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SUPERIORIZATION WITH A PROJECTED SUBGRADIENT METHOD
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Abstract. In this paper, we study a constrained minimization problem with a convex objective func-
tion and a feasible region, which is the intersection of finitely many closed convex constraint sets. We
use a projected subgradient method combined with a dynamic string-averaging projection method with
variable strings and variable weights, as a feasibility-seeking algorithm. It is shown that any sequence,
generated by the superiorized version of a dynamic string-averaging projection algorithm, not only con-
verges to a feasible point but, additionally, also either its limit point solves the constrained minimization
problem or the sequence is strictly Fejér monotone with respect to the solution set.
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1. INTRODUCTION

The theory of nonexpansive mappings, which are 1-Lipschitz continuous, finds various ap-
plications in pure and applied mathematics. There are numerous results on the fixed points of
nonexpansive mappings; see, for example, [1]-[14] and the references cited therein. These re-
sults mainly stem from Banach’s classical theorem [15] concerning the existence of a unique
fixed point for a strict contraction. It also covers the convergence of (inexact) iterates of a non-
expansive mapping to one of its fixed points. Since that seminal result, many developments
have taken place in this field including, in particular, the studies of feasibility and common
fixed point problems, which find important applications in engineering and medical sciences
[13, 14, 16, 17, 18, 19, 20].

Let (X ,ρ) be a complete metric space. In [2], it was studied the influence of errors on
the convergence of orbits of nonexpansive mappings in metric spaces, and it was obtained the
following result (see also [12, Theorem 2.72]).

Theorem 1.1. Let A : X → X be a mapping satisfying

ρ(Ax,Ay)≤ ρ(x,y), ∀x,y ∈ X . (1.1)

Let F(A) be the set of all fixed points of A, and let, for each x ∈ X, the sequence {Anx}∞
n=1

converges in (X ,ρ). Assume that {xn}∞
n=0 ⊂ X, {rn}∞

n=0 ⊂ (0,∞) satisfies ∑
∞
n=0 rn < ∞ and

ρ(xn+1,Axn)≤ rn, n = 0,1, . . . . Then {xn}∞
n=1 converges to a fixed point of A in (X ,ρ).
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Theorem 1.1 found interesting applications and is an important ingredient in superiorization
and perturbation resilience of algorithms; see, e.g., [21]-[28] and the references mentioned
therein. The superiorization methodology works by taking an iterative algorithm, investigating
its perturbation resilience, and then using proactively such perturbations in order to ”force” the
perturbed algorithm to do in addition to its original task something useful. This methodology
can be explained by the following result on convergence of inexact iterates.

Assume that (X ,‖·‖) is a Banach space, ρ(x,y) = ‖x−y‖ for all x,y∈ X , a mapping A : X→
X satisfies (1.1), and, for each x ∈ X , the sequence {Anx}∞

n=1 converges in the norm topology.
Let x0 ∈X . Let {βk}∞

k=0 be a sequence of positive numbers satisfying ∑
∞
k=0 βk <∞, {vk}∞

k=0⊂X
be a norm bounded sequence, and, for any integer k ≥ 0,

xk+1 = A(xk +βkvk). (1.2)

Then it follows from Theorem 1.1 that {xk}∞
k=0 converges in the norm topology of X and its

limit is a fixed point of A. In this case, mapping A is called bounded perturbations resilient (see
[23] and [25, Definition 10]). In other words, if the exact iterates of a nonexpansive mapping
converge, then its inexact iterates with bounded summable perturbations converge too.

Now we assume that x0 ∈ X and the sequence {βk}∞
k=0 satisfy ∑

∞
k=0 βk < ∞. We need to

find an approximate fixed point of A. In order to meet this goal, we construct a sequence
{xk}∞

k=1 defined by (1.2). Under an appropriate choice of the bounded sequence {vk}∞
k=0, the

sequence {xk}∞
k=1 possesses some useful property. For example, the sequence { f (xk)}∞

k=1 can
be decreasing, where f is a given function. This superiorization methodology was used in [26]
in order to study a constrained minimization problem with a convex objective function and a
feasible region, which is the intersection of finitely many closed convex constraint sets. In
[26], it was used a projected normalized subgradient method combined with a dynamic string-
averaging projection method with variable strings and variable weights, as a feasibility-seeking
algorithm, which was introduced in [29]. It is shown that any sequence, generated by the
superiorized version of a dynamic string-averaging projection algorithm, not only converges to
a feasible point but, additionally, also either its limit point solves the constrained minimization
problem or the sequence is strictly Fejér monotone with respect to a subset of the solution set.
It should be mentioned that, in [26], it was used a projected normalized subgradient method. It
means that for any iteration a subgradient should be normalized. In the present paper, our goal
is to show that the main result of [26] is also true without normalization of subgradients if the
objective function is Lipschitz. It is obvious that this makes our computations much easier.

2. THE DYNAMIC STRING-AVERAGING PROJECTION METHOD

Let (X ,〈·, ·〉) be a Hilbert space with inner product 〈·, ·〉, which induces a complete norm
‖ · ‖. For each x ∈ X and each nonempty set E ⊂ X , put d(x,E) = inf{‖x− y‖ : y ∈ E}. For
each x ∈ X and each r > 0, set B(x,r) = {y ∈ X : ‖x− y‖ ≤ r}.

It is well-known that the following proposition holds [25].

Proposition 2.1. Let D be a nonempty closed convex subset of X. Then, for each x ∈ X, there
is a unique point PD(x) ∈D satisfying ‖x−PD(x)‖= inf{‖x−y‖ : y ∈D}. Moreover, ‖PD(x)−
PD(y)‖≤ ‖x−y‖ for all x,y∈ X, and, for each x∈ X and each z∈D, 〈z−PD(x),x−PD(x)〉 ≤ 0.

Corollary 2.1. Assume that D is a nonempty convex closed subset of X. Then, for each x ∈ X
and each z ∈ D, ‖z−PD(x)‖2 +‖x−PD(x)‖2 ≤ ‖z− x‖2.
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Suppose that C1, . . . ,Cm are nonempty closed convex subsets of X , where m is a natural
number. Set C = ∩m

i=1Ci. We suppose that C 6= /0. For i = 1, . . . ,m set Pi = PCi. By an index
vector, we a mean a vector t = (t1, . . . , tq) such that ti ∈ {1, . . . ,m} for all i = 1, . . . ,q. For an
index vector t = (t1, . . . , tq) set p(t) = q and P[t] = Ptq · · ·Pt1. A finite set Ω of index vectors is
called fit if, for each i ∈ {1, . . . ,m}, there exists t = (t1, . . . , tq) ∈ Ω such that ts = i for some
s ∈ {1, . . . ,q}. It is easy to see that, for each index vector t, ‖P[t](x)−P[t](y)‖ ≤ ‖x−y‖ for all
x,y ∈ X , and P[t](x) = x for all x ∈C. Denote by M the collection of all pairs (Ω,w), where Ω

is a fit finite set of index vectors and w : Ω→ (0,∞) is such that ∑t∈Ω w(t) = 1.
Let (Ω,w) ∈M . Define

PΩ,w(x) = ∑
t∈Ω

w(t)P[t](x), x ∈ X .

It is easy to see that

‖PΩ,w(x)−PΩ,w(y)‖ ≤ ‖x− y‖ for all x,y ∈ X ,

and
PΩ,w(x) = x, ∀x ∈C.

We use the following assumption.
(A) For each ε > 0 and each M > 0, there exists δ = δ (ε,M) > 0 such that, for each x ∈

B(0,M) satisfying d(x,Ci)≤ δ , i = 1, . . . ,m, the inequality d(x,C)≤ ε holds.
Note that if the space X is finite-dimensional, then assumption (A) always holds [25]. It

means that if a point is closed to any set Ci, i = 1, . . . ,m, then it is close to their intersection C.
In the sequel, we assume that Assumption (A) holds. Fix a number ∆ ∈ (0,m−1) and an

integer q̄ ≥ m. Denote by M∗ the set of all (Ω,w) ∈M such that p(t) ≤ q̄ for all t ∈ Ω and
w(t)≥ ∆ for all t ∈Ω.

The following result was obtained in [25].

Theorem 2.1. Let {βk}∞
k=0 be a sequence of nonnegative numbers such that ∑

∞
k=0 βk < ∞. Let

{vk}∞
k=0 ⊂ X be a norm bounded sequence, {(Ωi,wi)}∞

i=1 ⊂M∗, x0 ∈ X , and, for any integer
k≥ 0, xk+1 = PΩk+1,wk+1(xk +βkvk). Then the sequence {xk}∞

k=0 converges in the norm topology
of X and its limit belongs to C.

In the proof of this result assumption (A) was used.

3. THE MAIN RESULT

In this paper, we study a constrained minimization problem with a convex objective function
and with a feasible region, which is the intersection of finitely many closed convex constraint
sets. We use a projected subgradient method combined with a dynamic string-averaging projec-
tion method, with variable strings and variable weights, as a feasibility-seeking algorithm. It is
shown that any sequence, generated by the superiorized version of a dynamic string-averaging
projection algorithm, not only converges to a feasible point but, additionally, also either its limit
point solves the constrained minimization problem or the sequence is strictly Fejér monotone
with respect to the solution set. It should be mentioned that the subgradient method was intro-
duced by Shor in the early 60s [30, 31]. The projected subgradient method and its convergence
properties were introduced and studied by Polyak [32] (see also [33]).
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Assume that U ⊂ X is an open convex set, Ci ⊂U, ∀i = 1, . . . ,m, L≥ 1, and that f : U → R1

is a convex function such that

| f (x)− f (y)| ≤ L‖x− y‖, ∀x,y ∈U. (3.1)

For each x ∈U ,

∂ f (x) = {l ∈ X : 〈l,y− x〉 ≤ f (y)− f (x) for all y ∈U}

is the subdifferential of the function f at the point x. Set

Cmin = {x ∈C : f (x)≤ f (y) for all y ∈C}.

We suppose that Cmin 6= /0. Let us now describe our algorithm.
Suppose that

{(Ωi,wi)}∞
i=1 ⊂M∗,

N is a natural number,
Ni ∈ {1, . . . ,N} for all integers i≥ 0,

αi, j ∈ (0,1] for all integers i≥ 0 and all j ∈ {1, . . . ,Ni}
and that

∞

∑
i=0

Ni

∑
j=1

αi, j < ∞. (3.2)

Let x0 ∈U . We define sequences {xi}∞
i=0 ⊂U ,

{li, j : i = 0,1, . . . , j ∈ {1, . . . ,Ni}} ⊂ X

and
{xi, j : i = 0,1, . . . , j ∈ {1, . . . ,Ni}} ⊂U

as follows: for each integer i≥ 1,
xi−1,0 = xi−1, (3.3)

for each integer j ∈ {1, . . . ,Ni},
li−1, j ∈ ∂ f (xi−1, j−1), (3.4)

xi−1, j = xi−1, j−1−αi−1, jli−1, j, (3.5)

and
xi = PΩi,wi(xi−1,Ni). (3.6)

In this paper, we prove the following result.

Theorem 3.1. The sequence {xk}∞
k=0 converges in the norm topology of X to x∗ ∈C and one of

the following cases holds:
(a) x∗ ∈Cmin;
(b) x∗ 6∈Cmin and there exist a natural number k0 and c0 ∈ (0,1) such that for each x ∈Cmin

and each integer k ≥ k0,

‖xk− x‖2 ≤ ‖xk−1− x‖2− c0

Nk

∑
p=1

αk,p.
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4. AUXILIARY RESULTS

Lemma 4.1. Let x̄∈Cmin, α ∈ (0,1], ∆ > 0, x∈U satisfy f (x)≥ f (x̄)+∆, and v∈ ∂ f (x). Then

‖x−αv− x̄‖2 ≤ ‖x− x̄‖2 +α
2L2−2α∆.

Proof. From (3.1), we have

‖x−αv− x̄‖2 = ‖x− x̄‖2 +α
2‖v‖2−2α〈v,x− x̄〉

≤ ‖x− x̄‖2 +α
2L2 +2α( f (x̄)− f (x))

≤ ‖x− x̄‖2 +α
2L2−2α∆.

This completes the proof of the lemma. �

Lemma 4.2. Let x̄ ∈ Cmin, α ∈ (0,1], ∆ > 0, x ∈ U satisfy f (x) ≥ f (x̄)+∆, v ∈ ∂ f (x), and
(Ω,w) ∈M∗. Let y = PΩ,w(x−αv). Then

‖y− x̄‖2 ≤ ‖x− x̄‖2 +α
2L2−2α∆.

Proof. In view of (3.1), we have ‖v‖ ≤ L. Hence,

〈v, x̄− x〉 ≤ f (x̄)− f (x). (4.1)

It follows from (4.1) and the inclusion x̄ ∈C that

‖y− x̄‖2 = ‖PΩ,w(x−αv)− x̄‖2

≤ ‖x−αv− x̄‖2

= ‖x− x̄‖2 +α
2‖v‖2−2α〈v,x− x̄〉

≤ ‖x− x̄‖2 +α
2L2 +2α( f (x̄)− f (x))

≤ ‖x− x̄‖2 +α
2L2−2α∆.

This lemma is proved. �

5. PROOF OF THEOREM 3.1

In view of (3.6), for each integer k ≥ 1, we have

xk = PΩk,wk(xk−1,Nk). (5.1)

By (3.3) and (3.5), for each integer k ≥ 1 and each p ∈ {1, . . . ,Nk}, we have

‖xk−1,p− xk−1‖= ‖
p

∑
j=1

(xk−1, j− xk−1, j−1)‖

≤
Nk

∑
j=1
‖xk−1, j− xk−1, j−1‖

≤
Nk

∑
j=1

αk−1, j‖lk−1, j‖.
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It follows from (3.1) and (3.4) that, for each integer k ≥ 1 and each p ∈ {1, . . . ,Nk},

‖xk−1,p− xk−1‖ ≤ L
Nk

∑
j=1

αk−1, j. (5.2)

In particular,

‖xk−1,Nk− xk−1‖ ≤ L
Nk

∑
j=1

αk−1, j. (5.3)

In view of (3.2) and (5.3), we obtain
∞

∑
k=1
‖xk−1,Nk− xk−1‖ ≤ L

∞

∑
k=1

(
Nk

∑
j=1

αk−1, j)< ∞.

It follows from (5.1) and Theorem 2.1 that there exists x∗= limk→∞ xk ∈C in the norm topology.
Assume that case (a) does not hold. This implies that there exists ∆0 > 0 such that

f (x∗)> f (x)+4∆0 for all x ∈Cmin. (5.4)

By (3.1), (3.2), (5.2), and (5.4), there exists a natural number k0 such that, for all integers k≥ k0
and all p ∈ {0,1, . . . ,Nk},

Nk

∑
j=1

αk−1, j < (16L2)−1
∆0 (5.5)

and
f (xk−1,p)≥ f (xk−1)−L‖xk−1− xk−1,p‖

≥ f (xk−1)−L
Nk

∑
j=1

αk−1, j

> f (xk−1)−16−1
∆0

> f (x)+2∆0 for all x ∈Cmin.

(5.6)

(Note that (5.5) follows from (3.2), and (5.6) follows from (3.1), (5.2), (5.4), and (5.5)). Fix
x̄ ∈ Cmin. Let an integer k ≥ k0 and p ∈ {1, . . . ,Nk}. By (3.3), (3.4), (3.5), (5.5), (5.6), and
Lemma 4.1 applied with

α = αk−1,p, ∆ = 2∆0, x = xk−1,p−1, v = lk−1,p,

we have
‖xk−1,p− x̄‖2 ≤ ‖xk−1,p−1− x̄‖2−4αk−1,p∆0 +2α

2
k−1,pL2

≤ ‖xk−1,p−1− x̄‖2−αk−1,p∆0.
(5.7)

In view of (5.1), we have ‖xk− x̄‖ ≤ ‖xk−1,Nk − x̄‖, which together with (3.3) and (5.7) yields
that

‖xk−1− x̄‖2−‖xk− x̄‖2 ≥ ‖xk−1,0− x̄‖2−‖xk−1,Nk− x̄‖2

=
Nk

∑
p=1

(‖xk−1,p−1− x̄‖2−‖xk−1,p− x̄‖2)

≥ ∆0

Nk

∑
p=1

αk−1,p
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and

‖xk− x̄‖2 ≤ ‖xk−1− x̄‖2−∆0

Nk

∑
p=1

αk−1,p.

This completes the proof.
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