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Abstract. In this paper, we investigate the weak convergence of an iterative method for solving classical
variational inequalities problems with semistrictly quasimonotone and Lipschitz-continuous mappings
in real Hilbert space. The proposed method is based on Tseng’s extragradient method and uses a set
stepsize rule that is dependent on the Lipschitz constant as well as a simple self-adaptive stepsize rule
that is independent of the Lipschitz constant. We proved a weak convergence theorem for our method
without requiring any additional projections or the knowledge of the Lipschitz constant of the involved
mapping. Finally, we offer some numerical experiments that demonstrate the efficiency and benefits of
the proposed method.
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1. INTRODUCTION

Let 7 be a real Hilbert space with inner product (-,-) and induced norm || - ||. The weakly
convergent sequence {x,} to a point x is denoted by x, — x. For a given closed and convex
subset ¥ C ., the variational inequality problem, denoted by VI(%,.7), is to find x* € €
such that

(T (x"),y—x")>0,Yy €€, (VIP)
where .7 : # — ¢ is an operator. It is known (see, e.g., [1]) that (VIP) is closely related to
the problem of finding a point x* € € such that

(T (y),y—x*)>0,Vy €C. (DVIP)

In view of [1], Problem (DVIP) is called the dual variational inequality problem, denoted by
DVI(€,7), of (VIP). For a closed and convex ¢ C ¢, the metric projection Py : 5 — €
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is defined by Py (x) = argmin{|[x —y|| : y € €}, Vx € . In this paper, R and N are used

to denote the sets of real numbers and natural numbers, respectively. It is obvious to see that
problem (VIP) is equivalent to solving the following problem:

Finding x* € € such that x* = Py [x" — 1.7 (x")],

where 7 is a positive real number. The theory of variational inequalities has been employed as
an important tool to study a wide range of problems in physics, engineering, economics, and
computer science. It was first presented by Stampacchia [2] in 1964. Problem (VIP) is an im-
portant mathematical problem that includes several important problems in applied mathematics,
such as network equilibrium problems, complementarity problems, saddle problems, inclusion
problems, and the systems of nonlinear equations (for more details, see, e.g., [3, 4, 5, 6, 7]).
Recently, many iterative methods for solving problem (VIP) were proposed and analyzed; see,
e.g, [8,9,10, 11, 12, 13, 14, 15] and the references therein. The metric projection is essential to
solve various variational inequality problems. The extragradient method, introduced in [16, 17],
has the following form:

X0 € E,

yn = Pg[xn — 1T (x,)], (1.1)

Xni1 = Pglxn =TT (yn)],

where .7 is a Lipschitz continuous operator with modulus L, and 7 is a constant with 0 < T < %
Here, two projections on set ¢ are needed at each iteration. However, if 4" has a complicated
structure, this might have an impact on the computing efficacy of the method. We restrict
our interest to some methods which can overcome this drawback. The first is the following
subgradient extragradient method, which is due to Censor et al. [8]. This method takes the form

X0 €E,
Yn = Pelxy — 17 (%)), (1.2)
Xni1 = Py [Xn — 7.7 (yn)],

where 0 < T< 1 and %, = {z € 1 (xy — TT (Xn) — Yn:2— Yn) < O}.
In this paper, we concentrate on the Tseng’s extragradient method [18] that uses only one
projection for each iteration:

X0 €F,
yn:Pf[xn_Ty(xn)]a (1.3)
Xpr1 =Yn+ T[g(xn) - y(yn)]a

where 0 < 7 < %

The main objective of this work is to study semistrictly quasimonotone variational inequal-
ities in infinite dimensional Hilbert spaces via an iterative method, which is based on Tseng’s
extragradient method [18] and the subgradient extragradient method [8]. At each iteration, our
method only requires one projection onto the feasible set. Under some suitable conditions im-
posed on control parameters, the iterative sequences generated by our method converge weakly
to some solution to the problem. We also give two variants of our method and present examples
to explain the computational performance of the new methods.

The paper is organized in the following manner. In Section 2, some preliminary results
were presented. Section 3 provides the new iterative methods and their convergence theorems.
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Finally, Section 4 presents some numerical results to support the practical efficiency of the
proposed method.

2. PRELIMINARIES

Let 27 be a real Hilbert space. Given x,y € 77, the closed line segment consisting of x and y
is defined by [x,y] = {tx+ (1 —1)y: 0 <t < 1}. The segments (x,y], [x,y), and (x,y) are defined
similarly. In the framework of Hilbert space, the following equality and inequality are known

@) [[ex+ (1= )y]* = €]}l + (1 = O)|ly[I> = £(1 = £) | x — y[|* for any £ in(0, 1);
(D) [lx+y[* < [l +2(nx+y).

Let & be a nonempty, closed and convex subset of .77, and let Py : 7 — % be the metric
projection from % onto €. Then ||x — Ps(y)||? + ||Ps(y) — y||* < ||x — y||? for any x € € and
ye A (x—2z,y—2z) <0,Vye€ € if and only if z = Py (x); ||[x— Pg(x)|| < ||[x—y| forany y € €
and x € J7.

Definition 2.1. [19, 20] Let .7 : € — ¢ be a mapping. Recall that .7 is said to be

(a) strongly monotone with constant y > 0 if, for each pair of points x,y € €,
(T (x) =T (),x—y) = ylx—yl*
(b) strictly monotone if, for all distinct x,y € %,
(T (x)= T (y),x—y)>0;
(¢c) monotone if, for all distinct x,y € F,
(T (x) =T (y),x—y) >0;
(d) pseudomonotone if, for all distinct x,y € €,
(Z(0)x=y)20 = (T(x),x—y)=0;
(e) quasimonotone if, for all distinct x,y € €,
(Z(y)x—y)>0 = (T(x),x—y)>0;

(f) semistrictly quasimonotone if .7 is quasimonotone and for all distinct of points x,y € &,

<9(y),x—y> >0 = <9(z),x—y> > 0, for some z € <x—2Fy’x>.

Remark 2.1. The implications are as follows:
(a) = (b)) = (¢) = (d) = (e) and (f) = (e).
In general, however, the inverse claims are incorrect.

Definition 2.2. A mapping .7 : 7 — S is said to be

(i) weakly hemicontinuous if 7 is upper semicontinuous from line segments in J# to the
weak topology of J7;

(ii) sequentially weakly continuous if {7 (x,)} converges weakly to .7 (x) for every se-
quence {x, } converges weakly to x.

Remark 2.2. It is easy to prove that if .7 : J# — JZ is sequentially weakly continuous, then
7 must be weakly hemicontinuous.
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Additionally, we also need the following lemmas.

Lemma 2.1. [1] A solution to problem (DVIP) is always a solution to problem (VIP) provided
that the operator 7 is, say, weakly hemicontinuous.

Lemma 2.2. [21] Let € be a nonempty set of 7, and let {x,} be a sequence in F. If the
following two conditions hold:

(i) for every x € C, limy,_,c0 || X, — x|| exists;
(ii) each sequentially weak cluster point of {x,} is in €,

then {x,} converges weakly to a point in € .

3. MAIN RESULTS

In this section, we propose our iterative algorithm for semistrictly quasimonotone variational
inequalities, which is based on Tseng’s extragradient method that does not require either the
knowledge of the Lipschitz constant of the operator or additional projection.

Algorithm 1

Step 0: Choose xp € ¢ and 0 < 7 < %
Step 1: Compute

yn =Py (x, — 1T (x)).
If x,, = y;, then STOP and y, is a solution. Otherwise, go to Step 2.
Step 2: Compute

Xp+1 =Yn+ T[y(xn) - <9()’11)]
Set n =n+ 1 and go back to Step 1.

In order to verify the weak convergence, we assume that the following conditions hold:

(1) the solution set of problem (VIP), denoted by €, is nonempty;
(72) T : A — F is semistrictly quasimonotone if .7 is quasimonotone on ¢ and

(7(),x—y)>0 = (T (z),x—y)>0, forsomez € (%,x); (SQM)
(T3) T . A — A is Lipschitz continuous with constant L > 0 such that
|7 (x) =T W < Llx=yll, Vx,y € €; (LO)

(T4) T : H — H is sequentially weakly continuous if {7 (x,)} converges weakly to .7 (x)
for every sequence {x,} converges weakly to x.

In what following, we show certain lemma in the case of semistrictly quasimonotone and
Lipschitz-continuous operators. It is identical to the one in [22].

Lemma 3.1. Let .7 : 5 — 4 be an operator that satisfies conditions (7 1)-(74), and let
{xn} be a sequence generated by Algorithm 1. Then,

o1 =717 < [ =" | = (1= 2°L2) [l 3|
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Proof. Since x* € Q, we have
[
= {[yn 4200 =50 ="+ 2| 7 (50) = T () [|* 4+ 220 =2, T () = T (00))
= o =] [l = |* 249 = 0,00 =)
+ 2|7 (50) = 7 n)||* + 250 =", T (302) = T ()
— [0 = [P [ = | |” 4 200 = s 30 — ) 4 20— Xy X — )
+ 2|7 () = T o) | + 200 =", T () = T (30)- (3.1)
It indicates that y, = Py [x, — 77 (x,)], which further implies that
(4 =TT (Xn) —yn,y —yn) <0, Vy € €.
Thus,
(Xn = Y, X" = yn) < TUT (Xn), X" = yn)- (3.2)
Combining (3.1) and (3.2), we have
et x|
< Jlea =7 [ =5l * 4+ 227 (50), 2" = ) = 2060 = Yo, %0 = i)
+ 2|7 (@) = 7 0n) | = 28(T (00) = T (30) %" = 30)
= ||xn —x*”2 — ||xn —yn”2 + ’L'zHﬂ(xn) - 9()},,)”2 —27(T (yn),yn — X*). (3.3)

Since x* is the solution of problem (VIP), we have (.7 (x*),y —x*) > 0, Vy € €. It follows that
(7 (y),y—x*) >0, Vy € %. Substituting y =y, € €, we have

(T (Yn)syn—x") > 0. (3.4)
From (3.3) and (3.4), we obtain

o1 =" < = |* = (1= 2222) o =3

O

Theorem 3.1. Let 7 : 7 — 4 be an operator that satisfies conditions (7 1)~(74). Then,
the sequence {x,} generated by the Algorithm I converges weakly to x* € Q.

Proof. By using Lemma 3.1, we have
e =P < e =P (1 2222 [ =3l 3.5)

Since 0 < 7 < %, we obtain ||x,, 1 —x*||> < ||lx, —x*||?, which implies that lim,, < ||, —x*|| =
for some finite / > 0. From (3.5), we have

O e e e I AT

Due to the existence of lim,_,e ||x,;, —x*|| = I, we infer that lim,_,e ||x, — y,|| = 0. Thus, we
have lim,,_ye ||y, — x*|| = . It follows that

X1 = Yall = llyn + 217 (in) = T ()] = yall < TLlx0 =yl
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The above expression implies that lim,, e || X1 — yu|| = 0. It follows that limy, e || X1 — X || =
0. This implies that the sequences {x,} and {y,} are bounded.

Now, we show that the sequence {x,} converges weakly to x* € Q. Indeed, since {x,} is
bounded, we assume that there exists a subsequence {x,, } of {x,} such that x,, — £. Next, we
prove that £ € Q. Indeed, we have y,, = Py [x,, — Ty, 7 (xy,)], which is equivalent to

(X — T T (X)) = Y,y —Ym) <0, Vy € €.

This implies that
<xnk _ynkvy_ynk> S Tnk<g(xnk)7y_ynk>a Vy € cg

Thus, .
T_<xi’l1< _ynkyy_ynk> + <y(xnk)7ynk _xnk> S <9(xnk),y_xnk>, vy € Cg (36)

ny
Observe that min{%,7;} <7 < 7; and {x,,} is a bounded sequence. Using limy_,c [|xy, —
V.|| = 0 and letting k — oo in (3.6), we obtain liminfy_,..(7 (xy, ),y — Xs,) > 0, Vy € €. More-
over, we have

<9(ynk>7y _ynk>

=T n) = T ()5 y = xm) (T ()Y = X)) + (T Yn) s X, — Yne)- (3.7
Since limy_e0 || X, — yn,|| = 0 and .7 is L-Lipschitz continuity on ¢, we have
Jim |7 (50,) — 7 ()| = 0. G

which together with (3.7) and (3.8) obtains that
—»00
To prove further, let us take a positive sequence { &} that is convergent to zero and decreasing.
For each {&}, we denote by my, the smallest positive integer such that
(ﬁ(xni),y—xni)-l-sk >0, Vi>my, (3.10)

where the existence of my, follows from (3.9). Since {&} is decreasing, it is easy to see that my,
is increasing.

Case L. If there exists a Ko subsequence of x,, such that 7 <X”mkj) =0 (V). Letting j — oo,
we obtain (7 (£),y — %) = limje (7 (xnmkj), y—Xx) = 0. Thus, £ € ¥ and this implies that
ReVI(E,T).
Case I If there exits Ny € N such that, for all n,,, > Ny, 7 (x,,Mk) = 0. Consider
o= [
Ty,
From the above definition, we obtain (7 (xp,, ), F n,, ) =1, V4nm, > No, which together with

(3.10) yields that, for all ny, > No, (F (xn,, ), ¥+ &F n,, —Xn, ) > 0. Since .7 is quasimono-
tone, then

(T v+ &k n, ), y+&F n, —*n, ) >0.
For all n,,, > Ny, we have

(T).y—2n,) 2T )= T (+&Fn,), Y+ &k n, —Xn, ) —&{T),Fn,). G.11)
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Since {x,, } weakly converges to £ € ¢ and .7 is sequentially weakly continuous on the set %,
we obtain that {.7 (x,, )} weakly converges to .7 (). Letting .7 (£) # 0, we have [|.7 (£)]| <
liminfy e || 7 (x5, )[|. Since {xp,, } C {xy} and limy_,. & = 0, we have

=0.

0< Tim lef n, || = lim — % <0
=1 k m =1 - '
A et = 0 T el = TZ @

Letting k — oo in (3.11), we obtain (7 (y),y—%) > 0, Vy € €. Thus, we infer that £ € VI(%, 7).
Therefore, we proved that

(1) for every x* € VI(€,.7), then lim,,_,c || x,, — x*|| exists;
(2) every sequential weak cluster point of the sequence {x,} is in VI(¥,.7).

By using Lemma 2.2, we obtain that {x, } converges weakly to x* € VI(¥,.7). O
Next, we introduce the first variant of Algorithm 1 in which the constant step size 7 is chosen

adaptively and thus produced a sequence 7, that does not require the knowledge of the Lipschitz-
like constant L.

Algorithm 2

Step 0: Choose xp € ¢, 1 € (0,1) and 79 > 0.
Step 1: Compute

Yn = P‘f(xn - Tng(xn»-
If x,, = y,, then STOP and y, is a solution. Otherwise, go to Step 2.
Step 2: Compute
Xp+1 =Yn+ Tn [9(xn) - 9()%)} .
Set n =n+ 1 and go back to Step 1.
Step 3: Compute

%H:Ymﬁ%vﬁﬁ%m}ifﬁw»ﬂﬂM#m

(" otherwise.

(3.12)

The following lemma is useful for showing that the step size sequence formed by expression
(3.12) is properly defined, decreasing monotonically, and convergent to a fixed number.

Lemma 3.2. The sequence {t,} generated by (3.12) is monotonically decreasing and converges
tot>0.

Proof. Ttis given that .7 is Lipschitz-continuous with constant L > 0. Let 7 (x,,) # 7 (y,) such

that
v =l syl g

17 Gen) = 7 )l — Lllw =yl L

The above expression implies that lim,, e T, = 7. O

The following lemma is important for proving the boundedness of a sequence generated by
Algorithm 2 and serves the same purpose as Lemma 3.1 in the proof of Theorem 3.1.
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Lemma 3.3. Let .7 : 7 — € be an operator that satisfies conditions (7 1)-(4), and let x,
be a sequence generated by Algorithm 2. Then,

2
Pt =12 < [Jxa =2 = (1—u2 7 )Hxn—ynu%
Tn—i—l

Theorem 3.2. Let 7 : 7 — 4 be an operator that satisfies conditions ( 1)~(74). Then,
the sequence {x,} generated by the Algorithm 2 converges weakly to x* € Q.

Proof. The proof is analogous to the proof of Theorem 3.1. 0

Next, we introduce the second variant of Algorithm 1 in which the constant step size 7 is
chosen adaptively and thus produced a sequence 7, that does not require the knowledge of the
Lipschitz-like constant L.

Algorithm 3
Step 0: Choose xp € ¢, u € (0,1), 79 > 0 and select a nonnegative real sequence {@,}
such that Y7 @, < oo
Step 1: Compute

Yn =P (xn =TT (x)).
If x,, = y;, then STOP and y, is a solution. Otherwise, go to Step 2.
Step 2: Compute
Xpt1 =Yn+ Ty [y(xn) - <70’”)] .
Set n =n+ 1 and go back to Step 1.
Step 3: Compute

1 Hxn_ nH .
T = mm{fndl_(p”’\lﬂ‘(an)W} if T (x,)— T () #0,
Tn+ @n otherwise.

(3.13)

The following lemma can be used to show that the step size sequence created by expression
(3.13) is well defined, monotonically decreasing, and convergent to a fixed value.

Lemma 3.4. The sequence {1,} generated by (3.13) is convergent to T and also satisfies the
following inequality

—+oo
min{%,ro}gfgf(ﬂ—P, where P:Z(pn.

n=1
Proof. Due to the Lipschitz continuity of a mapping .7, there exists a fixed number L > 0.
Consider .7 (x,) — 7 (yn) # 0 such that

Hllxn —yull o Bl —yal _ #

17 Gen) = 7 )l = Lllw =yl L

By using mathematical induction on the definition of 7,11, we have

min{%,ro} <7, <17+P
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Let [T,411 — Ty]T = max {O,T,H_l — Tn} and [T, — T,]” = max{O,—(‘L’nH - Tn)} From the
definition of {7,}, we have

~+o0

Z(T"H ZmaX{O Tpil — r,,} < P < oo

n=1

That is, the series Y (T,41 — ;) " is convergent.
Next we need to prove the convergence of ¥ 7 (7,11 — T,) . Let ¥ (Tug1 — )™ = oo
Due to the reason that 7,1 — T, = (Ty1 — Tn) " — (Tur1 — Tn) ", We have

k k k

Tt —T0=3 (Tar1 =) = Y (Tp1 = )" — Y (Tas1 = Tn) " (3.14)

n=0 n=0 n=0

Letting k — +o0 in (3.14), we have Ty — —oo as k — oo. This is a contradiction. Due to the
convergence of the series Zﬁ:o(fnﬂ —1,)" and Zﬁ:o(fnﬂ —1T,)” taking k — +co in (3.14),
we obtain lim,,_,. T, = 7. This completes the proof. ]

Theorem 3.3. Let T : 7 — 4 be an operator that satisfies conditions (7 1)~(74). Then,
the sequence {x,} generated by the Algorithm 3 converges weakly to x* € Q.

Proof. The proof is analogous to the proof of Theorem 3.1. 0

4. NUMERICAL ILLUSTRATIONS

The computational results of the proposed algorithms are described in this section in contrast
to some related algorithms in the literature and also in the analysis of how they variations in
control parameters affect the numerical effectiveness of the proposed algorithms. All computa-
tions are done in MATLAB R2018b and run on HP i- 5 Core(TM)i5-6200 8.00 GB (7.78 GB
usable) RAM laptop.

Example 4.1. Consider that 7Z = I, is a real Hilbert space with sequences of real numbers
satisfying the following condition ||x1||% + [|x2]|? + -+ + ||xa]|* + - < +oo. Assume that .7 :
¢ — € is defined by G(x) = (5 — ||x||)x, Vx € 5, where C = {x € 77 : ||x|| < 3}. Itis easy to
see that .7 is weakly sequentially continuous on ¢ and VI(%¢,.7) = {0}. For any x,y € JZ,
we have

170 = T O = 165 = Il = 5 = Iy Dy

= (|50 =) = llxll e =) = (llell = [y 1Dy |

<5l =yl el =yl =+ [l = [l ]

< Hfx—yll,
that is, .7 is L-Lipschitz continuous with L = 11. For any x,y € ., let (.7 (x),y —x) > 0 such
that (5 — [|x[|) {x,y —x) > 0. Since [lx|| <3 implies that (x,y —x) > 0, we have

(Z0)y—x) ==y —x)
> (5= [lyID {3y —x) = (5= [yl {x.y —x)
> 2[|lx—y[* > 0.
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Thus, we shown that .7 is quasimonotone on %’. Let x = (%, 0,0,---,0,---)and y=(3,0,0,---,0,---
such that (.7 (x) — 7 (y),x—y) = (2.5—3)* < 0. A projection on the set C is computed explic-
itly as follows:

x|l <3,
Pe(x) =
3% otherwise.
x|
The control conditions were taken as T = 21—L, To = %, u=0.44,and @, = %.

TABLE 1. Numerical Results of Example 4.1.

Number of Iterations Elapsed time in seconds

X0 Algorithm 1  Algorithm 2  Algorithm 3  Algorithm 1  Algorithm 2  Algorithm 3
(2,2,-+,210000,0,0,---) 34 28 26 1.30281 1.7876019 1.7080414
(1,2,---,10000,0,0,---) 43 36 30 1.79729 2.5490706 1.9033160
(7,7, ,7100000,0,0, - ) 56 43 37 2.39814 2.8637895 2.3877556
(50,50, ,50100000,0,0,---) 70 67 46 5.46383 4.9474732 4.4748392

10%
------- Algorithm 1 Algorithm 1
ik e Algorithm 2| | Algorithm 2| |
------- Algorithm 3 Algorithm 3

100 F

0 5 10

15 20 25 30

Number of Iterations

0

10!
<
102
10° .,
10" 10
10° 10

0.4 0.6

12 14 16

Elapsed Time [sec]

FIGURE 1. Numerical illustration when u; = (2,2,---,210000,0,0,- ).

Algorithm 1

Algorithm 2| |

Algorithm 3

Algorithm 1

Algorithm 3

Algorithm 2| |

0 5 10 15 20 25 30 35 40 45 0 0.5 1 15 2 25 3
Number of Iterations Elapsed Time [sec]

FIGURE 2. Numerical illustration when u; = (1,2,---,10000,0,0,---).
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------- Algorithm 1 seennes Algorithm 1

------- Algorithm 2| | sesnnes Algorithm 2| |
------- Algorithm 3 ssesees Algorithm 3

0 10 20 30 40 50 60 0 05 1 15 2 25 3
Number of Iterations Elapsed Time [sec]

FIGURE 3. Numerical illustration when u; = (7,7, -+ ,7100000,0,0, - - - ).
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