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LAGRANGE DUALITY OF VECTOR VARIATIONAL INEQUALITIES

XIAOQI YANG
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Abstract. In this paper, we investigate Lagrange dualities for a vector variational inequality problem.
For a vector variational inequality problem with convex inclusion constraints, we develop an equivalent
saddle point formulation via scalarization. For a vector variational inequality problem with linear con-
straints, we formulate a dual vector variational inequality via that of a linear multiobjective optimization
problem and show that for a solution of a vector variational inequality problem, there is one correspond-
ing solution for its dual. We give some examples to illustrate the results.
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1. INTRODUCTION

The vector variational inequality problem was introduced in [1]. This model has found var-
ious applications in vector optimization problems, vector complementarity problems, vector
equilibriums, vector traffic equilibrium problems and Minty vector variational inequality; see
[2, 3, 4, 5, 6, 7] and the references therein. The advantage of a vector variational inequality ap-
proach over the vector optimization one is that the equilibrium is not necessarily the extremum
of a functional, so that no such functional must be supposed to exist.

The dual vector variational inequality in the sense of Mosco [8] was investigated in [9] in
terms of vector conjugate functions studied in [10, 11]. One drawback of Mosco’s type for-
mulation is that the nonlinear mapping involved in the vector variational inequality problem is
required to be one-to-one.

In this note, some dual vector variational inequality problems of Lagrangian type are formu-
lated for vector variational inequality problems with convex inclusion constraints and convex
polyhedral constraints, respectively, and their relations are discussed. For a vector variational
inequality problem with convex inclusion constraints, we apply a scalarization technique to
transform it to a scalar variational inequality problem. A saddle point problem or a primal-dual
formulation is proposed via that of a scalar variational inequality in Banach spaces. Equivalent
relations of a solution of a vector variational inequality problem and its saddle point formulation
are obtained. We make use of the scalarization and saddle point results in [12, 13, 14] in this
approach.

E-mail address: mayangxq@polyu.edu.hk.
Received March 22, 2022; Accepted November 4, 2022.

c©2023 Journal of Applied and Numerical Optimization

149



150 XIAOQI YANG

For vector variational inequality problems with convex polyhedral constraints (denoted by
VVI), we formulate their duals (denoted by DVVI) via that (denoted by DMOP) of linear mul-
tiobjective optimization problems (denoted by MOP). Mature duality theories for linear multi-
objective optimization problems and their duals are available in the literature; see [10, 14, 15],
and will be employed in the study. We obtain relations between such vector variational inequal-
ity problems and their duals in finite dimensional Euclidean spaces. These relations show that
for a solution of the vector variational inequality problem, there is a corresponding solution of
its dual, but not vice versa in general. We summarize these relations among VVI, MOP, DMOP
and DVVI (with a positive orthant ordering) in Figure 1. The outer clockwise arrows illustrate
that for a given solution of VVI, a solution of DVVI can be found via MOP and DMOP, while
the inner anticlockwise arrows show that for a given solution of DVVI, a solution of VVI may
not be found unless the Pareto solution x∗′ corresponding to the solution of DVVI is equal to a
prior solution, x∗, of VVI.
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FIGURE 1. The relations among VVI, MOP, DMOP and DVVI

We also give some simple examples to illustrate the obtained dual relations in both cases.
Let X , Y and Z be Banach spaces, Y ∗ be the dual space of Y , and the dual pair between Y ∗

and Y be denoted by 〈·, ·〉. Let L(X ,Y ) be the space of linear continuous operators from X to
Y . Let P be a nonempty closed and convex set of Y and y0 ∈ P. The normal cone of P at y0 is
defined by

NP(y0) = {y∗ ∈ Y ∗|〈y∗,y− y0〉 ≥ 0,∀y ∈ P}.
The following definitions can be found in [14]. Let D⊂Y be a convex cone with a nonempty

interior intD, if necessary, and l(D) denote the set D∩ (−D). The following orderings are
defined respectively:

x≤E y if and only if y− x ∈ E,

x 6≤E y if and only if y− x 6∈ E,

where E can be either D, or intD, or D\{0}.
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Let A ⊂ Y . A point a ∈ A is a Pareto minimal point of A with respect to D if a ≥D b for
some b ∈ A, then b≥D a. The set of all Pareto minimal points of A with respect to D is denoted
by Min(A|D). A point a ∈ A is a weak Pareto minimal point of A with respect to D if a ∈
Min(A|{0}∪ intD). The set of all weak Pareto minimal points of A with respect to D is denoted
by WMin(A|D). A point a ∈ A is a proper Pareto minimal point of A with respect to D if there
exists a convex cone K which is not the whole space and contains D\ l(D) in its interior so that
a ∈Min(A|K). The set of all proper Pareto minimal points of A with respect to D is denoted by
PrMin(A|D). It is clear that PrMin(A|D)⊂Min(A|D).

A point a ∈ A is a (respectively weak, proper) Pareto maximal point of A with respect to D if
a ∈Min(A|−D) (respectively WMin(A|−D), PrMin(A|−D)).

Let f : X→Y be a mapping and F ⊂ X be a subset. Consider a vector optimization problem

minD f (x) s.t. x ∈F . (1.1)

A point x∗ ∈F is a (respectively weak, or proper) Pareto minimal solution of (1.1) if f (x∗)∈
Min( f (F )|D) (respectively f (x∗) ∈WMin( f (F )|D), or PrMin( f (F )|D)).

A (respectively weak, or proper) Pareto maximal solution of (1.1) is defined similarly.
The dual cone and positive dual cone of D are defined respectively by

D∗ = {τ ∈ Y ∗|〈τ,y〉 ≥ 0, ∀y ∈ D},
D∗+ = {τ ∈ Y ∗|〈τ,y〉> 0, ∀y ∈ D\ l(D)}.

Let K ⊂ Z be a closed and convex cone of Z. A function g : X → Z is said to be K-convex if

αg(x1)+(1−α)g(x2)−g(αx1 +(1−α)x2) ∈ K, ∀α ∈ [0,1],x1,x2 ∈ X .

2. VECTOR VARIATIONAL INEQUALITIES WITH CONIC CONSTRAINTS

Assume that Q is a nonempty closed and convex set of X , and K is a nonempty closed and
convex cone of Z. Let F : X → L(X ,Y ) and g : X → Z be nonlinear mappings. Let

F1 = {x ∈ Q|g(x) ∈ −K}

be a feasible set. Assume that g is a continuously differentiable and K-convex function with
Gâteaux derivative Dg(x). Therefore F1 is a closed and convex set.

Consider the following weak vector variational inequality with convex inclusion constraints:

(weak VVI) x∗ ∈F1 : F(x∗)(x∗− x) 6≤intD 0, ∀x ∈F1, (2.1)

and the following vector variational inequality with convex inclusion constraints:

(VVI) x∗ ∈F1 : F(x∗)(x∗− x) 6≤D\{0} 0, ∀x ∈F1. (2.2)

We will first proceed to discuss saddle point formulation of weak VVI (2.1) via scalarization
first. By definition, the weak VVI (2.1) is equivalent to that x∗ is a weak Pareto minimal solution
of the following convex vector optimization problem

minD −F(x∗)x, s.t. x ∈F1. (2.3)

As (2.3) is a convex problem, by [14, Chapter 4, Theorem 2.10], x∗ is a weak Pareto minimal
solution of vector optimization problem (2.3) if and only if there is a τ∗ ∈D∗ \{0} such that x∗
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solves the following optimization problem

min −〈τ∗,F(x∗)x〉, s.t. x ∈F1. (2.4)

For fixed x∗ and τ∗, a Lagrangian L : X×Z∗→R of optimization problem (2.4) is defined by

L(x,β ;x∗,τ∗) =−〈τ∗,F(x∗)x〉+ 〈β ,g(x)〉, (x,β ) ∈ X×Z∗,

and thus a Lagrangian dual problem is

sup
β∈K∗

inf{L(x,β ;x∗,τ∗) : x ∈ Q}.

The Robinson’s constraint qualification of optimization problem (2.4) is said to hold at x∗ if

0 ∈ int{g(x∗)+Dg(x∗)(Q− x∗)+K}. (2.5)

Under the Robinson’s constraint qualification (2.5), by [13, Theorem 3.9], if x∗ solves the
optimization problem (2.4), then there is a Lagrange multiplier β ∗ ∈ Z∗ such that

x∗ ∈ argmin
x∈Q

L(x,β ∗;x∗,τ∗), β
∗ ∈ NK(g(x∗)). (2.6)

Again as (2.3) is a convex problem, the conditions in (2.6) are equivalent to

0 ∈ DxL(x∗,β ∗;x∗,τ∗)+NQ(x∗), 0 ∈ β
∗−NK(g(x∗)).

That is,
0 ∈ −〈τ∗,F(x∗)〉+ 〈β ∗,∇g(x∗)〉+NQ(x∗), 0 ∈ β

∗−NK(g(x∗)).

Note that β ∗ ∈ NK(g(x∗)) is equivalent to g(x∗) ∈ NK∗(β
∗). For β ∈ K∗, let

M(β ) := {x ∈ X : 0 ∈ −〈τ,F(x)〉+ 〈β ,∇g(x)〉+NQ(x) for some τ ∈ D∗ \{0}},
G(β ) := {−g(x) : x ∈M(β )},

TD(β ) := G(β )+NK∗(β ).

The dual weak VVI of weak VVI (2.1) is formulated as

β
∗ ∈ K∗,y∗ ∈ G(β ∗) : 〈y∗,β −β

∗〉 ≤ 0, ∀β ∈ K∗,

which can also be written as
β
∗ ∈ K∗ : 0 ∈ TD(β

∗). (2.7)

A primal-dual formulation of weak VVI (2.1) can be defined as follows:

(PDVVI) (x∗,β ∗) ∈ X×Z∗ : (0,0) ∈ Sτ∗(x∗,β ∗), for some τ
∗ ∈ D∗ \{0}, (2.8)

where the set-valued mapping S is defined on X×Y ∗ by

Sτ(x,β ) =


{
(u,v) ∈ X∗×Z∗

∣∣∣∣ ( u
v

)
∈
(

DxL(x,β ;x,τ)+NQ(x)
β −NK(g(x))

)}
,

if (x,β ) ∈F1×K∗,
/0, otherwise.

If (x∗,β ∗) is a solution of (2.8) and thus (2.6) holds, then by [13, Proposition 3.3], x∗ is
an optimal solution of (2.4), and thus a weak optimal solution of (2.3). Thus we obtain the
following saddle point optimality condition.
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Theorem 2.1. Assume that the Robinson’s constraint qualification (2.5) holds at x∗. Then x∗

is a solution of weak VVI (2.1) if and only if there exist τ∗ ∈ D∗ \ {0} and β ∗ ∈ Z∗ such that
(x∗,β ∗) solves PDVVI (2.8).

Assume that Y is reflexive. As (2.3) is a convex problem, by [14, Chapter 4, Theorem 2.11],
x∗ is a proper Pareto optimal solution of convex vector optimization problem (2.3) if and only
if there is a τ∗ ∈ D∗+ such that x∗ solves the optimization problem (2.4). Moreover a proper
Pareto optimal solution is also a Pareto optimal solution. Thus we obtain the following result.

Theorem 2.2. Assume that Y is reflexive. If there exist τ∗ ∈D∗+ and β ∗ ∈Y ∗ such that (x∗,β ∗)
solves PDVVI (2.8), then x∗ is a solution of VVI (2.2).

Below we give an example to illustrate that a solution of DVVI (2.7) is not one for weak VVI
(2.1).

Example 2.1. Let F1 = [1,+∞) and

F(x) =
(

x3

x3−12x

)
.

Consider the following weak VVI:

x∗ ∈F1 : F(x∗)(x∗− x) 6≤intR2
+

0, ∀x ∈F1. (2.9)

Every x∗ ∈ [1,2] is a solution of weak VVI (2.9). Therefore, for each solution x∗ ∈ [1,2], it
is equivalent that there exists τ∗ ∈ [0,1] such that x∗ is a solution of the following optimization
problem:

min−
(

τ∗

1− τ∗

)>
F(x∗)x, s.t. x ∈F1. (2.10)

Now fix a τ∗ ∈ [0,1]. A Lagrangian L : R×R+→ R of primal problem (2.10) is defined by

L(x,β ;x∗,τ∗) =−
(

τ∗

1− τ∗

)>
F(x∗)x+β (−x+1), x ∈ R,β ∈ R+,

and thus a Lagrangian dual problem is

sup
β≥0

inf{L(x,β ;x∗,τ∗) : x ∈F1}. (2.11)

It is clear that the Robinson’s constraint qualification (2.5) holds at every x∗ ∈ [1,2]. For
every solution x∗ ∈ [1,2] of problem (2.11), there is β ∗ ∈ R+ such that

−
(

τ∗

1− τ∗

)>
F(x∗)−β = 0, 0 ∈ β −NR+(−x+1).

Let

M(β ) = {x ∈ R : τx3 +(1− τ)(x3−12x)+β = 0, for some τ ∈ [0,1]},
G(β ) = {−(−x+1) : x ∈M(β )} ,

TD(β ) = G(β )+NR+(β ).

Thus

M(β ) = [1, 3
√

β +12], ∀β ≥ 0.
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The dual weak VVI is

β
∗ ≥ 0 : 0 ∈ TD(β

∗). (2.12)

A primal-dual formulation of weak VVI (2.1) can be defined as follows:

(PDVVI) (x∗,β ∗) ∈ R×R+ : (0,0) ∈ Sτ∗(x∗,β ∗), for sme τ
∗ ∈ [0,1], (2.13)

where set-valued mapping S : R×R+ ⇒ R2 by

Sτ(x,β ) =


{
(u,v) ∈ R×R+

∣∣∣∣ ( u
v

)
∈
(

τx3 +(1− τ)(x3−12x)+β

β −NR+(−x+1)

)}
,

if (x,β ) ∈ R×R+,
/0, otherwise.

As the Robinson’s constraint qualification (2.5) holds at any point of the constraint set F1,
we have: x∗ ∈F1 solves weak VVI (2.1) if and only if there exists τ∗ ∈ [0,1],β ∗ ∈ R+ such
that (x∗,β ∗) solves PDVVI (2.13), where

(i) when x∗ = 1, we have 0≤ β ∗ ≤ 11; and
(ii) when 1 < x∗ ≤ 2, we have 1− x∗ ∈ NR+(β

∗), thus β ∗ = 0.
Let β ∗ = 0 be a solution of (2.12). Then (2.12) implies that x≥ 1 and x ∈M(0). So 1≤ x =√
12 ∈M(0) but x =

√
12 is not a solution of (2.9).

However for a constant VI with linear constraints, the scalar versions of weak VVI (2.1) and
dual weak VVI (2.7) are a pair of duality relations by that of linear programs.

Example 2.2. Consider the following constant variational inequality problem with linear con-
straints

x∗ ∈F1 : 〈p,x∗− x〉 ≥ 0, ∀x ∈F1, (2.14)

where F1 = {x ∈ Rn : Ax≤Rm
+

b,0≤Rn
+

x}, A = [a1, · · · ,am]
> is a matrix of m×n dimensions,

ai ∈ Rn(i = 1, · · · ,m), b ∈ Rm and p ∈ Rn. Let K = Rm
+, and

gi(x) =

{
a>i x−bi, if i = 1, · · · ,m,x ∈F1,
−xi−m, if i = m+1, · · · ,m+n,x ∈F1,

g(x) = (g1(x), · · · ,gm+n(x))>.

For (λ ,µ) ∈ Rm
+×Rn

+, let

M(λ ,µ) =

{
x ∈ Rn : 0 ∈ −p+

m

∑
i=1

λi∂gi(x)+
m+n

∑
i=m+1

µi∂gi(x)

}

= {x ∈F1 : 0 =−p+
m

∑
i=1

λiai +
m+n

∑
i=m+1

µi(−ei−m)}

= {x ∈F1 : 0 =−p+A>λ −µ}

=

{
F1, if 0 =−p+A>λ −µ,

/0, if 0 6=−p+A>λ −µ,
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where ei ∈ Rn is the vector of 1 in ith component and 0 otherwise, and

G(λ ,µ) = {−g(x) : x ∈M(λ ,µ)}

=

{
−g(F1), if 0 =−p+A>λ −µ,

/0, if 0 6=−p+A>λ −µ.

We have

dom(G) = {(λ ,µ) ∈ Rm
+×Rn

+ : 0 =−p+A>λ −µ}
= {(λ ,µ) ∈ Rm×Rn : A>λ ≥ p,λ ≥ 0,µ ≥ 0}.

DVI (2.7) is to find

(λ ∗,µ∗)∈ dom(G),d∗ ∈G(λ ∗,µ∗) : 〈d∗,(λ ,µ)−(λ ∗,µ∗)〉 ≤ 0, ∀(λ ,µ)∈ dom(G). (2.15)

Let

d∗ =
[

b−Ax∗

x∗

]
∈ G(λ ∗,µ∗) with x∗ ∈F1.

DVI (2.15) becomes

(λ ∗,µ∗) ∈ Rm
+×Rn

+,x
∗ ∈F1 : 〈b−Ax∗,λ −λ

∗〉+ 〈x∗,µ−µ
∗〉 ≤ 0, ∀(λ ,µ) ∈ Rm

+×Rn
+.

(2.16)
We have, for (λ ∗,µ∗),(λ ,µ) ∈ Rm

+×Rn
+,

〈b−Ax∗,λ −λ
∗〉+ 〈x∗,µ−µ

∗〉
= 〈b,λ −λ

∗〉+ 〈−x∗,A>λ −A>λ
∗〉+ 〈x∗,µ−µ

∗〉
= 〈b,λ −λ

∗〉+ 〈−x∗,A>λ −µ〉+ 〈x∗,A>λ
∗−µ

∗〉
= 〈b,λ −λ

∗〉+ 〈−x∗, p〉+ 〈x∗, p〉
= 〈b,λ −λ

∗〉.

Thus (2.16) is reduced to

λ
∗ ∈H ∗ : 〈b,λ −λ

∗〉 ≤ 0, ∀λ ∈H ∗, (2.17)

where H ∗ = {λ : A>λ ≥ p,λ ≥ 0}.

It is clear by the duality results of linear programming that (2.14) and (2.17) are a pair of
duals.

3. VECTOR VARIATIONAL INEQUALITIES WITH LINEAR CONSTRAINTS

Let Am×n be an m×n matrix, and b ∈Rm be a vector. Let D,Q and M be pointed and convex
polyhedral cones in Rk,Rm and Rn respectively.

Let a closed and convex feasible set be

F2 = {x ∈M | Ax≥Q b}.

Let F : Rn → Rk×n be a nonlinear mapping. We consider the following (respectively weak)
vector variational inequality:

((resp. weak) VVI) x∗ ∈F2 : F(x∗)(x∗− x) 6≤D\{0} 0, (resp. 6≤intD) ∀x ∈F2. (3.1)



156 XIAOQI YANG

Let x∗ ∈F2 be fixed. We consider the following auxillary multiobjective optimization prob-
lem:

(MOP) maxD F(x∗)x s.t. x ∈F2. (3.2)

Let X ⊂ Rn be a subset. The following positive polar of X is defined in [10] by

X◦ = {x∗ ∈ Rn : 〈x∗,x〉 ≥ 0, ∀x ∈ X}.
For formulating a dual vector variational inequality problem, we consider the following dual

feasible set:

G2 = {U ∈ Rk×m|U>ρ ∈ Q◦ and A>U>ρ ≥M◦ F(x∗)>ρ for some ρ ∈ intD◦}.
By using set G2, we consider the following nonlinear (respectively weak) dual vector varia-

tional inequality problem:

((resp. weak) DVVI) U∗ ∈ G2 : (U−U∗)b 6≤D\{0} 0, (resp. 6<intD) ∀U ∈ G2. (3.3)

We also consider the following auxillary dual multiobjective optimization problem:

(DMOP) minD Ub s.t. U ∈ G2. (3.4)

The pair of sets F2 and G2 and the pair of multiobjective optimization problems MOP (3.2)
and DMOP (3.4) were considered in [10].

The following relations among VVI or weak VVI (3.1) and DVVI or weak DVVI (3.3) and
MOP (3.2) and DMOP (3.4) are obvious by definition.

Lemma 3.1. The following statements hold:
(i) x∗ solves (respectively weak) VVI (3.1) if and only if x∗ is a (respectively weak) Pareto

maximal solution of MOP (3.2);
(ii) U∗ solves (respectively weak) DVVI (3.3) if and only if U∗ is a (respectively weak)

Pareto minimal solution of DMOP (3.4).

3.1. Orderings being defined by convex polyhedral orthants. In this subsection, we illus-
trate some relations between VVI or weak VVI (3.1) and DVVI or weak DVVI (3.3) by using
the weak duality and strong duality between MOP (3.2) and DMOP (3.4).

We say that the weak duality of (respectively weak) Pareto maximal/minimal solutions be-
tween MOP (3.2) and DMOP (3.4) holds if

F(x∗)x 6≥D\{0}Ub, (respectively 6≥intD) ∀x ∈F2,U ∈ G2. (3.5)

We say that the weakened strong duality between MOP (3.2) and DMOP (3.4) holds if x∗ is
a (respectively weak) Pareto maximal/minimal solution of MOP (3.2), then the following is
satisfied:

F(x∗)x∗ ∈Min((G2)b|D) (respectively WMin((G2)b|D)), (3.6)
where (G2)b = {Ub|U ∈ G2}.

Lemma 3.2. The following facts hold.
(i) The weak duality (3.5) of (respectively weak) Pareto maximal/minimal solutions be-

tween MOP (3.2) and DMOP (3.4) holds.
(ii) The weakened strong duality (3.6) of (respectively weak) Pareto maximal/minimal solu-

tions between MOP (3.2) and DMOP (3.4) holds.
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Proof. The results (i) and (ii) in respect of Pareto maximal/minimal solutions were given in [10,
Theorem 5.1.4]. Those in (i) and (ii) in respect of weak Pareto maximal/minimal solution follow
from that for Pareto maximal/minimal solutions as the ordering a 6≥D\{0} b implies a 6>intD b,
and the inclusion Min((G2)b|D)⊆WMin((G2)b|D) holds. �

Next we show that by virtue of weak duality and weakened strong duality results in Lemma
3.2, DVVI or weak DVVI (3.3) is a necessary condition of VVI or weak VVI (3.1).

Theorem 3.1. x∗ is a solution of (respectively weak) VVI (3.1) if and only if there is a feasible
solution U∗ ∈ G2 such that

F(x∗)x∗ =U∗b.

In this case, U∗ is a solution of (respectively weak) DVVI (3.3).

Proof. If x∗ is a solution of (respectively weak) VVI (3.1), then by Lemma 3.1 (i) x∗ is a (respec-
tively weak) Pareto maximal solution of MOP (3.2). By Lemma 3.2 (ii), there exists U∗ ∈ G2
such that

F(x∗)x∗ =U∗b ∈Min((G2)b|D) (respectively WMin((G2)b|D)).

That is
U∗b 6≥D\{0}Ub, (respectively 6≥intD) ∀U ∈ G2.

Thus
(U−U∗)b 6≤D\{0} 0, (respectively 6≤intD) ∀U ∈ G2.

Therefore U∗ is a solution of (respectively weak) DVVI (3.3).
Conversely let a feasible solution U∗ ∈ G2 such that F(x∗)x∗ = U∗b. By Lemma 3.2 (i), we

have,
F(x∗)x∗ =U∗b 6≤D\{0} F(x∗)x, (respectively 6≤intD) ∀x ∈F2.

Thus
F(x∗)(x∗− x) 6≤D\{0} 0, (respectively 6≤intD) ∀x ∈F2.

Therefore x∗ is a solution of VVI (respectively weak VVI) (3.1). �

3.2. Orderings being defined by positive orthants. In this subsection, we consider a special
case of VVI or weak VVI (3.1). That is, let D = Rk

+,Q = {0} and M = Rn
+ respectively.

Then sets F2 and G2 at the beginning of this section reduce to the following sets respectively

F3 = {x ∈ Rn
+ | Ax = b},

G3 = {U ∈ Rk×m| A>U>ρ ≥Rn
+

F(x∗)>ρ for some ρ ∈ Rk,ρ ≥intRk
+

0},

where the dual feasible set G3 was introduced in [16]. In [15], the following dual feasible set is
considered:

G ′3 = {U ∈ Rk×m|UAw≤Rk
+\{0}

F(x∗)w for no w ∈ Rn
+}.

Next we show that two sets G3 and G ′3 are equal. However they may not be convex.

Lemma 3.3. We have G3 = G ′3.
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Proof. Let U ∈ G3. Thus A>U>ρ ≥Rn
+

F(x∗)>ρ for some ρ ≥intRk
+

0. If U 6∈ G ′3, then there
exists w ∈ Rn

+ such that UAw ≤Rk
+\{0}

F(x∗)w. Furthermore, as ρ ≥intRk
+

0, it follows that

ρ>UAw < ρ>F(x∗)w. As w ∈ Rn
+, A>U>ρ ≥Rn

+
F(x∗)>ρ cannot be true, a contradiction.

Therefore U ∈ G ′3.
Conversely, let U ∈ G ′3. Thus UAw≤Rk

+\{0}
F(x∗)w for no w ∈Rn

+. Then for any ρ ≥intRk
+

0,

ρ>UAw< ρ>F(x∗)w, for no w∈Rn
+. Thus, there must be some ρ ≥intRk

+
0 such that A>U>ρ ≥Rn

+

F(x∗)>ρ. Therefore U ∈ G3. �

Below we only use the set G3. By using sets F3 and G3, we consider the following (respec-
tively weak) vector variational inequality and its (respectively weak) dual vector variational
inequality:

((resp. weak) VVI) x∗ ∈F3 : F(x∗)(x∗− x) 6≤Rk\{0} 0, (resp. 6≤intRk) ∀x ∈F3, (3.7)

((resp. weak) DVVI) U∗ ∈ G3 : (U−U∗)b 6≤Rk\{0} 0, (resp. 6≤intRk) ∀U ∈ G3. (3.8)

Let x∗ ∈F3 be fixed. We consider the following auxillary linear multiobjective optimization
problem and dual multiobjective optimization problem:

(MOP) maxD F(x∗)x s.t. x ∈F3, (3.9)

(DMOP) minD Ub s.t. U ∈ G3. (3.10)

Unlike linear programs, it is noted that DMOP (3.10) cannot in general be derived as a La-
grange duality of MOP (3.9) in the sense of a linear optimization. See also the comments in
[14]. However, we still call (3.10) is a Lagrange dual problem of (3.9). Furthermore, in such
settings, there are complete weak duality and strong duality results of (weak) Pareto solutions
in [16] (see also [15] for Pareto solutions), which can be employed to establish the relations
between VVI or weak VVI (3.7) and DVVI or weak DVVI (3.8).

By using the existing weak duality and strong duality results of multiobjective optimization
problems in [16] and Lemma 3.1, we obtain the following relations of VVI or weak VVI (3.7)
and DVVI or weak DVVI (3.8).

Theorem 3.2. We have the following.
(i) x∗ is a solution of (respectively weak) VVI (3.7) if and only if there is a feasible solution

U∗ ∈ G3 such that

F(x∗)x∗ =U∗b. (3.11)

In this case, U∗ is then a solution of (respectively weak) DVVI (3.8);
(ii) U∗ is a solution of (respectively weak) DVVI (3.8) if and only if there is a feasible

solution x∗′ ∈F3 such that

F(x∗)x∗′ =U∗b, (respectively F(x∗)x∗′ ≥Rk
+

U∗b)

x∗′ is then a (respectively weak) Pareto maximal solution of MOP (3.9). Furthermore, if
x∗′ = x∗, then x∗ is a solution of (respectively weak) VVI (3.7).

Proof. (i) is a special case of Theorem 3.1.
We now prove (ii). Let U∗ be a solution of (respectively weak) DVVI (3.8), then by Lemma

3.1 (ii) U∗ is a (respectively weak) Pareto minimal solution of DMOP (3.10). By Theorem
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2.6 (ii) (respectively Theorem 2.6 (iii)), [16], there exists x∗′ ∈ G2 such that F(x∗)x∗′ = U∗b
(respectively F(x∗)x∗′ ≥Rk

+
U∗b). In this case, by the weak duality between MOP (3.9) and

DMOP (3.10) in [16, Theorem 2.2], we have

F(x∗)x 6≥Rk
+\{0}

U∗b = F(x∗)x∗′, (respectively F(x∗)x 6≥intRk
+

U∗b≤Rk
+

F(x∗)x∗′) ∀x ∈F3.

Thus
F(x∗)x 6≥Rk

+\{0}
F(x∗)x∗′, (respectively 6≥intRk

+
) ∀x ∈F3.

Therefore x∗′ is a (respectively weak) Pareto maximal solution of MOP (3.9). If x∗′ = x∗, then
x∗ is a (respectively weak) Pareto maximal solution of MOP (3.9). Thus by Lemma 3.1 (i), x∗

is a solution of of (respectively weak) VVI (3.7).
Conversely let a feasible solution x∗′ ∈F3 such that F(x∗)x∗′=U∗b (respectively F(x∗)x∗′≥Rk

+

U∗b). By the weak duality between MOP (3.9) and DMOP (3.10) of [16, Theorem 2.2], we
have,

Ub 6≤Rk
+\{0}

F(x∗)x∗′ =U∗b, (respectively Ub 6≤intRk
+

F(x∗)x∗′ ≥Rk
+

U∗b) ∀U ∈ G3.

Thus
(U−U∗)b 6≤Rk

+\{0}
0, (respectively 6≤intRk

+
) ∀U ∈ G3.

Therefore U∗ is a solution of (respectively weak) DVVI (3.8). �

Below we give an example to show that, for a solution of VVI, we can find a solution of
DVVI that satisfies (3.11). Conversely, it may not be true.

Example 3.1. Let

F3 = {(x1,x2)|x1 + x2 = 1,x1 ≥ 0,x2 ≥ 0} and F(x) =
[
−x1 0
0 −x2

]
.

Let x∗ =
[ 1

2
1
2

]
. x∗ is a solution of the following VVI:

F(x∗)(x∗− x) 6≤R2
+\{0}

[
0
0

]
, ∀x ∈F3. (3.12)

We have the dual feasible set

G3 = G ′3 = {(u1,u2)|u1 +u2 ≥−
1
2

or u1 > 0, or u2 > 0}

and the following strong duality holds:

Max(F(x∗)(F3)|R2
+) = Min((G3)b|R2

+) =

{[
u1
u2

]∣∣∣∣u1 +u2 =−
1
2
,u1 ≤ 0,and u2 ≤ 0

}
.

Let U∗ satisfy the following equation:

F(x∗)x∗ =
[
−1

2 0
0 −1

2

][ 1
2
1
2

]
=

[
−1

4
−1

4

]
=U∗b.

We obtain U∗ =
[
−1

4
−1

4

]
and it is clear that U∗ is a solution of the following DVVI:[

u1
u2

]
−
[

u∗1
u∗2

]
6≤R2

+\{0}

[
0
0

]
, ∀

[
u1
u2

]
∈ G3. (3.13)
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Now let U∗ =
[
−1

2
0

]
be a solution of the DVVI (3.13). Let x∗′ satisfy the following equa-

tion:

F(x∗)x∗′ =
[
−1

2
0

]
=U∗b.

We obtain x∗′ =
[

1
0

]
. x∗′ 6= x∗ and this x∗′ is not a solution of VVI (3.12).

4. CONCLUSION

In this paper, we discussed saddle point relations between a vector variational inequality
problem with convex inclusion constraints and its scalar primal-dual formulation by virtue of a
scalarization technique in Banach spaces. We also developed duality relations between a vector
variational inequality problem with convex polyhedral constraints and its duality problem by
using that of a multiobjective linear optimization problem and its Lagrange dual problem.
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