯̀(e)≥ ¯̀( f (x̄)), ∀(x,e) ∈ A×E,

and thus x̄ ∈ S ¯̀⊂
⋃

`∈K∗\{0Y∗}
S`. Then, Lemma 3.1 helps us to finish the proof. �

Now, let us provide an example to illustrate the applicability of Theorem 3.1.

Example 3.2. Let X = Y = R2,A = {(x1,x2) ∈ R2 : x2
1 + x2

2 ≤ 1}, K = R2
+, E = (0.1,0.1)+

R2
+ and f : R2 → R2 be defined by f (x) =

(
x2

1 + x2
2,x

2
1 + x2

2
)

for all x = (x1,x2) ∈ R2. It is
clear that the conditions (i)-(iii) of Theorem 3.1 are satisfied. Hence, WBEff(A, f ) is nonempty.
Furthermore, we have

f (A) =
{
(x2

1 + x2
2,x

2
1 + x2

2) ∈ R2 : x2
1 + x2

2 ≤ 1
}
,
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and, for each x̄ = (x̄1, x̄2) ∈ A,

f (A)− f (x̄)+E =
{(

(x2
1 + x2

2)− (x̄2
1 + x̄2

2)+0.1,(x2
1 + x2

2)− (x̄2
1 + x̄2

2)+0.1
)

: x2
1 + x2

2 ≤ 1
}
+R2

+.

If x̄ ∈WBEff(A, f ), then, for all t ≥ 0 and x ∈ A,

t
(
(x2

1 + x2
2)− (x̄2

1 + x̄2
2)+0.1

)
≥ 0,

and then x̄2
1 + x̄2

2 ≤ 0.1.
Conversely, for any x̄ = (x̄1, x̄2) with x̄2

1 + x̄2
2 ≤ 0.1, we always have

x̄2
1 + x̄2

2 ≤ 0.1+(x2
1 + x2

2), ∀(x1,x2) ∈ A.

Hence, for all (x1,x2) ∈ A, we achieve(
{
(
(x2

1 + x2
2)− (x̄2

1 + x̄2
2)+0.1,(x2

1 + x2
2)− (x̄2

1 + x̄2
2)+0.1

)
: x2

1 + x2
2 ≤ 1}+R2

+

)
∩(− intR2

+)= /0.

As a result, x̄ ∈WBEff(A, f ). Therefore, WBEff(A, f ) =
{
(x1,x2) ∈ R2 : x2

1 + x2
2 ≤ 0.1

}
.

4. CONTINUITY OF SOLUTION MAPPINGS TO VECTOR OPTIMIZATION PROBLEMS VIA

IMPROVEMENT SETS

Let X,Y,K,A be defined as in Section 3, and let W be a normed space and E ∈ IK be given.
The aim of this section is to discuss the (semi) continuity of a solution mapping of the following
parametric vector optimization problem:

(PVOP) min f (x, p) subject to (x, p) ∈ A×P,

where f : X×W→ Y is a vector-valued mapping and P is a nonempty subset of W.
Motivated by Definition 3.1, we also define the Benson weakly efficient solution of (PVOP)

for each p ∈ P, as follows

WBEff(A, f )(p) = {x0 ∈ A : cl(cone( f (A, p)− f (x0, p)+E))∩ (− intK) = /0}.
Now, we present a result used to discuss conditions of the (semi) continuity of the Benson

weakly efficient solution mappings of the parametric vector optimization problems.

Theorem 4.1. Assume that
(i) E ∩ (− intK) = /0;

(ii) A is compact;
(iii) f is K-continuous on A×P;
Then, for any ` ∈ K∗ \{0Y∗}, the map

p 7→ S`(p) := {x ∈ A : `( f (z, p)+ e)≥ `( f (x, p)) for all (z,e) ∈ A×E} (4.1)

is upper semicontinuous with nonempty compact values on P.

Chứng minh. By using the same techniques as in the proof of Theorem 3.1, we see that S`(p)
is nonempty for all ` ∈ K∗ \{0Y∗}. Taking p0 ∈ P arbitrarily, we need to prove that S` is usc at
p0. Suppose to the contrary that S` is not usc at p0. It means that we can find some open set U
with S`(p0) ⊂U and a sequence {pn} converging to p0 such that, for each n ∈ N, there exists
xn ∈ S`(pn) \U . By xn ∈ A and the compactness of A, we can assume that {xn} converges to
x0 ∈ A. If x0 /∈ S`(p0), then there is an element (z0,e0) ∈ A×E such that

`( f (z0, p0)+ e0)< `( f (x0, p0)). (4.2)
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On the other hand, in view of xn ∈ S`(pn), we have `( f (z0, pn)+ e0) ≥ `( f (xn, pn)). Com-
bining this with the continuity of ` and f , we obtain `( f (z0, p0)+ e0) ≥ `( f (x0, p0)), which
contradicts (4.2). Hence, x0 ∈ S`(p0)⊂U , which is impossible as xn /∈U for all n. For the com-
pactness of S`(p0), we only need to present that it is a closed subset of the compact set A. For
any sequence {xn} ⊂ S`(p0) converging to x0, one sees that x0 ∈ A as xn ∈ A and A is closed.
Because xn ∈ S`(p0), we obtain `( f (z, p0)+e)≥ `( f (xn, p0)) for all (z,e) ∈ A×E. By the con-
tinuity of f and `, we have `( f (z, p0)+ e) ≥ `( f (x0, p0)) for all (z,e) ∈ A×E, or equivalently
x0 ∈ S`(p0). This implies that S`(p0) is closed, and so it is compact. �

Employing the above result, we formulate sufficient conditions of the upper semicontinuity
of WBEff(A, f ).

Theorem 4.2. Assume that all conditions in Theorem 4.1 hold true. If the mapping f is nearly E-
subconvexlike in the first component on A, then the solution mapping WBEff(A, f ) is nonempty-
valued and upper semicontinuous on P.

Chứng minh. By employing the same arguments in the proof of Theorem 3.1, the Benson
weakly efficient solution set WBEff(A, f ) is nonempty, and

WBEff(A, f )(p) =
⋃

`∈K∗\{0Y∗}
S`(p), ∀p ∈ P. (4.3)

If the mapping WBEff(A, f ) is not usc at p0, then we can find some open neighborhood U0
of WBEff(A, f )(p0) and a sequence {pn} converging to p0 such that, for each n, there is xn ∈
WBEff(A, f )(pn), but xn 6∈U0. In view of (4.3), for each xn, we can choose `n ∈K∗ \{0Y∗} such
that xn ∈ S`n(pn), which means that

`n ( f (z, pn)+ e− f (xn, pn))≥ 0, ∀(z,e) ∈ A×E,

which together with `n ∈ K∗ \{0Y∗} implies that

f (z, pn)+ e− f (xn, pn) /∈ − intK, (4.4)

Since f is continuous on A×P and the complement set Y\ (− intK) is closed, (4.4) leads to

f (z, p0)+ e− f (x0, p0) /∈ − intK, ∀(z,e) ∈ A×E.

Then, there exists some ` ∈ K∗ \{0Y∗} such that

`( f (z, p0)+ e− f (x0, p0))≥ 0, ∀(z,e) ∈ A×E.

This together with (4.1) and (4.3) implies that

x0 ∈ S`(p0)⊂WBEff(A, f )(p0)⊂U0,

which contradicts the fact that xn /∈U0 for all n. We finish the proof. �

Motivated by the Remark 3.3 in [17], in the rest of this section, we consider a case of E =
k0+K, where k0 ∈ intK, and study sufficient conditions of the continuity of the Benson weakly
efficient solution mappings of (PVOP) via this improvement set.

Theorem 4.3. Assume that
(i) A is compact and arcwise connected;

(ii) f is K-continuous on A×P;
(iii) for each p ∈ P, f (., p) is naturally arcwise connected K-quasiconvex on A.
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Then, for any ` ∈ K∗ \{0Y∗}, S` is nonempty-valued and continuous on P.

Chứng minh. Let ` ∈ K∗ \ {0Y∗} be given. Due to Theorem 4.1, S` is nonempty-valued and
upper semicontinuous on P, and so we only need to show that S` is lower semicontinuous on P.
Set

Ŝ`(p) = {x ∈ A : `( f (z, p)+ e)> `( f (x, p)) for all (z,e) ∈ A×E}.
Because E = k0 +K, for each e ∈ E, there exists some k ∈ K such that e = k0 + k, and so

`(e) = `(k0 + k)> 0, ∀e ∈ E. (4.5)

Since f is K-lower semicontinuous and ` is continuous, Lemma 2.5 implies that ` ◦ f is lower
semicontinuous on A. Hence, `◦ f achieves the minimal value over the compact subset A. Com-
bining this with (4.5), we obtain that Ŝ` is nonempty. Let p0 ∈ P be arbitrary. Suppose that Ŝ`
is not lsc at p0, namely there are an element x0 in Ŝ`(p0) and a sequence {pn} converging to
p0 such that, for all {xn} with xn ∈ Ŝ`(pn),xn 9 x0. Then, there is a subsequence {pm} of {pn}
such that x0 /∈ Ŝ`(pm) for all m, which means that there exist (zm,em) ∈ A×E,

`( f (zm, pm))+ `(em)≤ `( f (x0, pm)). (4.6)

Since E = k0 +K, for each m, there exists km ∈ K such that em = k0 + km, which together with
(4.6) implies that

`( f (zm, pm))+ `(k0 + km)≤ `( f (x0, pm)), km ∈ K,

and so
`( f (zm, pm))+ `(k0)≤ `( f (x0, pm)), (4.7)

as `(km) ≥ 0. In view of the compactness of A, we can assume that zm → z0 ∈ A. From the
continuity of ` and f , (4.7) leads to `( f (z0, p0))+ `(k0) ≤ `( f (x0, p0)), which contradicts the
fact that x0 ∈ Ŝ`(p0). Thus, Ŝ` is lsc at p0.

Next, let x̄∈ S`(p0) and x1 ∈ Ŝ`(p0) be arbitrary. Since f (·, p0) is naturally arcwise connected
K-quasiconvex on A, there exists an arc Γx̄,x1 on A such that for each t ∈ [0,1], we can find some
s ∈]0,1[,

(1− s) f (x̄, p0)+ s f (x1, p0) ∈ f (Γx̄,x1(t), p0)+K.

Therefore,

f (Γx̄,x1(t), p0) = (1− s) f (x̄, p0)+ s f (x1, p0)− k, for some k ∈ K,

which together with `(k)≥ 0 implies that

`( f (Γx̄,x1(t), p0))≤ (1− s)`( f (x̄, p0))+ s`( f (x1, p0)). (4.8)

It follows from x̄ ∈ S`(p0),x1 ∈ Ŝ`(p0) and (4.8) that

`( f (Γx̄,x1(t), p0))< (1− s)[`( f (x, p0))+ `(e)]+ s[`( f (x, p0))+ `(e)]

< `( f (x, p0))+ `(e),

for all (x,e) ∈ A×E. Consequently, Γx̄,x1(t) ∈ Ŝ`(p0) for all t ∈ [0,1]. Combining this with
Γx̄,x1(t)→ x̄ when t → 0, we achieve x̄ ∈ clŜ`(p0), and so S`(p0) ⊂ clŜ`(p0). By the lower
semicontinuity of Ŝ` at p0, we have

S`(p0)⊂ clŜ`(p0)⊂ liminf Ŝ`(pn)⊂ liminfS`(pn),

and so S` is lsc at p0. �
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Next, we present the continuity conditions of the Benson weakly efficient solution mappings
via the following theorem.

Theorem 4.4. Assume that
(i) A is compact and arcwise connected;

(ii) f is K-continuous on A×P;
(iii) for each p ∈ P, f (., p) is naturally arcwise connected K-quasiconvex as well as nearly

E-subconvexlike on A.
Then, WBEff(A, f ) is nonempty-valued and continuous on P.

Chứng minh. Employing Theorem 4.2, WBEff(A, f ) is nonempty-valued and upper continuous
on P, and hence we only prove that WBEff(A, f ) is lower semicontinuous on P. Since f (., p) is
nearly E-subconvexlike on A for all p ∈ P, Theorem 3.1 helps us obtain

WBEff(A, f )(p) =
⋃

`∈K∗\{0Y∗}
S`(p). (4.9)

Because of Theorem 4.3, mapping S` is lower semicontinuous on P. For all p0 ∈ P and open
subset U in X satisfying WBEff(A, f )(p0)∩U 6= /0, by (4.9), we can find `0 ∈ K∗ \{0Y∗} such
that S`0(p0)∩U 6= /0. Since S`0 is lower semicontinuous at p0, there exists a neighborhood V of
p0 such that S`0(p)∩U 6= /0, ∀p ∈V, which is equivalent to

WBEff(A, f )(p)∩U 6= /0, ∀p ∈V.

It follows that WBEff(A, f ) is lsc at p0. �

Based on Theorem 4.4, we obtain the following corollary.

Corollary 4.1. Assume that the conditions (i)-(ii) in Theorem 4.4 are satisfied, and assume
further that f (., p) is arcwise connected K-convex on A for each p ∈ P. Then, WBEff(A, f ) is
nonempty-valued and continuous on P.

Chứng minh. In view of Theorem 4.4, we only need to present that f (., p) is nearly E-subconvexlike
on A. Since E = k0+K, we have f (A, p)+E = f (A, p)+k0+K for all p ∈ P. Hence it is suffi-
cient to prove that f (A, p)+K is convex. Let y1,y2 be arbitrary in f (A, p)+K. Then, there are
x1,x2 ∈ A such that y1 ∈ f (x1, p)+K and y2 ∈ f (x2, p)+K. These together with the arcwise
connected K-convexity of f imply that there exists an arc Γx1,x2 on A such that, for all t ∈ [0,1],

(1− t)y1 + ty2 ∈ (1− t)( f (x1, p)+K)+ t ( f (x2, p)+K)

∈ f (Γx1,x2(t), p)+K ⊂ f (A, p)+K.

Hence, we conclude that f (A, p)+E) is convex, so is cl(cone( f (A, p)+E)). The proof is com-
plete. �

Remark 4.1. Up to our knowledge now, there have not been any works on the stability of the
Benson weakly solution mappings of the vector optimization problems via the improvement
sets, and so the results presented in this section are entirely new. Moreover, when studying the
stability of solution mappings of many optimization models, such as vector equilibrium prob-
lems and vector optimization problems [34, 35], and set optimization problems [21], hypotheses
related to the convexity properties of objective functions and constrained sets as key assump-
tions were used, so the obtained results are difficult to apply to bilevel optimization models
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as the convexity of solution sets of vector optimization models is not easy to task. Herein, the
convexity conditions are weakened by the connectedness ones, and hence our approach is dif-
ferent from the existence one, and the obtained results of this paper have potential applications
to bilevel optimization models.

The following example is given to illustrate a case in which Corollary 4.1 can apply while the
results of [21, 34, 35] cannot use as the convexity conditions are violated.

Example 4.1. Let X= Y= R2,W= R,A = {(x1,x2) ∈ R2 : 0≤ x1 ≤ 1,0≤ x2 ≤ 1}, K = R2
+,

E = (0.5,0.5)+R2
+, P = [−1,1], and f : R2×R→ R2 be defined by

f (x, p) = 2p (x2
1x2

2,x
2
1x2

2
)
, ∀x = (x1,x2) ∈ R2.

Then, the conditions (i)-(iii) of Theorem 4.4 hold true. In order to apply Corollary 4.1, we need
only to check the arcwise connected K-convexity of f (·, p). For each x̄= (x̄1, x̄2) and x̂= (x̂1, x̂2)
in A, we consider the arc Γx̄,x̂ : [0,1]→ A defined by

Γx̄,x̂(t) =

{
(1−2t)x̄, if 0≤ t ≤ 0.5,
(2t−1)x̂, if 0.5 < t ≤ 1.

Then, for each t ∈ [0,1], we prove

f (Γx̄,x̂(t), p) ∈ (1− t) f (x̄, p)+ t f (x̂, p)−K. (4.10)

There are two cases for considering.
Case 1. If 0≤ t ≤ 0.5, then

f (Γx̄,x̂(t), p) = f ((1−2t)x̄, p) = 2p
(
(1−2t)4 (x̄1x̄2)

2 ,(1−2t)4 (x̄1x̄2)
2
)

∈ 2p
(
(1− t)(x̄1x̄2)

2 ,(1− t)(x̄1x̄2)
2
)
−K

∈ (1− t)2p
(
(x̄1x̄2)

2 ,(x̄1x̄2)
2
)
+ t2p((x̂1x̂2)

2,(x̂1x̂2)
2)−K

∈ (1− t) f (x̄, p)+ t f (x̂, p)−K,

and hence (4.10) holds.
Case 2. If 0.5 < t ≤ 1, then

f (Γx̄,x̂(t), p) = f ((2t−1)x̂, p) = 2p((2t−1)4(x̂1x̂2)
2,(2t−1)4(x̂1x̂2)

2)
∈ 2p(t(x̂1x̂2)

2, t(x̂1x̂2)
2)−K

∈ (1− t)2p
(
(x̄1x̄2)

2 ,(x̄1x̄2)
2
)
+ t2p((x̂1x̂2)

2,(x̂1x̂2)
2)−K

∈ (1− t) f (x̄, p)+ t f (x̂, p)−K,

and consequently (4.10) satisfies. Therefore, by Corollary 4.1, WBEff(A, f ) is nonempty-valued
and continuous on P. However, the vector-valued mapping f is not convex in the first component
as for x = (0.5,0.5),z = (1,0), t = 0.5. Hence,

1
2
( f (x)+ f (z)) = 2p

(
1

32
,

1
32

)
< 2p

(
9

256
,

9
256

)
= f

(
1
2

x+
1
2

z
)
.

Therefore, the results in [21, 34, 35] cannot work.
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5. A PRACTICAL CASE IN OPTIMIZATION

Let X,Y,W,A,P and f be defined as in Section 4. In this section, we apply the results ob-
tained in Theorems 4.2, 4.4, and Corollary 4.1 to address the (semi) continuity of the Benson
weakly efficient solution mappings of (PVOP) with respect to co-radiant sets.

Definition 5.1. [20, P. 167] A nonempty subset R of Y is said to be co-radiant if for all r ∈ R
and α ≥ 1, αr ∈ R.

The co-radiant set is a useful tool for studying approximate efficiency in optimization prob-
lems. To be more precise, via the co-radiant set, Gutiérrez et al. [36] introduced a new kind
of approximate solutions to unify several existing approximate solutions, and the authors also
established nonlinear scalarization results for the unified approximate solutions. Motivated by
[36], Gao et al. [37] introduced a variety of properly efficient solutions for vector optimization
problems and discussed their relationships as well as optimality conditions for these efficient
solutions via nonlinear scalarization method. Then, based on the Hiriart-Urruty orient distance,
Zhao et al. [38] provided nonlinear scalarization functions for vector optimization problems via
co-radiant sets, and then by employing this function, the authors obtained many improvement
versions of the results in [37] for Benson properly efficient solutions of concerning problems.
Next, Sayadi-bander et al. [39] introduced and studied properties of Bishop-Phelps co-radiant
sets and their duality, and then by using these results the authors established characterization
properties for approximate efficient points via separation conditions for co-radiant sets. Re-
cently, Gao and Xu [40] suggested several proper efficient solutions for multiobjective opti-
mization problems involving co-radiant sets such as Benson proper efficient solutions, Borwein
proper efficient solutions, proximal efficient solutions, Benson efficient solutions, super proper
efficient solutions, Henig global proper efficient solutions. Then, by using the linear scalar-
ization method, the authors have succeeded in studying optimality conditions and relations of
these proper efficiencies. For generalized settings and applications of co-radiant sets, we refer
the reader to typical works [41, 42, 43, 44, 45] and the references therein.

Motivated and inspired by above observations, in this section, we aim to propose the Benson
weakly efficient solution of parametric vector optimization problems with respect to the co-
radiant sets and study the existence and stability of solutions.

Let R ⊂ K \ {0Y} be a convex and solid co-radiant given set. We consider the following
parametric optimization problem (PVOP):

(PVOP) min f (x, p) subject to (x, p) ∈ A×P.

Based on the ideas of [20, 22, 36], we propose concepts of efficiency of (PVOP) via the co-
radiant set R as follows.

Definition 5.2. For each p ∈ P, a vector x0 ∈ A is called a Benson weakly efficient solution of
(PVOP) with respect to R, written x0 ∈cr-WBEff(A, f )(p) if cl(cone( f (A, p)− f (x0, p)+R))∩
(− intC) = /0, where C = cone(R).

Now, we apply the obtained results of the previous sections to discuss the corresponding
qualitative properties of the mapping cr-WBEff(A, f )(p).

Corollary 5.1. Assume that
(i) A is compact;
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(ii) f is C-continuous on A×P;
(iii) for each p ∈ P, f (·, p) is nearly R-subconvexlike on A.

Then, cr-WBEff(A, f ) is nonempty-valued and upper semicontinuous on P.

Chứng minh. In order to apply Theorem 4.2, we first prove that R is an improvemnet set in Y
with respect to C. It follows from R ⊂ K \ {0Y} that the vector zero does not belong to the
set R. For any y ∈ R+C, there exist r ∈ R and c ∈ C such that y = r+ c, which together with
C = cone(R) implies that we can find t ∈ R+, r̂ ∈ R such that

y = r+ tr̂ = (1+ t)
(

1
1+ t

r+
t

1+ t
r̂
)
∈ R,

as R is a convex co-radiant set. Thus, we have R+C ⊂ R, and so R+C = R.
Next, we check that R∩ (− intC) = /0. Since R⊂ K \{0Y} and K is a cone,

coneR =C ⊂ coneK = K. (5.1)

Consequently, C∩(−C) = {0} as K is a pointed cone. Hence, by R⊂C, we have R∩(− intC) =
/0. Therefore, all conditions of Theorem 4.2 are satisfied, and so the conclusions of Corollary
5.1 are followed from the mentioned theorem. �

By using the techniques given in the proof of Corollary 5.1, we also derive the following
results from Theorem 4.4 and Corollary 4.1.

Corollary 5.2. Assume that

(i) A is compact and arcwise connected;
(ii) f is C-continuous on A×P;

(iii) for each p ∈ P, f (·, p) is naturally arcwise connected C-quasiconvex as well as nearly
R-subconvexlike on A.

Then, cr-WBEff(A, f ) is nonempty-valued and continuous on P.

Corollary 5.3. Assume that

(i) A is compact and arcwise connected;
(ii) f is C-continuous on A×P;

(iii) for each p ∈ P, f (·, p) is arcwise connected C-convex on A;

Then, cr-WBEff(A, f ) is nonempty-valued and continuous on P.

To the best of our knowledge, until now there have not been any works on solvability and
stability of the Benson weakly efficient solutions of vector optimization problems with respect
to the co-radiant sets, and hence the results of this section are new.
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