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Abstract. In this paper, we study some topological properties, in particular, arcwise connectedness and
connectedness of solution sets in set optimization, where the acting space is equipped with partial set
order relations. We obtain continuity, generalized convexity, and natural quasi arcwise connectedness of
the nonlinear scalarization function and use them to study some topological properties and convergence
of efficient and weak efficient solution sets in partially ordered set optimization. We also employ derived
results to vector-valued game theory with uncertainty.
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1. INTRODUCTION

Set optimization has gained increasing attention due to several applications in mathematical
finance, control theory, game theory, welfare economics, engineering and medical sciences. For
more details, see [1] and the references therein. Set optimization problem is based on compari-
son of values of the set-valued objective map by means of set order relations. Several kinds of
set order relations are available in the literature; see, e.g., [2, 3, 4]. Recently, Karaman et al.
[5] introduced set order relations on the family of sets involving the Minkowski difference. In
comparison to other existing set order relations, these set order relations are partial order rela-
tions on the family of bounded sets and hence provide a new approach to study set optimization
problems. Recently, set optimization with respect to partial set order relations has been studied
and investigated in [6, 7, 8, 9] and the references therein.

Nonlinear scalarization functions are essential tools to study set optimization problems in
terms of associated scalar optimization problems. By using nonlinear scalarization functions,
we can study optimality conditions, Ekeland’s variational principle, topological properties, the
existence results, and so on; see [7, 9, 10, 11, 12] and the references therein. It is well known
that the continuity and convexity of the nonlinear scalarizing function play an important role in
establishing existence and stability results. Therefore, it is important and interesting to study
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the continuity and convexity of the nonlinear scalarizing function introduced by Karaman et al.
[5].

Connectedness and arcwise connectedness are the most fundamental topological properties
of solution sets in set optimization problems. Also, the convergence of the solution sets in set
optimization is one of the most important aspect. Very recently, Han [13, 14] established the
connectedness and arcwise connecedness of the optimal solutions of set optimization problems
using both linear as well as nonlinear scalarization functions. Khushboo and Lalitha [9] stud-
ied the lower and upper convergence of the optimal solution sets of a sequence of perturbed
scalarized problems for the unified set optimization problem. Ansari et al. [6] studied the
Painlevé-Kuratowski convergence of the solution sets for perturbed set optimization problems
by using the locally Lipschitz continuity and the concept of ml-quasiconnectedness and strictly
ml-quasiconnectedness for set-valued map. Several authors studied the convergence of solution
sets of set optimization problems; see, e.g., [15, 16, 17] and the references therein. However,
in set optimization, the study of connectedness, arcwise connectedness, and convergence on the
ground of scalarization techniques is not much advanced and is still in initial stages.

Inspired by the work in [6, 11, 12, 14, 18, 19, 20], we consider the set optimization problem
equipped with partial set order relations. We drive the continuity, generalized convexity, and
arcwise connectedness of the nonlinear scalarization function for sets introduced by Karaman
[5]. We characterize the set of strict efficient and weak efficient solutions as the union of optimal
solutions of a family of scalar optimization problem scalarized by the nonlinear function. We
further derive the connectedness of efficient, strict efficient and weak efficient solution sets of
partially ordered set optimization problems using the objective set-valued maps to be strictly
nearly convexlike and natural arcwise quasi connectedness. We also derive the convergence
of the strict efficient and weak efficient solution sets. Finally, we derive the connectedness
and arcwise connectedness of solution sets to vector-valued game theory with uncertainty as an
application.

The rest of the paper is organized as follows. In Section 2, we recall some basic notions and
definitions which will be used in the sequel. In Section 3, we study the continuity of the non-
linear scalarization function for sets considered in [5]. In Section 4, we study the generalized
convexity and the natural arcwise quasi connectedness of the nonlinear scalarization function
for sets. In Section 5, we establish the connectedness and arcwise connectedness of the efficient,
strict efficient and weak efficient solution sets using the strictly nearly convexlikeness and the
natural arcwise quasi connectedness of the set-valued maps. In Section 6, we study the con-
vergence of the strict efficient and weak efficient solution sets by using nonlinear scalarization
function. Section 7 deals with an application to vector-valued game theory with uncertainty.
Last section concludes the paper. Section 8 ends this paper.

2. PRELIMINARIES

Throughout the paper, unless otherwise specified, we assume that X and Y are real normed
vector spaces and 0 denotes the zero vector in Y . We denote the family of nonempty proper
subsets of Y and the family of nonempty proper bounded subsets of Y by P(Y ) and B(Y ),
respectively. For a set A ∈P(Y ), we denote by intA, clA and Ac, the interior, the closure and
the complement of A, respectively.
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For A,B ∈P(Y ), the algebraic sum of A and B is defined by

A+B := {a+b : a ∈ A, b ∈ B}=
⋃
b∈B

(A+b),

and the Minkowski or Pontryagin difference of A and B, considered in [21], is defined as

A−̇B := {y ∈ Y : y+B⊆ A}=
⋂
b∈B

(A−b).

We now recall some basic properties of Minkowski difference.

Proposition 2.1. [5] Let A,B ∈P(Y ) and α ∈ Y . The following assertions hold.

(a) (α +A)−̇B = α +(A−̇B).
(b) A−̇(α +B) =−α +(A−̇B).
(c) If A is closed, then A−̇B is also closed.
(d) If A is bounded, then A−̇A = {0}.

We now recall the following ordering relations �ml
K and ≺ml

K on P(Y ), introduced by Kara-
man et al. [5]. For A,B,K ∈P(Y ),

A�ml
K B :⇔ (A−̇B)∩ (−K) 6= /0,

and
A≺ml

K B :⇔ (A−̇B)∩ (−intK) 6= /0.

Karaman et al. [5, Corollary 4] proved that the relation �ml
K is partial order relation on B(Y )

provided that K is a pointed convex cone in Y with 0 ∈ K. The relation �ml
K is compatible

with addition see [5, Proposition 7(i)]. Moreover, the relation �ml
K is compatible with scalar

multiplication if and only if K is a cone, see [5, Proposition 7(ii)].
We now recall a set order relation, namely, weak l-set order relation, proposed by Kuroiwa

[4]. For A,B ∈P(Y ) and proper convex cone K in Y with nonempty interior,

A≺l
K B :⇔ B⊆ A+ intK.

It can be observed from [5, Proposition 9] that A≺ml
K B ⇒ A≺l

K B.
We now consider the following set optimization problem

Minimize F(x)

subject to x ∈ S,
(P)

where /0 6= S ⊆ X and F : X ⇒ Y is a set-valued map with F(x) 6= /0 for all x ∈ X . Let F(S) =⋃
x∈S F(x).
To define the notions of efficient solutions of the problem (P) with respect to �ml

K and ≺ml
K ,

we assume that F(x)∈B(Y ) for all x∈ X and K is a closed convex pointed cone with nonempty
interior. We now recall some notions of efficient solutions of the problem (P).

Definition 2.1. [5, Definition 7] A point x̄ ∈ S said to be
(a) an ml-efficient solution of (P) if there does not exist any x ∈ X such that F(x)�ml

K F(x̄)
and F(x) 6= F(x̄), that is, either F(x)�ml

K F(x̄) or F(x) = F(x̄), for any x ∈ X ;
(b) a weak ml-efficient solution to (P) if there does not exist any x ∈ X such that F(x)≺ml

K
F(x̄).
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(c) a strict ml-efficient solution to (P) if there does not exist any x ∈ X\{x̄} such that F(x)
�ml

K F(x̄).

We recall a weaker notion of efficient solution with respect to ≺l
K form the book by Khan et

al. [1]. A point x̄ ∈ S said to be a weak l-efficient solution of (P) if there does not exist any
x ∈ X such that F(x)≺l

K F(x̄).
We denote the set of ml-efficient, weak ml-efficient, strict ml-efficient, and weak l-efficient

solutions of (P) by ml−Eff(F,K), ml−WEff(F,K), ml−SEff(F,K), and l−WEff(F,K), re-
spectively. From the above definitions, it is clear that ml − SEff(F,K) ⊆ ml − Eff(F,K) ⊆
ml−WEff(F,K).

Remark 2.1. From [9, Theorem 2.2], we observe that

l−WEff(F,K)⊆ ml−WEff(F,K).

However, the reverse inclusion may fail to hold; see [9, pp. 6].

A nonempty subset S of X is said to be an arcwise connected set if for any z1,z2 ∈ S there
exists a continuous map ϕz1,z2 : [0,1]→ S such that ϕz1,z2(0) = z1 and ϕz1,z2(1) = z2, see [22,
Section 6.2]. Also, it is well-known that an arcwise connected set is a connected set.

To characterize ml-efficient and weak ml-efficient solutions, Karaman et al. [5] introduced
the scalarization function Iml

k (·, ·) : P(Y )×P(Y )⇒ R∪{±∞} := R defined by

Iml
k (A,B) = inf{t ∈ R : A�ml

K tk+B},

for A,B ∈P(Y ) and k ∈ intK.
Karaman et al. [5] studied the following properties of the function Iml

k to establish scalariza-
tions.

Proposition 2.2. [5] Let A1,A2,A,B∈P(Y ) and t ∈R. The function Iml
k (·, ·) : P(Y )×P(Y )→

R has the following properties:

(a) Iml
k (A,B) = +∞ if and only if A−̇B = /0.

(b) If B is bounded, then Iml
k (A,B)>−∞.

(c) If A is bounded, then Iml
k (A,A) = 0.

(d) If A−̇B is compact and K is closed, then

Iml
k (A,B)≤ t ⇔ A�ml

K tk+B.

(e) Iml
k (A,B)< t if and only if A≺ml

K tk+B.
(f) Iml

k (·,B) is ml-increasing on P(Y ), that is, if

A1 �ml
K A2 ⇒ Iml

k (A1,B)≤ Iml
k (A2,B).

(g) Iml
k (·,B) is strictly ml-increasing on compact sets in P(Y ), that is, for all compact sets

A1,A2 ∈P(Y ) if

A1 ≺ml
K A2 ⇒ Iml

k (A1,B)< Iml
k (A2,B).

Remark 2.2. It may be noted that Proposition 2.2(d) can be proved on similar lines of [5,
Proposition 9 (i)].
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3. CONTINUITY OF NONLINEAR SCALARIZATION FUNCTION

This section deals with the continuity of the nonlinear scalarization function Iml
k which plays

a crucial role to establish arcwise connectedness and convergence of the solution sets.
We next recall the upper and lower semi-continuity notions for set-valued maps from the

book by Khan et al. [1].

Definition 3.1. [1, Definition 3.1.1(a)-(c)] Let x̄ ∈ X . A map F : X ⇒ Y is said to be
(a) upper semi-continuous at x̄ iff, for any open set F(x̄) ⊆ V , there exists a neighborhood

U of x̄ such that F(x)⊆V , for all x ∈U ∩X .
(b) lower semi-continuous at x̄ iff, for any open set V such that F(x̄)∩V 6= /0, there exists a

neighborhood U of x̄ such that F(x)∩V 6= /0, for all x ∈U ∩X .
(c) continuous at x̄ if F is both upper semi-continuous and lower semi-continuous at x̄.

We say that F is upper semi-continuous and lower semi-continuous on X if it is upper semi-
continuous and lower semi-continuous at each point x ∈ X , respectively. We say that F is
continuous on X if it is both upper semi-continuous and lower semi-continuous on X .

We recall sequential characterizations of upper semi-continuity and lower semi-continuity
from [1].

Lemma 3.1. [1, Proposition 3.1.6(iv), Definition 3.1.7, Proposition 3.1.9] Let F : X ⇒ Y and
x̄ ∈ X.
(i) F is lower semi-continuous at x̄ ∈ X iff, for any sequence (xn)n∈N ⊆ X such that xn → x̄
and ȳ ∈ F(x̄) there exists a sequence (yn)n∈N ⊆ Y converging to ȳ such that yn ∈ F(xn) for
sufficiently large values of n.
(ii) F is compact at x̄ iff, for any sequences (xn)n∈N ⊆ X with xn→ x̄ and (yn)n∈N with yn ∈
F(xn), there exist a subsequence (ynk)k∈N of (yn)n∈N and ȳ ∈ F(x̄) such that ynk → ȳ.
(iii) If F is compact at x̄, then F is upper semi-continuous at x̄.
(iv) F is compact at x̄ iff F is upper semi-continuous at x̄ and F(x̄) is compact.

The following lemma is required to prove the connectedness of efficient and weak efficient
solution sets.

Lemma 3.2. [1, Proposition 3.1.8] Let /0 6= S⊆ X and F : S ⇒Y be upper semi-continuous and
F(x) 6= /0 for every x ∈ S.

(i) If S is compact and F(x) is compact for each x ∈ S, then F(S) is compact.
(ii) If S is connected and F(x) is connected for each x ∈ S, then F(S) is connected.

The following lemma is required to prove the connectedness and arcwise connectedness of
efficient and weak efficient solution sets.

Lemma 3.3. Let /0 6= S⊆ X and F : S ⇒ Y be continuous map and F(x) 6= /0 for every x ∈ S.
(i) [23, Theorem 4.5.1] If S is connected and F(x) is connected for each x ∈ S, then F(S)

is arcwise connected.
(ii) [23, Theorem 4.5.2] If S is arcwise connected and F(x) is arcwise connected for each

x ∈ S, then F(S) is connected.

We now proceed to prove the continuity of the function Iml
k . Let Λ1 and Λ2 be two real normed

vector spaces. Let A : Λ1 ⇒Y and B : Λ2 ⇒Y be two set-valued maps. Define Θk : Λ1×Λ2→R
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by
Θk(λ ,µ) := Iml

k (A(λ ),B(µ)) := inf{t ∈ R : A(λ )�ml
K tk+B(µ)}, (3.1)

for all (λ ,µ) ∈ Λ1×Λ2.
Throughout the section, we assume that A(λ ),B(µ) ∈ B(Y ) and A(λ )−̇B(µ) 6= /0, for all

(λ ,µ) ∈ Λ1×Λ2. From Proposition 2.2 (a) and (b), we have

−∞ < Θk(λ ,µ)<+∞ for all (λ ,µ) ∈ Λ1×Λ2.

We next define a set-valued map Φ : Λ1×Λ2 ⇒ Y by

Φ(λ ,µ) := A(λ )−̇B(µ) = {y ∈ Y : y+B(µ)⊆ A(λ )},
for all (λ ,µ) ∈ Λ1×Λ2.

We next show that the map Φ is compact and lower semi-continuous which will be used to
prove the continuity of the set-valued map Θk.

Lemma 3.4. If A is upper semi-continuous and compact valued on Λ1 and B is lower semi-
continuous on Λ2, then Φ is compact on Λ1×Λ2.

Proof. Let {(λn,µn)}n∈N ⊆ Λ1×Λ2 be such that (λn,µn)→ (λ0,µ0) and zn ∈ Φ(λn,µn). We
have to show that there exists a subsequence {znk}k∈N of {zn}n∈N such that znk→ z0 ∈Φ(λ0,µ0),
that is, z0 +B(µ0)⊆ A(λ0).

Let v0 ∈ B(µ0). As B is lower semi-continuous at v0, by Lemma 3.1(i) there exists vn ∈ B(µn)
such that vn→ v0. Since zn ∈Φ(λn,µn) we have zn +B(µn)⊆ A(λn) which implies that

wn = zn + vn ∈ A(λn), for all n ∈ N. (3.2)

Using upper semi-continuity of A and Lemma 3.1(iv), we get a subsequence {wnk}k∈N such that
wnk→w0 and w0 ∈A(λ0). From (3.2), it follows that znk =wnk−vnk→w0−v0 as k→∞. Hence
there exists a subsequence {znk}k∈N of {zn}n∈N such that znk → z0 = w0− v0. This implies that
z0 + v0 ∈ A(λ0). Since v0 ∈ B(µ0) is arbitrary, it follows that z0 +B(µ0)⊆ A(λ0). �

Lemma 3.5. If A is upper semi-continuous and compact valued on Λ1 and B is lower semi-
continuous on Λ2, then Φ is upper semi-continuous on Λ1×Λ2.

Proof. The proof follows from Lemma 3.4 and Lemma 3.1(iii). �

Lemma 3.6. If A is lower semi-continuous on Λ1 and B is upper semi-continuous and compact
valued on Λ2, then Φ is lower semi-continuous on Λ1×Λ2.

Proof. Let {(λn,µn)}n∈N ⊆ Λ1×Λ2 be such that (λn,µn)→ (λ0,µ0) and z0 ∈ Φ(λ0,µ0). As
z0 ∈Φ(λ0,µ0) it follows that

z0 +B(µ0)⊆ A(λ0). (3.3)
Let w0 ∈ B(µ0) and wn ∈ B(µn). By Lemma 3.1(iv), there exists a subsequence {wnk}k∈N of
{wn}n∈N such that wnk → w0. It follows from (3.3) that z0 +w0 ∈ A(λ0). As A is lower semi-
continuous at λ0, it follows that there exists a sequence sn ∈ A(λn) such that sn→ z0 +w0. Let
zn = sn−wn. Then, zn +wn = sn ∈ A(λn) and zn→ z0. Since wn ∈ B(µn) is arbitrary, it follows
that zn +B(µn)⊆ A(λn), that is, zn ∈Φ(λn,µn). �

We now present the continuity of the function Θk.

Theorem 3.1. Let Φ : Λ1×Λ2 ⇒ Y be a continuous function on Λ1×Λ2. Then the function
Θk(·, ·) is a continuous on Λ1×Λ2.
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Proof. Let ε > 0 be any real number and (λ0,µ0) ∈ Λ1 ×Λ2. Let Θk(λ0,µ0) = t̄. Then
A(λ0) �ml

K (t̄ − ε)k + B(µ0), that is, [A(λ0)−̇((t̄− ε)k+B(µ0))]∩ (−K) = /0, which implies
that [A(λ0)−̇((t̄− ε)k+B(µ0))]⊆ (−K)c. By using Proposition 2.1 (b), it follows that

−(t̄− ε)k+[A(λ0)−̇B(µ0)]⊆ (−K)c,

that is,
Φ(λ0,µ0) = A(λ0)−̇B(µ0)⊆ (−K)c +(t̄− ε)k.

As Φ is continuous on Λ1×Λ2, there exists a neighbourhood U1
λ0
×U1

µ0
of (λ0,µ0) such that

Φ(λ ,µ) ⊆ (−K)c +(t̄ − ε)k for all (λ ,µ) ∈ U1
λ0
×U1

µ0
, which further implies that A(λ ) �ml

K

(t̄− ε)k+B(µ) for all (λ ,µ) ∈U1
λ0
×U1

µ0
. Hence,

Θk(λ ,µ)> t̄− ε, for all (λ ,µ) ∈U1
λ0
×U1

µ0
. (3.4)

From Proposition 2.2(d), we have A(λ0)�ml
K B(µ0)+ t̄k, that is, there exists−k

′ ∈−K such that

−k
′
+ t̄k+B(µ0)⊆ A(λ0).

For any ε > 0, it follows that (−k
′− ε

2k)+ ε

2k+ t̄k+B(µ0)⊆A(λ0), which implies that A(λ0)≺ml
K

(t̄ + 1
2ε)k+B(µ0), that is, [A(λ0)−̇((t̄ + 1

2ε)k+B(µ0))]∩ (−intK) 6= /0. Using Proposition 2.1
(b), we have that [−(t̄ + 1

2ε)k+Φ(λ0,µ0)]∩ (−intK) 6= /0. As Φ is lower semi-continuous at
(λ0,µ0), it follows that there exists a neighbourhood U2

λ0
×U2

µ0
of (λ0,µ0) such that

[−(t̄ + 1
2

ε)k+Φ(λ ,µ)]∩ (−intK) 6= /0, for all (λ ,µ) ∈U2
λ0
×U2

µ0
.

It follows that A(λ )≺ml
K (t̄ + 1

2ε)k+B(µ) for all (λ ,µ) ∈U2
λ0
×U2

µ0
. Hence,

Θk(λ ,µ)≤ t̄ +
1
2

ε < t̄ + ε, for all (λ ,µ) ∈U2
λ0
×U2

µ0
. (3.5)

Let Uλ0 = U1
λ0
∩U2

λ0
and Uµ0 = U1

µ0
∩U2

µ0
. Then it follows from (3.4) and (3.5) that t̄ − ε <

Θk(λ ,µ) < t̄ + ε for all (λ ,µ) ∈ Uλ0 ×Uµ0, which implies that |Θk(λ ,µ)−Θk(λ0,µ0)| < ε

for all (λ ,µ) ∈ Uλ0 ×Uµ0. Hence, Θk is continuous at (λ0,µ0). Since (λ0,µ0) ∈ Λ1×Λ2 is
arbitrary, therefore, Θk is continuous on Λ1×Λ2. �

The following a direct consequence of Lemma 3.5, Lemma 3.6 and Theorem 3.1.

Corollary 3.1. If A and B are continuous on Λ1 and Λ2, respectively, with nonempty compact
values, then the function Θk(·, ·) is continuous on Λ1×Λ2.

4. GENERALIZED CONVEXITY AND NATURAL ARCWISE QUASI CONNECTEDNESS OF

NONLINEAR SCALARIZATION FUNCTION

In this section, we discuss the generalized convexity and the natural arcwise quasi connect-
edness of the nonlinear scalarization function Iml

k . We also establish the convexity of Iml
k over

P(Y ).
Corresponding to the set-valued map F : X ⇒ Y , we redefine the function Θk given in (3.1).

Let Θk : X × X → R be defined by Θk(x,u) := Iml
k (F(x),F(u)) for all x,u ∈ X . From now

onwards, we assume that F(x)−̇F(u) 6= /0 for all x,u ∈ X . From Proposition 2.2 (a) and (b), we
have−∞ <Θk(x,u)<+∞ for all x,u∈ X . We next prove the convexity of the function Iml

k (·,B),
for B ∈P(Y ).
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Proposition 4.1. Let B ∈P(Y ). Then Iml
k (·,B) is a convex function on P(Y ).

Proof. Let µ ∈ [0,1] and A1,A2 ∈P(Y ). For any t > 0, we have

A1 �ml
K (Iml

k (A1,B)+ t)k+B and A2 �ml
K (Iml

k (A2,B)+ t)k+B.

Using the compatibility of the relation �ml
K with respect to addition and scalar multiplication,

we have

µA1 +(1−µ)A2 �ml
K µ(Iml

k (A1,B)+ t)k+µB+(1−µ)(Iml
k (A2,B)+ t)k+(1−µ)B,

that is, there exists k
′ ∈ K such that

−k
′
+µ(Iml

k (A1,B)+ t)k+(1−µ)(Iml
k (A2,B)+ t)k+µB+(1−µ)B⊆ µA1 +(1−µ)A2,

which gives

−k
′
+µ(Iml

k (A1,B)+ t)k+(1−µ)(Iml
k (A2,B)+ t)k+B⊆ µA1 +(1−µ)A2.

Hence,
µA1 +(1−µ)A2 �ml

K (µIml
k (A1,B)+(1−µ)Iml

k (A2,B)+ t)k+B,
that is,

Iml
k (µA1 +(1−µ)A2,B)≤ µIml

k (A1,B)+(1−µ)Iml
k (A2,B).

�

Mastroeni and Rapcsák [24, Definition 4.1(ii)] introduced a notion of nearly cone-convexlike
set-valued maps. We define similar notions with respect to the relations �ml

K and ≺ml
K .

Definition 4.1. Let S⊆ X and F : S ⇒ Y be a set-valued map. The map F is said to be
(a) nearly ml-K-convexlike on S if, for all x1,x2 ∈ S, there exist z ∈ S and µ ∈ (0,1) such

that F(z)�ml
K (1−µ)F(x1)+µF(x2).

(b) strictly nearly ml-K-convexlike on S if, for all x1,x2 ∈ S, x1 6= x2, there exist z ∈ S and
µ ∈ (0,1) such that F(z)≺ml

K (1−µ)F(x1)+µF(x2).

If F : S→ R, then we refer to the notions as nearly R+-convexlike and strictly nearly R+-
convexlike on S, respectively. We next establish convexlikeness of the function Θk in the first
variable provided that the set-valued map F is convexlike on S.

Theorem 4.1. Let u ∈ S.
(i) If F is nearly ml-K-convexlike on S, then the function Θk(·,u) is nearly R+-convexlike

on S.
(ii) If F(x) is compact for all x ∈ S and F is strictly nearly ml-K-convexlike on S, then the

function Θk(·,u) is strictly nearly R+-convexlike on S.

Proof.
(i) Let F be nearly ml-K-convexlike on S. Then, for all x1,x2 ∈ S, there exists z∈ S and µ ∈ (0,1)
such that F(z) �ml

K (1− µ)F(x1)+ µF(x2). Using Proposition 2.2 (f) and Proposition 4.1, we
obtain

Θk(z,u) = Iml
k (F(z),F(u)) ≤ Iml

k ((1−µ)F(x1)+µF(x2),F(u))

≤ (1−µ)Iml
k (F(x1),F(u))+µIml

k (F(x2),F(u))

= (1−µ)Θk(x1,u)+µΘk(x2,u).
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(ii) This follows similar lines by using Proposition 2.2 (g) and Proposition 4.1. �

Motivated by the notion of natural quasi K-convexity of set-valued maps given in [19, Defi-
nition 2.2], we define the notion of natural arcwise quasi K-connectedness for set-valued maps
in terms of the relations �ml

K and ≺ml
K .

Definition 4.2. Let S ⊆ X be a nonempty arcwise connected set with respect to arc ϕ and
F : S ⇒ Y be a set-valued map. The map F is said to be

(a) natural arcwise ml-quasi K-connected on S if, for any x1,x2 ∈ S and for any t ∈ [0,1],
there exists µ ∈ [0,1] such that F(ϕx1,x2(t))�ml

K (1−µ)F(x1)+µF(x2).
(b) strictly natural arcwise ml-quasi K-connected on S if, for any x1,x2 ∈ S with x1 6= x2

and for any t ∈ (0,1), there exists µ ∈ [0,1] such that F(ϕx1,x2(t)) ≺ml
K (1−µ)F(x1)+

µF(x2).

We refer the above notions as natural arcwise quasiR+-connected and strictly natural arcwise
quasi R+-connected on S, respectively, provided F : S→ R.

We now establish natural arcwise quasi R+connectedness of the function Θk on S.

Theorem 4.2. Let S be arcwise connected and u ∈ S.
(i) If F is natural arcwise ml-quasi K-connected on S, then the function Θk(·,u) is natural

arcwise quasi R+-connected function on S;
(ii) If F(x) is compact for all x ∈ S and F is strictly natural arcwise ml-quasi K-connected

on S, then the function Θk(·,u) is strictly natural arcwise quasi R+-connected function
on S.

Proof. The proof follows on similar lines of Theorem 4.1. �

5. CONNECTEDNESS AND ARCWISE CONNECTEDNESS OF SOLUTION SETS

This section deals with the connectedness and arcwise connectedness of ml-efficient, weak
ml-efficient, and strict ml-efficient solution sets in partially ordered set optimization problems.

We now consider the following parametric scalar optimization problem associated with x ∈ S

Minimize Iml
k (F(u),F(x))

subject to u ∈ S.
(P(x))

We define the set-valued maps Γ : S ⇒ S and ϒ : S ⇒ S by

Γ(x) := {w ∈ S : Iml
k (F(w),F(x))≤ Iml

k (F(u),F(x)), ∀u ∈ S},
:= {w ∈ S : Θk(w,x)≤Θk(u,x), ∀u ∈ S},

and

ϒ(x) := {w ∈ S : Iml
k (F(w),F(x))< Iml

k (F(u),F(x)), ∀u ∈ S},
:= {w ∈ S : Θk(w,x)< Θk(u,x), ∀u ∈ S},

respectively.
In the next theorem, we characterize the set of weak ml-efficient solutions in terms of the

image of the set-valued map Γ.

Theorem 5.1. Assume that F(x) is compact for all x ∈ S. Then ml−WEff(F,K) = Γ(S).
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Proof. Let x̄ ∈ ml−WEff(F,K), which implies that F(x)⊀ml
K F(x̄) for any x ∈ S. From Propo-

sition 2.2 (e), it follows that Iml
k (F(x),F(x̄))≥ 0,∀x ∈ S. Since F(x) is bounded for each x ∈ S,

by Proposition 2.2 (c), we have Iml
k (F(x̄),F(x̄)) = 0. Thus

Iml
k (F(x),F(x̄))≥ 0 = Iml

k (F(x̄),F(x̄)), ∀x ∈ S,

that is, x̄∈ Γ(x̄)⊆ Γ(S). Let w∈ Γ(S). Then there exists x̄∈ S such that w∈ Γ(x̄), which implies
that Θk(w, x̄)≤Θk(u, x̄) for all u ∈ S, that is,

Iml
k (F(w),F(x̄))≤ Iml

k (F(u),F(x̄)), ∀u ∈ S. (5.1)

Assume that w /∈ml−WEff(F,K), that is, there exists w0 ∈ S such that F(w0)≺ml
K F(w). Using

Proposition 2.2 (g), we obtain Iml
k (F(w0),F(x̄)) < Iml

k (F(w),F(x̄)), which contradicts (5.1).
Hence w ∈ ml−WEff(F,K) and Γ(S)⊆ ml−WEff(F,K). �

In the following theorem, we characterize the set of strict ml-efficient solutions in terms of
the image of the set-valued map ϒ.

Theorem 5.2. ml−SEff(F,K) = ϒ(S).

Proof. Let x̄ ∈ ml − SEff(F,K). Then F(x) �ml
K F(x̄) for all x ∈ S\{x̄}, which implies that

Iml
k (F(x),F(x̄))> 0 for all x∈ S\{x̄}. From Proposition 2.1(d), we further have Iml

k (F(x),F(x̄))>
0 = Iml

k (F(x̄),F(x̄)) for all x ∈ S\{x̄}, that is, x̄ ∈ ϒ(x̄)⊆ ϒ(S). Let w ∈ ϒ(S). Then there exists
x̄ ∈ S such that w ∈ ϒ(x̄) and so Θk(w, x̄)< Θk(u, x̄), ∀u ∈ S, that is,

Iml
k (F(w),F(x̄))< Iml

k (F(u),F(x̄)), ∀u ∈ S. (5.2)

Assume that w /∈ ml−SEff(F,K). Then there exists w0 ∈ S\{w} such that F(w0) �ml
K F(w).

Using Proposition 2.2 (f), we have

Iml
k (F(w0),F(x̄))≤ Iml

k (F(w),F(x̄)),

which contradicts (5.2). Hence w ∈ ml−SEff(F,K) and so ϒ(S)⊆ ml−SEff(F,K). �

We next show that the set of ml-efficient, weak ml-efficient, and strict ml-efficient solutions
of problem (P) are equal provided that F is strictly natural arcwise ml-quasi K-connected.

Proposition 5.1. Assume that
(a) S is an arcwise connected set with respect to arc ϕ;
(b) F is strictly natural arcwise ml-quasi K-connected on S.

Then ml−Eff(F,K) = ml−WEff(F,K) = ml−SEff(F,K).

Proof. It is suffices to prove that ml−WEff(F,K)⊆ ml−Eff(F,K).
Let x̄ ∈ ml−WEff(F,K). If x̄ /∈ ml−Eff(F,K), then there exists x̂ ∈ S such that

F(x̂)�ml
K F(x̄) and F(x̂) 6= F(x̄). (5.3)

Clearly, x̂ 6= x̄. Since F is strictly natural arcwise ml-quasi K-connected on S, then, for any
t ∈ (0,1), there exists µ ∈ [0,1] such that

F(ϕx̄,x̂(t))≺ml
K µF(x̄)+(1−µ)F(x̂). (5.4)

By (5.3) and (5.4), together with transitivity of the relation �ml
K , and the fact that F(x̄) ⊆

µF(x̄)+(1−µ)F(x̄), we have F(ϕx̄,x̂(t))≺ml
K F(x̄), which contradicts the fact that x̄ /∈WEff(F,K).

The proof of second equality follows on the similar lines. �
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5.1. Arcwise connectedness of solution sets using arcwise quasi-connected set-valued maps.
In this subsection, we derive the arcwise connectedness of ml-efficient, strict ml-efficient and
weak ml-efficient solution sets of the problem (P) using arcwise quasi-connected set-valued
maps.

We prove that Γ is arcwise connected-valued map.

Theorem 5.3. Assume that
(a) S is an arcwise connected set with respect to arc ϕ;
(b) F is natural arcwise ml-quasi K-connected on S.

Then, Γ(x) is arcwise connected set with respect to arc ϕ , for all x ∈ S.

Proof. Let t ∈ (0,1) and x1,x2 ∈ Γ(x),x1 6= x2. Then, for any x̄ ∈ S,

Θk(x1,x)≤Θk(x̄,x) and Θk(x2,x)≤Θk(x̄,x). (5.5)

From Theorem 4.2 (i), it follows that the function Θk(·,x) is natural arcwise quasiR+-connected
function on S. Then, for any t ∈ (0,1), there exists µ ∈ [0,1] such that

Θk(ϕx1,x2(t),x)≤ (1−µ)Θk(x1,x)+µΘk(x2,x).

Using (5.5), it follows that ϕx1,x2(t)∈ Γ(x) for any t ∈ (0,1). Clearly, by (a) we have ϕx1,x2(0) =
x1 and ϕx1,x2(1) = x2. Hence Γ(x) is an arcwise connected set with respect to arc ϕ . �

We now establish the arcwise connectedness and connectedness of the sets of ml-efficient,
weak ml-efficient, and strict ml-efficient solutions.

Theorem 5.4. Assume that
(a) S is compact and arcwise connected set with respect to arc ϕ;
(b) F is continuous on S;
(c) F is natural arcwise ml-quasi K-connected on S;
(d) F(x) is compact for all x ∈ S.

Then ml−WEff(F,K) is a connected set.
Moreover, if we replace the condition (c) by the following condition
(c
′
) F is strictly natural arcwise ml-quasi K-connected on S;

then ml−Eff(F,K) and ml−SEff(F,K) are connected sets.

Proof. We divide the proof into the following two steps:
Step 1: Γ(x) is nonempty.

Let x ∈ S. Using Theorem 3.1 it follows that Θk(·,x) is continuous on S. Hence there exists
w ∈ S such that Θk(w,x) = min

u∈S
Θk(u,x), which implies that Γ(x) 6= /0.

Step 2: Γ is upper semi-continuous on S.
Assume on the contrary that Γ is not upper semi-continuous at x0 ∈ S. Then there exist an

open set U containing Γ(x0), a sequence {xn} in S converging to x0 and wn ∈ Γ(xn) such that
wn /∈U for all n. Since S is compact so without loss of generality we assume that wn→ w0 for
some w0 ∈ S. Since wn ∈ Γ(xn) we have Θk(wn,xn)≤ Θk(u,xn) for all u ∈ S. By Theorem 3.1,
it follows that Θk(w0,x0) ≤ Θk(u,x0) for all u ∈ S, that is, w0 ∈ Γ(x0). As Γ(x0) ⊆U we have
w0 ∈U . Thus we arrive at a contradiction as wn → w0 but wn /∈U for all n. From Theorem
5.3 we have Γ(x) is arcwise connected for each x ∈ S and hence connected set. Further, using
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Lemma 3.2 (ii) and Step 2, we obtain that Γ(S) is an connected set. In view of Theorem 5.1,
we have ml−WEff(F,K) = Γ(S) which implies that ml−WEff(F,K) is a connected set. Using
Proposition 5.1, we obtain that ml−Eff(F,K) and ml−SEff(F,K) are connected sets. �

Remark 5.1. Han [14] studied the connectedness of the approximate solution sets in set opti-
mization problems for lower set order relations. But our results involve different set order re-
lations and the convexity of the constraint set S is weaken by arcwise connectedness. Also, we
have defined and used new notions of natural arcwise ml-quasi K-connected set-valued maps.
However, our results are not comparable to [14].

5.2. Connectedness and arcwise connectedness of solution sets using nearly convexlike
set-valued maps. In this subsection, we discuss the connectedness and arcwise connectedness
of ml-efficient, strict ml-efficient and weak ml-efficient solution sets of the problem (P) using
nearly K-convexlike set-valued map.

We show that the set of ml-efficient, strict ml-efficient and weak ml-efficient solutions of the
problem (P) coincide if F is strictly nearly ml-K-convexlike on S.

Proposition 5.2. Let F be strictly nearly ml-K-convexlike on S with nonempty compact values.
Then

ml−Eff(F,K) = ml−WEff(F,K) = ml−SEff(F,K).

Proof. From Proposition 5.1, one can obtain desired conclusion immediately. �

We next establish the connectedness and arcwise connectedness of the solutions sets of the
problem (P).

Theorem 5.5. Assume that
(a) S is a compact and connected (respectively, arcwise connected) set;
(b) F is continuous on S;
(c) F is strictly nearly ml-K-convexlike on S;
(d) F(x) is compact for all x ∈ S.

Then ml−WEff(F,K) is a connected (respectively, arcwise connected) set. Moreover, ml−
Eff(F,K) and ml−SEff(F,K) are connected (respectively, arcwise connected) sets.

Proof. We divide the proof into the following two steps:
Step 1: Γ(x) is a singleton set for all x ∈ S.

Assume to the contrary that there exist z1,z2 ∈ Γ(x) such that z1 6= z2. By Theorem 4.1 (ii) it
follows that Θk(·,x) is strictly nearly R+-convexlike on S. Hence there exists z3 ∈ S such that

Θk(z3,x)<
1
2

Θk(z1,x)+
1
2

Θk(z2,x) = Θk(z1,x)≤Θk(z,x), ∀z ∈ S.

Hence z3 ∈ Γ(x) which contradicts the fact that Θk(·,x) achieves minimum at z1.
Step 2: Γ is continuous on S.

Assume on the contrary that Γ is not continuous at x0 ∈ S. Then there exist an open set U
containing Γ(x0), a sequence {xn} in S converging to x0 and wn ∈ Γ(xn) such that wn /∈U for all
n. Since S is compact so without loss of generality we assume that wn→ w0 for some w0 ∈ S.
Since wn ∈ Γ(xn) we have Θk(wn,xn)≤ Θk(u,xn) for all u ∈ S. By Theorem 3.1, it follows that
Θk(w0,x0) ≤ Θk(u,x0) for all u ∈ S, that is, w0 ∈ Γ(x0). As Γ(x0) is singleton and Γ(x0) ⊆U
we have w0 ∈U . Thus we arrive at a contradiction as wn → w0 but wn /∈U for all n. By the
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hypothesis, S is a connected (respectively, arcwise connected) set. By the first step of Theorem
5.4, it follows that Γ(x) is nonempty for each x∈ S. Since Γ(x) is a singleton set for all x∈ S and
the map Γ is continuous on S, it is connected (respectively, arcwise connected) for each x ∈ S.
From Theorem 5.1, we have ml−WEff(F,K) = Γ(S). Hence, by Lemma 3.3(i) (respectively,
Lemma 3.3(ii)), it follows that ml−WEff(F,K) is a connected (respectively, arcwise connected)
set. It follows from Proposition 5.2 that ml−Eff(F,K) and ml−SEff(F,K) are also connected
(respectively, arcwise connected) sets. �

Remark 5.2. Anh et al. [18] studied the connectedness and arcwise connectedness of the
efficient solution sets in vector optimization problem. Recently, Sharma and Lalitha [20] studied
the connectedness of the efficient and weak efficient solution sets in generalized semi infinite set
optimization. From Theorem 5.5, we can observe that we do not need any convexity assumption
on the constraint set S to establish the connectedness and arcwise connectedness of the solution
sets of set optimization problems. Therefore, Theorem 5.5 extends [18, Theorem 4.1] from
vector-valued maps to set-valued maps. Also, we use different the set order relations, used in
[20].

6. CONVERGENCE OF SOLUTION SETS VIA NONLINEAR SCALARIZATION

This section deals with the convergence of strict efficient and weak efficient solution sets
by means of scalarizations. In particular, we derive the lower and upper Painlevé–Kuratowski
set convergence of the sequence of efficient and weak efficient solution sets, respectively of
parametric scalarized optimization problems. The main tools used are scalarization results and
the continuity of the map associated with parametric scalar problem.

We recall the notion of Painlevé–Kuratowski convergence for a sequence of sets in X from
[1]. Let {Ωn}n∈N be a sequence in X . Consider

Ls(Ωn) := {x ∈ X : ∃ xnk → x with xnk ∈Ωnk},

Li(Ωn) := {x ∈ X : ∃ xn→ x with xn ∈Ωn, for n sufficiently large}.
The set Ls(Ωn) (respectively, Li(Ωn)) is called upper (respectively, lower) limit of the sequence
{Ωn}n∈N. We say that the sequence {Ωn}n∈N ⊆ X converges to the set Ω⊆ X in the Painlevé–

Kuratowski sense, denoted by Ωn
K→Ω if Ls(Ωn) ⊆Ω⊆ Li(Ωn).

The inclusion Ls(Ωn) ⊆ Ω (respectively, Ω ⊆ Li(Ωn)) is referred to as upper (respectively,
lower) part of Painlevé–Kuratowski convergence, denoted by Ωn

K
⇀ Ω (resp. Ωn

K
⇁ Ω). Clearly,

Li(Ωn) ⊆ Ls(Ωn).
From [25], we recall that a sequence {Ωn}n∈N of subsets of X upper converges to a set

Ω⊆ X in the Hausdorff sense if ρ(Ωn,Ω)→ 0, where ρ(Ωn,Ω) := sup
x∈Ωn

d(x,Ω). We denote this

convergence by Ωn
H
⇀ Ω. If Ω is a closed set and Ωn

H
⇀ Ω, then Ωn

K
⇀ Ω, see [17, Corollary

2.1].
We now recall the following lemma, which will be used in the sequel.

Lemma 6.1. [15, Lemma 3.3] Let Ωn
H
⇀ Ω, where Ω is a nonempty compact set in X and

{Ωn}n∈N is a sequence of nonempty subsets of X. Then, for any sequence {xn}n∈N with xn ∈Ωn,
there exists a subsequence {xnk}k∈N of {xn}n∈N such that xnk → x and x ∈Ω.
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We consider the following family of parametric scalar optimization problems by perturbing
the feasible set of the scalar problem (P(x)). We consider the problem (Pn(x)) for each n ∈ N,
where Sn ⊆ X is a nonempty set and x ∈ Sn, as follows

Minimize Iml
k (F(u),F(x))

subject to u ∈ Sn.
(Pn(x))

We denote the set of minimal solutions of (Pn(x)) by Γn(x).
We now establish the lower part of convergence of the set of minimal solutions of the per-

turbed problem (Pn(x)) to the set of minimal solutions of (P(x)).

Theorem 6.1. Assume that
(a) Sn

K
⇁ S,

(b) F is continuous and compact-valued on X,
(c) Sn

H
⇀ S and S is compact.

Then Γn(Sn)
K
⇁ ϒ(S).

Proof. Let w ∈ ϒ(S) which implies that w ∈ ϒ(x) for some x ∈ S, that is,

Iml
k (F(w),F(x))< Iml

k (F(u),F(x)), (6.1)

for all u ∈ S. Since Sn
K
⇁ S, then there exist sequences {wn}n∈N and {xn}n∈N in Sn such that

wn→w and xn→ x. We claim that for sufficiently large n, Iml
k (F(wn),F(xn))≤ Iml

k (F(u),F(xn))
for all u ∈ Sn. Assume to the contrary that there exists a subsequence {nk}k∈N and ŵnk ∈ Snk

such that
Iml
k (F(ŵnk),F(xnk))< Iml

k (F(wnk),F(xnk)). (6.2)

Since Sn
H
⇀ S and S is compact, therefore by Lemma 6.1 there exists a subsequence {ŵnkl

}l∈N
of {ŵnk}k∈N and ŵ ∈ S such that ŵnkl

→ ŵ. Taking limit along the subsequences in (6.2) and
using Theorem 3.1 we have Iml

k (F(ŵ),F(x))≤ Iml
k (F(w),F(x)), which contradicts (6.1). �

We next prove the upper part of convergence of the set of minimal solutions of the perturbed
problem (Pn(x)) to the set of minimal solutions of (P(x)).

Theorem 6.2. Assume that the conditions (a)-(c) of Theorem 6.1 hold. Then

Γn(Sn)
K
⇀ Γ(S).

Proof. Let w ∈ Ls(Γn(Sn)). Then, there exist a subsequence {wnk}k∈N with wnk ∈ Γnk(Snk) such

that wnk → w. Let wnk ∈ Γnk(xnk) for some xnk ∈ Snk . Since xnk ∈ Snk and Snk
H
⇀ S, it follows by

Lemma 6.1 that there exists a subsequence {xnkl
}l∈N of {xnk}k∈N and x ∈ S such that xnkl

→ x.

It is sufficient to show that w ∈ Γ(x). Let x̂ ∈ S. Since Sn
K
⇁ S, there exists a sequence {x̂n}n∈N

with x̂n ∈ Sn such that x̂n→ x̂. As wnkl
∈ Γnkl

(xnkl
), we have

Iml
k (F(wnkl

),F(xnkl
))≤ Iml

k (F(x̂nkl
),F(xnkl

)).

By Theorem 3.1 it follows that Iml
k (F(w),F(x))≤ Iml

k (F(x̂),F(x)) and hence, w ∈ Γ(x). �

By using Theorem 5.2, Theorem 6.1, Theorem 6.2, Proposition 5.1, and Proposition 5.2, we
obtain the convergence to sets of weak efficient solutions and strict efficient solutions.



SOME TOPOLOGICAL PROPERTIES OF SOLUTION SETS 177

Corollary 6.1. Assume that the conditions (a)-(c) of Theorem 6.1 hold and F is strictly nearly
ml-K-convexlike (or, strictly natural arcwise ml-quasi K-connected) on X. Then

(a) Γn(Sn)
K→ ml−WEff(F,K).

(b) Γn(Sn)
K→ ml−SEff(F,K).

Remark 6.1. Khushboo et al. [12] and Ansari et al. [6] studied similar results for solution
sets in set optimization problems with different set order relations. However, our results are not
comparable to them.

7. APPLICATION TO GAME THEORY WITH UNCERTAINTY

This section deals with an application of the derived results to uncertain game theory with
vector-valued objective map. In particular, we establish the arcwise connectedness and connect-
edness of ml-efficient, weak ml-efficient and strict ml-efficient solutions for uncertain vector-
valued games with uncertain parameter.

Consider the game G := (N,{Ωi},{ξi},U )i∈N , where N := {1,2, · · · ,n} is a finite player set,
Ωi (a nonempty subset of real normed space X) is the set of strategies of the ith player for each
i ∈ N and setting Ω := Πi∈NΩi, ξi : Ω×U →Y is the playoff function of the ith player for each
i ∈ N and the uncertainty set U . Set Ω−i := Π j∈N\{i}Ω j. For each i ∈ N, we define

ω−i := {ω1, · · · ,ωi−1,ωi+1, · · · ,ωn} ∈Ω−i, ∀ω = (ω1, · · · ,ωn) ∈Ω.

For each i ∈ N, ω̄i ∈Ωi, we define

(ω̄i,ω−i) := {ω1, · · · ,ωi−1, ω̄i,ωi+1, · · · ,ωn} ∈Ω.

The image of the uncertainty set U and all ω ∈Ω under ξi is the set

ξi(ω,U ) := {ξi(ω,u) : u ∈U }

which represent all possible realizations of the vector-valued loss function when decision wi is
assumed. These sets will be compared by using set order relations �ml

K and ≺ml
K in order to

obtain the notions of robust Nash equilibria.
Motivated by the notions of robust Nash equilibria from [26, Definition 3.1], we define the

following notions of robust Nash equilibria for vector-valued games with uncertain parameter.

Definition 7.1. An element ω̂ = (ω̂1, ω̂2, · · · , ω̂n) ∈Ω is said to be

(a) a robust Nash equilibrium for the game G if and only if for any i ∈ N, there is no
ωi ∈ Ωi such that fi(ωi, ω̂−i,U ) �ml

K fi(ω̂,U ) and fi(ωi, ω̂−i,U ) 6= fi(ω̂,U ), that is,
either fi(ωi, ω̂−i,U )�ml

K fi(ω̂,U ) or fi(ωi, ω̂−i,U ) = fi(ω̂,U ), for any ωi ∈Ωi;
(b) a weak robust Nash equilibrium for the game G if and only if for any i ∈ N, there is no

ωi ∈Ωi such that ξi(ωi, ω̂−i,U )≺ml
K ξi(ω̂,U ).

(c) a strict robust Nash equilibrium for the game G if and only if for any i ∈ N, there is no
ωi ∈Ωi such that ξi(ωi, ω̂−i,U )�ml

K ξi(ω̂,U ).

We denote the set of robust Nash equilibrium, weak robust Nash equilibrium and strict robust
Nash equilibrium for the game G by ml−REff(F,K), ml−RWEff(F,K) and ml−RSEff(F,K),
respectively.
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An element ω̂ = (ω̂1, ω̂2, · · · , ω̂n) ∈ Ω is a robust Nash or weak robust Nash equilibrium if
and only if ω̂i ∈ Ωi is a efficient or a weak efficient solution, respectively, of the following set
optimization problem

Minimize ξi(ωi, ω̂−i,U )

subject to ωi ∈Ωi,
(Pi)

for each i ∈ N.
We now establish the arcwise connectedness of the vector-valued game G with uncertainty

using strictly natural arcwise ml-quasi K-connected set-valued maps.

Theorem 7.1. Assume that
(a) for each i ∈ N, Ωi is nonempty, compact and arcwise connected subset of X;
(b) w 7→ ξi(ω,U ) is continuous on Ω;
(c) w 7→ ξi(x,U ) is natural arcwise ml-quasi K-connected set-valued map on Ω;
(d) ξi(ω,U ) is compact for all ω ∈Ω.

Then the set of weak robust Nash equilibrium elements (ml−RWEff(F,K)) is a connected set.
Moreover, if we replace condition (c) by the following condition

(c
′
) w 7→ ξi(x,U ) is strictly natural arcwise ml-quasi K-connected set-valued map on Ω;

then the set of robust Nash equilibrium elements (ml−REff(F,K)) and the set of strict robust
Nash equilibrium elements (ml−RSEff(F,K)) are connected sets.

We now establish the connectedness and arcwise connectedness of the vector-valued game G
with uncertainty using strictly nearly ml-K-convexlike maps.

Theorem 7.2. Assume that
(a) for each i ∈ N, Ωi is nonempty, compact and connected (respectively, arcwise con-

nected) subset of X;
(e) ω 7→ ξi(ω,U ) is continuous on Ω;
(f) ω 7→ ξi(ω,U ) is strictly nearly ml-K-convexlike on Ω;
(g) ξi(ω,U ) is compact for all x ∈Ω.

Then the set of weak robust Nash equilibrium elements (ml−RWEff(F,K)) is connected (re-
spectively, arcwise connected) set. Moreover, the set of robust Nash equilibrium elements
(ml−REff(F,K)) and the set of strict robust Nash equilibrium elements (ml−RSEff(F,K))
are connected (respectively, arcwise connected) sets.

8. CONCLUSIONS

In this paper, we investigated the continuity and convexity of the nonlinear scalarization
function introduced by Karaman et al. [5]. Furthermore, we studied the topological properties,
namely, connectedness, arcwise connectedness and convergence of efficient, strict efficient, and
weak efficient solution sets of partially ordered set optimization problems by means of scalar-
ization. We applied our results to vector-valued games with uncertainty. It will be interesting to
establish these topological properties under weaker assumptions and for other kinds of set order
relations.
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