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Abstract. In this paper, we consider optimal control problems with linear discrete state space
model, which originate from a class of turbofan engines. The optimization problem associated
with each moving horizon estimation (MHE) in classical model predictive control (MPC) is a qua-
dratic programming (QP) problem, and the general QP algorithms does not exploit the structural
features of the turbofan engine itself to improve the computational efficiency of the algorithm. In
the framework of model predictive control, the turbofan engine model makes the rolling optimiza-
tion subproblem exhibit a sparse structure. Based on this feature, the alternating direction method
of multipliers (ADMM) is employed to solve each optimization sub-problem and design an im-
proved MPC-ADMM algorithm for solving this class of optimal control problems. The simulation
results are compared with the MPC-QP algorithm by numerical examples to show the effectiveness
and superiority of the novel algorithm.
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1. INTRODUCTION

The aircraft engine is the core component of aircrafts. The safe, reasonable, effec-
tive, and stable operation and best performance of the engine cannot be achieved without
reliable control technology. Therefore, it is significant and essential to improve the con-
trol technology of the control system for aero-engine. Conventional linear regulators are
unable to the control systems with complex output limit protection as a result of their con-
servative nature; see, e.g., [1]. Model Predictive Control (MPC) which first appeared in the
late 1970s and is now known as rolling horizon control [2], is a type of control algorithm
with excellent dynamic control performance [3]. In recent years, MPC algorithms received
wide attention in the field of engine control [4, 5] because of its advantages of explicitly
processing engine constraints [6, 7], simplifying the engine control system structure [8],
and achieving real-time rolling optimization. Industrial control processes are often accom-
panied by nonlinearities and uncertainties, and MPC not only indicates theoretical ability
to handle the relevant constraints, but also has strong practicality. Indeed, MPC has been
widely used in numerous fields; see, e.g., [9, 10].

MPC essentially requires solving a series of optimization problems [11, 12]. Different
performance index in real-world problems generally require different optimization algo-
rithms. Traditionally, 1-norm and infinite-norm performance functions use linear program-
ming optimization algorithms; quadratic performance metrics, which in the most common
case use quadratic programming algorithms. Commonly used quadratic programming al-
gorithms in MPC are the interior point method [13, 14] and the active-set method [15].
Although MPC is able to consider the constraints in systems, the corresponding optimiza-
tion subproblems need to be solved online in real time to obtain their optimal control se-
quences at each sampling time, which will increase the computational and storage capacity
and limit the application of MPC in large-scale practical problems. Therefore, computa-
tional efficiency is crucial for solving MPC problems. There have been many improved
works in this area, for example, the extended Newton Raphson algorithm [16], the gra-
dient algorithm [17], and the ADMM algorithm (the common MPC problems: the Lasso
MPC problem for time-varying systems [18], the MPCT problem [19], the MPC problem
for systems with feedback gain [20], the BCMPC problem [21], and the symmetric MPC
problem [22]).

The traditional approach to solve the turbofan engine MPC problem usually converts it
into a series of quadratic programming problems, then solves with the assistance of the
SNOPT based on active set methods and the IPOPT based on interior methods, however,
the dimensionality of the variables of the quadratic programming problem depends on the
choice of the prediction and control horizon, which will bring two dilemmas: 1) it is diffi-
cult to obtain its analytical solution directly for the quadratic programming problem with
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inequality constraints; 2) as the control and prediction horizon keep increasing, the num-
ber of inequality constraints increases, and at each sampling, the quadratic programming
subproblem needs to repeatedly solve the corresponding KKT system, which will greatly
reduce the problem solving efficiency.

In this paper, an improved MPC-ADMM algorithm is obtained from the structural char-
acteristics of the turbofan aero-engine itself based on the idea of ADMM algorithms, which
make full use of the distributed optimization characteristics of ADMM and the sparsity
of MPC problems to improve the efficiency of solving such optimal control problems.
ADMM was first proposed by Glowiski and Marrocco [23], and Gabay and Mercier [24]
in the mid-1970s. The basic idea of the ADMM algorithm is to reduce the difficulty and
cost of solving a large-scale 2-block problem by transforming it into a number of small-
scale problems. Its primary advantages are (1) in theory, convergence is guaranteed for
any convex-valued function and constraints [25, 26] and (2) in practice, the enhanced La-
grangian term usually accelerates the convergence rate. The first-order properties of the
ADMM algorithm, its separable structure, and its potential distributive computing power
can be of great benefit to the solution and the study of large-scale problems.

Recently, there are some new results on ADMM algorithms for MPC problems. How-
ever, there are still some open problems in these studies that have not been solved yet.
In [27], the objective function is a conventional finite-time domain quadratic function. In
[28, 29], the output variables and the corresponding output restrictions are not considered.
In [30], the output of the system does not consider the control input or the direct effect of
the control input on the output. In [31], the bound constraints on the system outputs and
control inputs are not taken into account. In addition, there are few literatures on the appli-
cations of MPC-ADMM in the context of practical aero-engines. Therefore, in contrast to
the previous existing works, we consider the optimal control problem for a linear discrete
state space model of a turbofan aero-engine, including the output variables and the corre-
sponding output constraints, while considering the bound constraints on the control inputs
and the system outputs. The simulation results of the improved MPC-ADMM algorithm
and the MPC-QP algorithm are compared through simulation experiments with numerical
examples, which illustrate the effectiveness of the algorithm.

The remainder of this paper is organized as follows. In Section 2, we describe the
linear discrete state-space model of the turbofan engine. In Section 3, we perform state
and output predictions and transform the proposed optimal control problem into a linear
programming problem with inequality constraints. In Section 4, we apply the ADMM
algorithm to MPC rolling optimization, present the MPC-ADMM algorithm, and provide
the detailed steps. In Section 5, we present and analyze the comparison results to show
the efficiency of our method. To make the article more brief, we put some of the complex
derivations of the equations in the appendix at the end. Section 6 ends this paper.
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2. TURBOFAN ENGINE MODEL DESCRIPTION

The linear discrete state space model for turbofan engines are as follows

x(k+1) = Adx(k)+Bdu(k),

y(k) =Cdx(k)+Ddu(k),
(2.1)

where

x =
[

∆N f ∆Nc
]T

, y =
[

∆T48 ∆SmHPC
]T

, u =
[

∆Wf ∆VSV ∆VBV
]T

,

N f denotes the angular speed of the assembly formed by fan, LPC, and LPT, and Nc
denotes the angular speed of the HPC-HPT shaft assembly. For the consistency with the
standard terminology, N f and Nc denotes fan speed and core speed, respectively. Outlet
temperature of high pressure compressor T48 and high pressure compressor stall margin
∆SmHPC are regarded as outputs. The control variables are the deviation of fuel flow
Wf from the steady state, the deviation of the adjustable stator blade Angle VSV, and the
deviation of adjustable opening of the vent valve VBV, respectively.

3. PROBLEM REFORMULATION BASED ON MODEL PREDICTIVE CONTROL

3.1. Model-based prediction equations. To eliminate or reduce static error, we rewrite
model (2.1) as an incremental model[

x(k+1)
u(k)

]
=

[
Ad Bd
0 I

][
x(k)

u(k−1)

]
+

[
Bd
I

]
∆u(k),

y(k) =
[

Cd Dd
][ x(k)

u(k−1)

]
+Dd∆u(k),

(3.1)

where
∆u(k) = u(k)−u(k−1).

Denoting the augmented state vector as xa(k) =
[
x(k)T u(k−1)T ]T , the compact form of

model (3.1) is
xa(k+1) = Adaxa(k)+Bda∆u(k),

y(k) =Cdaxa(k)+Dda∆u(k),
(3.2)

where

Ada =

[
Ad Bd
0 I

]
, Bda =

[
Bd
I

]
, Cda =

[
Cd Dd

]
, Dda = Dd.

Assumption 3.1. Since the prediction of the future dynamics of the system requires con-
trol inputs for the entire prediction horizon, the following assumptions are added

• nu is the control horizon, ny is the prediction horizon, and satisfies nu ≤ ny;
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• ∆u(k+ j) = 0, j = nu,nu + 1, · · · ,ny, that is, outside the control time domain, the
control variable is 0.

Inspired by [32], the predicted states and the predicted output column can be obtained by
iterating model (3.2). Then the output of future prediction of the system can be calculated
by the following prediction equation:

x̂a = Pxxa(k)+Hx∆û,

ŷ = Pxa(k)+H∆û.
(3.3)

The derivation of the predicted states and predicted output column and the specific matrix
of coefficients can be found in the appendix.

3.2. Finite-time domain optimization problem with time forward rolling. The choice
of the objective function reflects the requirements for the system performance. In the
optimal control problem of turbofan engine, we want the system to be highly traceable, i.e.,
we want to find the optimal control so that the output of the predicted system is sufficiently
close to the output of the expected system. In addition, we also want the fluctuation of the
control to be as narrow as possible, so we add a quadratic form of the control variation to
the objective function, as the form below,

J =
ny

∑
i=1

e(k+ i)T e(k+ i)+
nu−1

∑
i=0

a∆u(k+ i)T
∆u(k+ i), (3.4)

where e(k) = r(k)− ŷ(k), r(k) is the vector of reference inputs (the given fan speed devi-
ation value), and a is the control weighting factor.

Assumption 3.2. In the process of tracking reference inputs, the control system needs
satisfy the following conditions,

• The deviation of fuel flow Wf , the deviation of adjustable stator blade Angle ∆V SV ,
and the deviation of adjustable opening of the vent valve ∆V BV are all within the
acceptable limits.
• The deviation of the outlet temperature of a high pressure compressor T48 and the

deviation of surge margin of high pressure compressor ∆SmHPC are all remain
within the allowable limits.

that is,
U ≤ u(k+ i)≤U , i = 0,1,2, · · · ,nu−1,

Y ≤ y(k+ i)≤ Y , i = 1,2, · · · ,ny,
(3.5)

which U , U , Y , and Y represent vectors containing boundary values of control quantity
and output quantity, respectively.
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At each sampling time, the control needs to be obtained by solving an optimization prob-
lem. Differing from the discrete optimal control algorithm, the predictive control does not
adopt a constant global optimization objective, but a finite-time domain optimization strat-
egy with time rolling forward. At each sampling time k, substitute ŷ(k) = Pxa(k)+H∆û
into objective function (3.4), and combine with constraints (3.5). The rolling optimization
problems need to be solved are as follows.

Problem. ROP1
min∆û J = (r−Pxa(k)−H∆û)T (r−Pxa(k)−H∆û)+a(∆û)T ∆û
s.t U ≤ u(k+ i)≤U , i = 0,1,2, · · · ,nu−1,

Y ≤ y(k+ i)≤ Y , i = 1,2, · · · ,ny.

Next, we express the input and output constraints as the functions of the form with
respect to ∆û. We transform the objective function and constraints of Problem ROP1 as
follows.

For the objective function, it is directly simplified to obtain:

J = ∆ûT (HT H +aI
)

∆û+2
(
xa(k)T PT H− rT H

)
∆û+ J0, (3.6)

where J0 = rT r− 2rT Pxa(k) + xa(k)T PT Pxa(k). The matrix form of control constraint
conditions are:

Cc∆û≤ du,

−Cc∆û≤ du.
(3.7)

The matrix form of control constraint conditions are:

M∆û≤ d. (3.8)

The detailed derivation of Equations (3.7) and (3.8) can be found in Appendix Part II.
Combining the above equation with cost function (3.6), we can obtain the quadratic

programming problem with inequality constraint.

Problem. ROP2
min
∆û

J = ∆ûT (HT H +aI
)

∆û+2
(
xa(k)T PT H− rT H

)
∆û

s.t M∆û≤ d.

Problem ROP2 is a quadratic programming problem with inequality constraints. The
quadprog function in Matlab (Optimization Toolbox) can be used to handle such opti-
mization problems. However, in practice, the direct use of Matlab leads to a significant
reduction in computational efficiency as the control and prediction time domains are ex-
tended and the number of inequality constraints increases. Therefore, in order to improve
computational efficiency, we consider applying the ADMM algorithm to the MPC rolling
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optimization problem based on the specificity of the structure of the aero-engine model in
the following section.

4. NUMERICAL SOLUTIONS VIA MPC-ADMM ALGORITHM

4.1. ADMM algorithm applied to the quadratic programming problem ROP2. First,
we transform the quadratic programming problem ROP2 with inequality constraints into
equality constraints and then apply the ADMM algorithm. We also give the convergence
analysis. By adding the relaxation variable z(≥ 0) to the inequality constraints, Problem
ROP2 can be transformed into a quadratic programming problem with the equality con-
straints.

Problem. ROP3

min
∆û

J = ∆ûT (HT H +aI
)

∆û+2
(
xa(k)T PT H− rT H

)
∆û

s.t M∆û+ z = d,(z≥ 0).
(4.1)

Let the current iteration point be (∆ûs,zs,λ s). By the ADMM algorithm framework
[33], the following iterative formula can be obtained

∆ûs+1 = argmin
{

Lβ (∆û,zs,λ s)
}
,

zs+1 = argmin
{

Lβ

(
∆ûs+1,z,λ s) | z≥ 0

}
,

λ
s+1 = λ

s +β
(
M∆ûs+1 + zs+1−d

)
,

(4.2)

where Lβ is the augmented Lagrangian function

Lβ (∆û,z,λ ) = ∆ûT (HT H +aI
)

∆û+2
(
xa(k)T PT H− rT H

)
∆û

+λ
T (M∆û+ z−d)+

β

2
‖M∆û+ z−d‖2.

By simplifying iterative formula (4.2), we arrive at
∆ûs+1 =−

[
2HT H +2aI +βMT M

]−1 [2HT (Pxa− r)+MT (λ s +β (zs−d))
]
,

zs+1 = max
{

0,−λ s+β(M∆ûs+1−d)
β

}
,

λ s+1 = λ s +β
(
M∆ûs+1 + zs+1−d

)
.

(4.3)
The optimal solution ∆û can be obtained by cyclic iterations based on (4.3). Based on
the system model and the first component of ∆û, we can calculate the state and output
quantities at k+ 1 moments, which can be used as the initial condition to solve the opti-
mal control sequence at k+ 1 moments, and the cycle iterates until the end of the whole



208 J. TENG, X. DU, L. WANG, X. WANG, J. WU

simulation time domain. Following the Section 3 of [33], it is not difficult to prove the
following convergence theorem.

Theorem 4.1. J
(
∆ûk) → J? as k → ∞, i.e., the objective function of the iterates ap-

proaches the optimal value.

Theorem 4.1 guarantees the convergence of the ADMM algorithm. It is worth noting
that since the objective function that we consider is strictly convex, the convergence of
the optimal solution is also guaranteed. Next, we apply the ADMM algorithm to the
rolling optimization process of MPC, propose the MPC-ADMM algorithm, and provide
the detailed steps.

4.2. MPC-ADMM algorithm design. Based on the previous discussion, we propose an
improved MPC algorithm, MPC-ADMM algorithm, under the MPC problem correspond-
ing to linear discrete state-space models of turbofan engine. In order to define the dis-
tance of each iteration point to the optimality system of the original problem, the primal
residual and the dual residual are defined in ADMM iteration. Similar to the derivation
in [33], we can obtain the reasonable termination criterion is that the primal residual∥∥M∆ûs+1 + zs+1−d

∥∥
2 and dual residual

∥∥βMT (zs+1− zs)∥∥
2 must be small. The algo-

rithm are given as follows

Algorithm 1 MPC-ADMM algorithm

Input: Constant matrix Ad,Bd,Cd,Dd; upper and lower bounds U ,U , Y ,Y ; control time
domain nu, prediction time domain ny; simulation time domain simhor, ε pri,εdual,β >
0,s = 0,a,r.

Output: Ensemble of classifiers on the current batch, En;
1: Given xa(k) and x(k), initial u.
2: Compute P,H,Cc,L,M,y,du,du,dy,dy,d.
3: Given (∆ûs,zs,λ s), obtain

(
∆ûs+1,zs+1,λ s+1)

4: if
∥∥M∆ûs+1 + zs+1−d

∥∥
2 ≥ ε pri and

∥∥βMT (zs+1− zs)∥∥
2 ≥ εdual , then

5: zs = zs+1, λ s = λ s+1

6: else Take the optimal control sequence as ∆ûs+1

7: end if
8: Take the first component ∆u(k) of ∆û(k), and obtain the current time optimal control

u(k);
9: Calculate state quantity x(k+1) and output quantity y(k+1);

10: Calculate augmented state xa(k+ 1), and return to Step 2 until the end of simhor in
the whole simulation time domain.
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5. NUMERICAL RESULTS

The example is taken from [6], which uses the CMAPSS-40K nonlinear engine model
near ground idle. The optimization objective is to generate a fast fan speed response
∆N f = 100r/min. At the same time, the control quantities ∆Wf ,∆VSV,∆VBV are kept
within acceptable limits. In addition, both output quantities ∆T48,∆SmHPC need to be
kept within the allowable range.

In this example, the parameters are set as follows: the control domains nu = 3, the
prediction time domains ny = 7, the simulation time simhor = 30, the control weighting
factor a= 0.01, the upper and lower bounds of control and output are U = [−1;−20;−0.5],
U = [2;15;0.4], Y = [−150;−10], Y = [300;20], ε pri = 0.07, εdual = 0.01,

Ad =

(
−3.3808 1.2954
0.4444 −3.0501

)
, Bd =

(
667.8408 −39.2134 −14.2485

1334 117.2730 −26.8107

)
,

Cd =

(
−0.0191 −0.1178
0.0158 −0.0037

)
, Dd =

(
289.0525 0.1332 1.2568
−10.9483 0.8137 −0.4766

)
.

It is worth noting that the parameters in this example are consistent with those in [6] for
comparison purposes.

5.1. Numerical results of the MPC-ADMM algorithm. The results of the control are
demonstrated in Fig. 1, and the control value does not exceed its given upper and lower
limits in the process of reaching the target value of the wind speed response. It can be seen
from Fig. 2 that the tracking quantity ∆N f reaches the target response value of 100r/min
in 0.06s with the two outputs ∆T48 and SMHPC, which do not exceed the allowed limit
values.

FIGURE 1. Control inputs FIGURE 2. Output response



210 J. TENG, X. DU, L. WANG, X. WANG, J. WU

5.2. Comparison between MPC-ADMM algorithm and MPC-QP algorithm. In order
to demonstrate the superiority of MPC-ADMM algorithm more directly, we compare the
results of in [6] with the simulation results of this paper in detail. In the listed figures and
tables, the results of MPC-QP are labeled with QP, the results of MPC-ADMM are labeled
with ADMM.

FIGURE 3. Comparison on
control variables

FIGURE 4. Comparison on
output variables

Both the MPC-ADMM and the MPC-QP algorithms obtain control that are within their
corresponding control ranges when tracking target values. Here we mainly compare the
differences between the two algorithms. As demonstrated in Fig. 3 and Fig. 4, in terms of
the control quantity ∆Wf , the control curves of the MPC-ADMM algorithm are lower than
those of the MPC-QP algorithm within 0.04s and 0.08s, and the tracking value ∆N f of the
MPC-ADMM algorithm is higher than that of the MPC-QP algorithm. In other words, un-
der the framework of MPC for turbofan aero-engines, the MPC-ADMM algorithm obtains
a faster response in terms of tracking quantities within 0.04s and 0.08s. On the other hand,
we gradually increase the prediction horizon ny and control horizon nu under the condi-
tion that the control constraint and output constraint are satisfied, and perform numerical
experiments separately to obtain a comparative table of CPU consumption time (Table 1)
and the corresponding graph (Fig. 5) for the two algorithms. For the convenience of dis-
cussion, we treat ny and nu as a whole and number them as serial number 1, serial number
2.... As the numbering increases, the corresponding time domain gradually increases, and
the CPU consumption time of the two algorithms increases. Note that the dimensions of
the decision variables and constraints demonstrate a positive correlation with the size of
the control and prediction time domains, so that when the time domain increases, the scale
of the optimization problem to be solved becomes larger. The MPC-ADMM algorithm
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consumes less CPU time than the MPC-QP algorithm, and the larger the time domain, the
bigger the difference. Therefore, these results reflect the advantages of the MPC-ADMM
algorithm in terms of less time consuming and faster response relative to the MPC-QP al-
gorithm, which further demonstrates the effectiveness and superiority of the MPC-ADMM
algorithm.

FIGURE 5. Relationship of serial number and time consumption

6. CONCLUSION

In this paper, the ADMM algorithm was embedded in the framework of the MPC to
solve the optimal control problem with turbofan engines. An improved MPC-ADMM al-
gorithm was proposed by transforming the large scale problem into a series of small scale
optimization subproblems by using the idea of the alternate projection method. Numeri-
cal results demonstrate that the improved MPC-ADMM algorithm can not only make the
tracking volume have higher response speed, but also reduce the CPU running time of the
system compared with the classical algorithm of quadratic programming, which greatly
improves the computational efficiency.
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TABLE 1. Comparison table of CPU(s) time consumption in
different horizons

Number Prediction time dom. Control time dom. ADMM/CPU(s) QP/CPU(s)

1 ny = 7 nu = 3 0.57920 0.83940
2 ny = 10 nu = 6 0.76740 1.19160
3 ny = 14 nu = 10 1.08670 1.41430
4 ny = 18 nu = 14 1.48750 2.08630
5 ny = 22 nu = 18 2.47020 3.43940
6 ny = 26 nu = 22 2.61850 4.46470
7 ny = 30 nu = 26 3.26190 6.02600
8 ny = 34 nu = 30 4.12608 8.59700
9 ny = 38 nu = 34 5.56626 12.07720
10 ny = 42 nu = 38 6.78416 16.08448
11 ny = 46 nu = 4 8.20898 19.93004
12 ny = 50 nu = 46 10.06792 24.80638
13 ny = 54 nu = 50 12.18096 32.22338
14 ny = 58 nu = 54 14.32200 37.17458
15 ny = 62 nu = 58 17.18480 44.45082
16 ny = 66 nu = 62 21.20732 51.91660
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APPENDIX

Part I Derivation of Equation (3.3). The predicted states are as follows:

xa(k+1) = Adaxa(k)+Bda∆u(k),

xa(k+2) = Adaxa(k+1)+Bda∆u(k+1)

= A2
daxa(k)+AdaBda∆u(k)+Bda∆u(k+1),

...

xa (k+nu) = Adaxa (k+nu−1)+Bda∆u(k+nu−1)

= Anu
daxa(k)+Anu−1

da Bda∆u(k)+Anu−2
da Bda∆u(k+1)

+ · · ·+Bda∆u(k+nu−1) ,
...

xa (k+ny) = Adaxa (k+ny−1)+Bda∆u(k+ny−1)

= Any
daxa(k)+Any−1

da Bda∆u(k)+Any−2
da Bda∆u(k+1)

+ · · ·+Any−nα

da Bda∆u(k+nu−1) .

The predicted output column can be obtained:

y(k+1) =Cdaxa(k+1)+Dda∆u(k+1)

=CdaAdaxa(k)+CdaBda∆u(k)+Dda∆u(k+1),

y(k+2) =Cdaxa(k+2)+Dda∆u(k+2)+CdaA2
daxa(k)

=CdaAdaBda∆u(k)+CdaBda∆u(k+1)+Dda∆u(k+2),
...

y(k+nu) =Cdaxa (k+nu)+Dda∆u(k+nu)+CdaAnu
daxa(k)

=CdaAnu−1
da Bda∆u(k)+CdaAnz−2

da Bda∆u(k+1)

+ · · ·+CdaBda∆u(k+nu−1) ,
...

y(k+ny) =Cdaxa (k+ny)+Dda∆u(k+ny)+CdaAny
daxa(k)

=CdaAny−1
da Bda∆u(k)+CdaAny−2

da Bda∆u(k+1)

+ · · ·+CdaAny−nu
da Bda∆u(k+nu−1) .
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The output of future prediction of the system can be calculated by the following prediction
equation:

x̂a = Pxxa(k)+Hx∆û,

ŷ = Pxa(k)+H∆û,

where

x̂a =

 xa(k+1)
...

xa (k+ny)

 , ŷ =
 y(k+1)

...
y(k+ny)

 ,

∆û =

 ∆u(k)
...

∆u(k+nu−1)

 ,P =


CdaAda
CdaAda

2

...
CdaAda

ny

 ,

Px =


Ada
Ada

2

...
Any

da

 ,Hx =


Bda 0 · · · 0

AdaBda Bda · · · 0
...

... . . . ...
Any−1

da BdaAny−2
da Bda · · ·A

ny−nu
da Bda

 ,

H =


CdaBda Dda · · · 0

CdaAdaBda CdaBda · · · 0
...

... . . . ...
CdaAny−1

da BdaCdaAda
ny−2Bda · · ·CdaAda

ny−nuBda

 .
Part II Derivation of Equation (3.7)-(3.8). The treatment for constraint conditions are as

follows:
(i) Control constraint. U ≤ u(k + i) ≤ U , i = 0,1,2, · · · ,nu− 1. Take i = 0, the control
constraints becomes U ≤ u(k) ≤U . Subtracting u(k− 1) from both sides to obtain U −
u(k− 1) ≤ u(k)− u(k− 1) ≤U − u(k− 1). Then U − u(k− 1) ≤ ∆u(k) ≤U − u(k− 1).
Taking k = k+1, U−u(k)≤ ∆u(k+1)≤U−u(k). It follows that U−u(k−1)≤ ∆u(k+
1)+∆u(k) ≤ U − u(k− 1). Taking k = k + 1, U − u(k− 1) ≤ ∆u(k + 2)+∆u(k + 1)+
∆u(k) ≤ U − u(k− 1), and so on, U − u(k− 1) ≤ ∆u(k+nu−1) + · · ·+ ∆u(k) ≤ U −
u(k−1). The matrix form can be expressed as

I0 · · ·0
II · · ·0
...
... . . .

II · · · I




∆u(k)
∆u(k+1)

...
∆u(k+nu−1)

≤


I
I
...
I

(U−u(k−1)),
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−


I0 · · ·0
II · · ·0
...
... . . .

II · · · I




∆u(k)
∆u(k+1)

...
∆u(k+nu−1)

≤−


I
I
...
I

(U−u(k−1)).

Let

Cc =


I0 · · ·0
II · · ·0
...
... . . .

II · · ·

 ,L =


I
I
...
I

 ,
du = L(U−u(k−1)),du =−L(U−u(k−1)).

Then the matrix form above becomes
Cc∆û≤ du,

−Cc∆û≤ du.

(ii) Output constraint. It can be obtained from Y ≤ y(k+ i)≤ Y , i = 1,2, · · · ,ny that

Y ≤ y(k+1)≤ Y ,

Y ≤ y(k+2)≤ Y ,
...

Y ≤ y(k+ny)≤ Y .

Using the definition of ŷ and the prediction Equation (3.3), one has
Y
Y
...
Y

−Pxa(k)≤ H∆û≤


Y
Y
...
Y

−Pxa(k),

and then M∆û≤ d, where

dy =


Y
Y
...
Y

−Pxa(k), dy =−


Y
Y
...
Y

+Pxa(k), M =


Cc
−Cc
H
−H

 , d =


du
du
dy
dy

 .
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