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FENCHEL SUBDIFFERENTIAL OPERATORS: A CHARACTERIZATION
WITHOUT CYCLIC MONOTONICITY
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Abstract. Fenchel subdifferential operators of lower semicontinuous proper convex functions on real
Banach spaces are classically characterized as those operators that are maximally cyclically monotone
or, equivalently, maximally monotone and cyclically monotone. This paper presents an alternative char-
acterization, which does not involve cyclic monotonicity. In the case of subdifferential operators of
sublinear functions, the new characterization substantially simplifies. Dually, the new characterization
of normal cone operators is very simple, too.
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1. INTRODUCTION

The Fenchel subdifferential is arguably the most fundamental notion in convex analysis. The
Fenchel subdifferential operator of a functional f : X → R∪{+∞} defined on a real Banach
space X is

∂ f : X ⇒ X∗

∂ f (x) := {x∗ ∈ X∗ : f (y)≥ f (x)+ 〈y− x,x∗〉 ∀y ∈ X} .
Here and in the sequel, X∗ is the dual space of X and 〈·, ·〉 : X ×X∗ → R denotes the duality
product, that is, 〈x,x∗〉 means the value of the continuous linear functional x∗ ∈ X∗ at x ∈ X . As
is well known and easy to prove, ∂ f is cyclically monotone. Recall that a set-valued operator
T : X ⇒ X∗ is said to be cyclically monotone if

k

∑
i=0
〈xi− xi+1,x∗i 〉 ≥ 0 for every (xi,x∗i ) ∈ T (i = 0,1, ...,k) , (1.1)

with k ≥ 1 arbitrary and xk+1 := x0.

Here and throughout the whole paper, operators are identified with their graphs, so that (x,x∗)∈
T means x∗ ∈ T (x) . Every cyclically monotone operator is monotone since monotonicity cor-
responds to the case when k = 1 in (1.1). Cyclic monotonicity is closely connected to subdif-
ferential operators as Rockafellar [1, Theorem 1] proved that, given T : X ⇒ X∗, in order that
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there exist a proper convex functional f : X → R∪{+∞} such that T ⊆ ∂ f , it is necessary and
sufficient that T is cyclically monotone. Consequently, if T is maximally (cyclically) mono-
tone, which means that T is (cyclically) monotone and not properly contained in any other
(cyclically) monotone operator, then T = ∂ f . On the other hand, subdifferential operators of
lower semicontinuous (l.s.c., in brief) proper convex functionals are maximally monotone [2,
Theorem A]. Therefore, one concludes that T : X ⇒ X∗ is the subdifferential operator of some
l.s.c. proper convex functional if and only if it is maximally (cyclically) monotone [2, Theorem
B]. An extension of this characterization to suitably defined subdifferentials of convex operators
was obtained by Kusraev [3].

The aim of this paper is to obtain an alternative characterization of subdifferential operators
not involving cyclic monotonicity. This is achieved in Theorem 3.1. However, as one may
expect, the new characterization is not as simple and elegant as the one in [2, Theorem B]. It still
involves maximal monotonicity, but the somewhat complicated conditions i) - iii) of Proposition
3.1, which replace cyclic monotonicity, make the new characterization less attractive than the
classical one. By sharp contrast, in the case of subdifferential operators of sublinear functionals,
the new characterization, which does not involve cyclic monotonicity either, is extremely simple
and has a very easy proof. Furthermore, since normal cones of closed convex sets are the
subdifferentials of their indicator functionals and the latter functionals are the conjugates of the
corresponding support functionals, which characterize sublinear functionals, one easily obtains
a simple characterization of normal cone operators (Theorem 2.1), because subdifferentials of
mutually conjugate functionals are inverse to each other.

The rest of this paper is structured as follows. Section 2 contains characterizations of normal
cone operators and subdifferential operators of l.s.c. proper sublinear functionals, and Section
3 characterizes subdifferential operators of general l.s.c. proper convex functionals.

The notation and terminology used in the paper is mostly standard, but it is explained here for
the reader’s convenience. The zero elements in X and X∗ are denoted 0X and 0X∗ , respectively.
The projection of X×X∗ onto X∗ is

ΠX∗ : X×X∗→ X∗

ΠX∗ (x,x∗) := x∗.

The bidual space of X is the dual X∗∗ of X∗. The restriction of a functional g : X∗∗→R∪{+∞}
to X (canonically identified with a subset of X∗∗) is denoted g|X . The domain and the range of an
operator T : X ⇒ X∗ are dom T := {x ∈ X : T (x) 6= /0} and range T :=∪x∈X T (x) , respectively.
The inverse operator of T is

T−1 : X∗⇒ X

T−1 (x∗) := {x ∈ X : x∗ ∈ T (x)} .

The closure and the convex hull of a subset C of a real Banach space X are denoted cl C and
conv C, repectively. Its barrier cone, its recession cone, and its indicator functional are

barr (C) :=
{

x∗ ∈ X∗ : sup
x∈C
〈x,x∗〉<+∞

}
,

0+ (C) := {d ∈ X : C+R+d =C} ,
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and

δC : X → R∪{+∞}

δC (x) :=
{

0 if x ∈C,
+∞ if x /∈C,

respectively. The normal cone operator to C is NC := ∂δC. If C 6= /0, its support functional is

σC : X → R∪{+∞}
σC (x∗) := supx∈C 〈x,x∗〉 .

In the case when X is the dual of another real Banach space Y, the support functional σC is
defined on the bidual Y ∗∗ since X∗ = Y ∗∗ in such a case. In the same way, in such a situation,
∂σC is a set-valued operator from X∗ into X∗∗. The epigraph of a functional f : X →R∪{+∞}
is the set

epi f := {(x,α) ∈ X×R : f (x)≤ α} .
A functional s : X→R∪{+∞} is said to be sublinear if it is convex and positively homogeneous,
the latter property meaning that for x ∈ s−1 (R) and λ ≥ 0 one has s(λx) = λ s(x) . Clearly, if s
is proper, then s(0) = 0.

The classical reference on convexity in finite dimension is Rockafellar’s book [4]. Convexity
in Banach spaces has been the subject of many excellent monographs, including [5, 6], and the
very recent [8]; the latter two books also considered functionals defined on locally convex real
topological vector spaces. Concerning monotonicity and its close relationship with convexity,
the interested reader may consult, for instance, [7, 9] and, for operators defined on Hilbert
spaces, the more recent [10].

2. NORMAL CONE OPERATORS OF CLOSED CONVEX SETS AND SUBDIFFERENTIALS OF

SUBLINEAR FUNCTIONALS

This section contains new and simple characterizations of normal cone operators of closed
convex sets and subdifferential operators of l.s.c. sublinear functionals. The first result gives a
simple sufficient condition for a monotone operator to be contained in the normal cone operator
of some closed convex set.

Proposition 2.1. If T : X ⇒ X∗ is monotone and 0X∗ ∈ ∩x∈dom T T (x) . Then

T ⊆ Ncl conv dom T . (2.1)

Proof. Let (x,x∗) ∈ T . For every y ∈ dom T, we have 0X∗ ∈ T (y) . Hence, by the monotonicity
of T, we have 〈y− x,x∗〉 ≤ 0. Thus,

dom T ⊆ {y ∈ X : 〈y− x,x∗〉 ≤ 0} . (2.2)

Since the right hand side in (2.2) is a closed convex set, it immediately follows that

cl conv dom T ⊆ {y ∈ X : 〈y− x,x∗〉 ≤ 0} ,

which, in view of x ∈ dom T ⊆ cl conv dom T, implies that x∗ ∈ Ncl conv dom T (x) , that is,
(x,x∗) ∈ Ncl conv dom T . This proves (2.1). �
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Corollary 2.1. If T : X ⇒ X∗ is monotone and range T = T (0X), then

T ⊆ ∂
(
σ cl conv T (0X )

)
|X . (2.3)

Proof. The monotonicity of T is equivalent to that of T−1, and the assumption range T = T (0X)

is equivalent to the inclusion 0X ∈
⋂

x∗∈dom T−1

T−1 (x∗) . Hence, using that

dom T−1 = range T = T (0X) ,

Proposition 2.1, applied to T−1 (regarded as a set-valued operator into X∗∗), yields

T−1 ⊆ Ncl conv T (0X ) = ∂δ cl conv T (0X ).

Therefore, for every (x,x∗) ∈ T, we have x ∈ T−1 (x∗)⊆ ∂δ cl conv T (0X ) (x
∗) . Thus, since x ∈ X ,

we obtain

x∗ ∈
(
∂δ cl conv T (0X )

)−1
(x)⊆ ∂

(
σ cl conv T (0X )

)
|X (x) .

This proves (2.3). �

Corollary 2.1 is to be compared to [11, Theorem 1], which establishes that a correspondence
T : Rn ⇒ Rn (interpreted as assigning to each price vector p a set of possible production plans
T (p)) is consistent with profit maximization behavior, that is, there exists a convex closed
production set Y ⊆ Rn such that for every price vector p ∈ Rn each supply decision z ∈ T (p)
maximizes the scalar product p ·y (i.e., the profit of producing y under the given prices) subject
to y ∈ Y , if it satisfies the law of supply (i.e., it is monotone) and is positively homogeneous of
degree 0 (i.e., T (λ p) = T (p) for every p ∈ Rn and λ > 0). Corollary 2.1 is simpler, as it does
not require the homogeneity condition; in its place, it has the assumption range T = T (0X),
which would be an immediate consequence of positive homogeneity of degree 0 if imposing
the mild extra hypothesis of T−1 being closed-valued.

Theorem 2.1. Let T : X ⇒ X∗. There exists a nonempty closed convex set C ⊆ X such that
T = NC if and only if T is maximally monotone and 0X∗ ∈ ∩x∈dom T T (x) .

Proof. The ”only if” statement is immediate. The ”if statement” follows from Proposition 2.1,
since Ncl conv dom T is monotone. �

The following theorem is related to [11, Theorem 2] in a similar way as Corollary 2.1 is
related to [11, Theorem 1],

Theorem 2.2. Let T : X ⇒ X∗. There exists an l.s.c. proper sublinear functional s : X →
R∪{+∞} such that T = ∂ s if and only if T is maximally monotone and range T = T (0X) .

Proof. The ”only if” statement is immediate. The ”if statement” follows from Corollary 2.1,
since ∂

(
σ cl conv T (0X )

)
|X is monotone. �



FENCHEL SUBDIFFERENTIAL OPERATORS 185

3. GENERAL SUBDIFFERENTIAL OPERATORS

To a given operator A : X ×R⇒X∗×R, we associate another operator AX : X⇒X∗, defined
by

AX (x) := ΠX∗

((⋃
λ∈R

A(x,λ )

)
∩ (X∗×{−1})

)
.

This section begins with two simple lemmas.

Lemma 3.1. Let C ⊆ X×R. There exists an l.s.c. proper convex functional f : X → R∪{+∞}
such that

C = epi f , (3.1)
if and only if the following conditions hold:

i) C is nonempty, convex and closed,
ii) (barr (C))∩ (X∗×{−1}) 6= /0,
iii) (0X ,1) ∈ 0+ (C) .

Proof. Only if. Conditions i) and iii) are immediate. Condition ii) follows from the fact that
(x∗,−1) ∈ barr (C) for every continuous affine minorant 〈·,x∗〉+b of f .

If. Define f : X → R∪{+∞,−∞} by

f (x) := inf{λ ∈ R : (x,λ ) ∈C} .
From i) and ii), it easily follows that f is minorized by a continuous affine functional. Hence
f (x)>−∞ for every x ∈ X . It is also clear that C ⊆ epi f , which, since C 6= /0, implies that f is
proper. To see that the opposite inclusion also holds, let (x,λ ) ∈ epi f . Then, for every µ > λ ,
there exists λ

′ < µ such that
(
x,λ ′

)
∈C; hence, by iii), (x,µ) ∈C. Letting µ → λ

+, we obtain
that (x,λ ) ∈C since C is closed according to i). We have thus proved (3.1). �

Lemma 3.2. Let f : X → R∪{+∞} and (x,λ ) ∈ X ×R. If (x∗,−1) ∈ Nepi f (x,λ ) , then λ =
f (x) .

Proof. If (x∗,−1) ∈ Nepi f (x,λ ) , then (x,λ ) ∈ epi f since otherwise Nepi f (x,λ ) would be
empty. It follows that f (x) ≤ λ < +∞, and hence (x, f (x)) ∈ epi f . This inclusion, together
with (x∗,−1) ∈ Nepi f (x,λ ) , yields

〈(x, f (x))− (x,λ ) ,(x∗,−1)〉 ≤ 0,

which simply means that λ ≤ f (x) , thus proving that λ = f (x) . �

The following corollary is an easy consequence of Lemma 3.2.

Corollary 3.1. If f : X → R∪{+∞} is convex and l.s.c., then
(
Nepi f

)
X = ∂ f .

The next result gives sufficient conditions for the operator AX : X⇒X∗ induced by a monotone
operator A : X ×R⇒X∗×R to be included in the subdifferential operator of an l.s.c. convex
functional.

Proposition 3.1. If A : X×R⇒X∗×R is monotone and satisfies:
i) (barr (cl conv dom A))∩ (X∗×{−1}) 6= /0,
ii) (0X ,1) ∈ 0+ (cl conv dom A) and
iii) (0X∗,0) ∈ ∩(x,λ )∈dom AA(x,λ ) ,
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then the functional f : X → R∪{+∞} given by epi f = cl conv dom A is well defined and
satisfies

AX ⊆ ∂ f . (3.2)

Proof. By Lemma 3.1, f is indeed well defined. Since A is monotone, by iii), Proposition 2.1
and (3.1), we have

A⊆ Nepi f . (3.3)

Let (x,x∗) ∈ AX . Then, by (3.3) and Lemma 3.2, we have

(x∗,−1) ∈
⋃

λ∈R
Nepi f (x,λ ) = Nepi f (x, f (x)) ,

and hence x∗ ∈ ∂ f (x) . This proves (3.2). �

The following result is the main one in this paper. It characterizes subdifferential operators
of general l.s.c. proper convex functionals within the class of maximally monotone operators.
Unlike the classical characterization [2, Theorem B], the new one does not involve cyclic mono-
tonicity.

Theorem 3.1. Let T : X ⇒X∗. There exists an l.s.c. proper convex functional f : X→R∪{+∞}
such that T = ∂ f if and only if T is maximally monotone and there exists a monotone operator
A : X×R⇒X∗×R satisfying conditions i) - iii) of Proposition 3.1 such that T = AX .

Proof. To prove the ”only if” statement, take A := Nepi f . Since dom Nepi f = epi f and epi f
is convex and closed, conditions i) and ii) follow from Lemma 3.1, whereas iii) is immediate.
Moreover, by Corollary 3.1, we have ∂ f = AX .

The ”if statement” is an immediate consequence of Proposition 3.1 since ∂ f is monotone. �
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