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Abstract. In this paper, we establish Fritz John optimality conditions for nonsmooth nonlinear semi-
definite multiobjective programming in terms of convexificators, and introduce generalized Cottle type
and generalized Guignard type constraint qualification to achieve strong Karush-Kuhn-Tucker optimality
conditions from Fritz John optimality. Strong Karush-Kuhn-Tucker necessary and sufficient optimality
conditions also established independently. Furthermore, we formulate Wolfe and Mond-Weir type dual
model, and establish usual duality results for the problems. Some examples are provided in the support
of the main results.
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1. INTRODUCTION

In this paper, we consider the nonsmooth semidefinite multiobjective programming
(NSD-MOP) minf(X) = (fi(X), ..., fp(X))
subject to g;(X) <0, iel={l,...m}, X €S,

where S’ is set of n x n positive semidefinite matrix, f; : ST — RU{+oeo} (i =1,...p), and
gi 1S — RU{+oo} are extended real-valued locally Lipschitz functions.

Nonlinear semidefinite programming problems include several classes of optimization prob-
lems, such as linear programming, quadratic programming, second order cone programming,
and semidefinite programming; see, €.g., [1, 2]. The nonlinear semidefinite programming prob-
lem has broad applications in system control [3], truss topology optimization [4], and so on. It
has become a center point in optimization research from last two decades. For instance, in the
release of library COMPIeib [5], where 168 test examples on nonlinear semidefinite programs
from various fields like control system design, academia and many real-life based problems
were collected.
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Nonlinear semidefinite programming problems were studied mostly in two different forms
(see, [6] and [7]), where their themes are same, and several useful results and applications were
obtained. In [6], first and second order necessary and sufficient optimality conditions were
established under convexity assumptions, while in [8], convexity was not a necessarily require-
ment. In [7, 10], algorithmic approach to solve the nonlinear semidefinite optimization prob-
lems were studied. In [11], a survey on numerical methods for solving nonlinear SDP problems
was described. In 2015, Golestani and Nobakhtian [12] introduced generalized Abadie con-
straint qualification (GACQ), and established necessary and sufficient optimality conditions for
nonlinear semidefinite programming by using convexificators.

Multiobjective optimization problems (MOP) like situations produces in science, technology,
business, economics, and many others field of daily demand, where optimal decisions need to
be taken among many conflicting objectives and all objective functions to be optimized simulta-
neously. Effect of conflict on objectives leads some change in the solution of (MOP) compared
to optimal solutions of single-objective optimization problems. Therefore, weak efficient points
(weak Pareto optimal solutions), efficient points (Pareto optimal solutions) are coined for the
solutions of (MOP). Initially, the concept of Pareto optimal was given by Italian civil engineer
and economist Vilfredo Pareto, who used it in the studies of economic efficiency and income
distribution. Basic concepts and literatures on the solutions of multiobjective optimization prob-
lems can be found in [13] and [14]. Constraint qualification and strong Karush-Kuhn-Tucker
optimality have been discussed for differentiable [15], semidifferentiable [16], and nonsmooth
[17] cases, respectively.

In optimization theory corresponding to any minimization (maximization) problem, there is
another formulated maximization (minimization) problem, which is called dual (see [18]). Du-
ality is the principle in which the same optimization problem may be viewed from two different
views. The first is a primal problem, and the second is a dual problem. The solution of the dual
problem provides a lower bound to the solution of the primal problem. Thus, from the view-
point of applications, the duality play a vital role in optimization. However, in several cases, it is
observed that the optimal values of both objectives need not appear to be equal. Their difference
is so called duality gap. In case of convexity assumptions, under a suitable constraint qualifica-
tion, the duality gap becomes zero. Some results on the duality of multiobjective optimization
can be found [19, 20, 21].

Since nonsmoothness in optimization is naturally generated from the mathematical formula-
tions of real-world problems, it is interesting to study effective ways for solving these problems.
Indeed, the solutions of many smooth problems still require the use of nonsmooth optimization
techniques in order to either make them easy or simplify their forms. Thus, the field of non-
smooth optimization is an important branch of mathematical programming which is based on
classical concepts of variational analysis and generalized derivatives. In recent years, the re-
search in nonsmooth analysis has focused on the growth of generalized subdifferentials that
give sharp results and good calculus rules for nonsmooth functions. Convexificators [22] was
used to extend, unify, and sharpen the results in various aspects of optimization. In [23], Jeyaku-
mar and Luc gave a more sophisticated version of convexificators by introducing the new notion
of convexificators, which is a closed set but not necessarily bounded or convex. From the view-
point of application, this new version of convexificators has an advantage that one may have
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convexificators consisting of only finitely many points. That is why we are using this new
notion of convexificators in our study.

Motivated by the above results, in this paper, we propose some new constraint qualification
to establish necessary and sufficient optimality conditions for nonsmooth nonlinear semidefi-
nite multiobjective optimization problems. Moreover, we extend the dual model by using the
notion of convexificators, and establish duality results. Organization of this paper is as follows.
In Section 2, we recall some necessary preliminaries and fundamental results. In Section 3,
we establish Fritz John necessary optimality conditions, and propose generalized Cottle and
generalized Guignard type constraint qualifications to establish strong Karush-Kuhn-Tucker
necessary optimality conditions. Further, sufficient optimality conditions are also established
under generalized convexity. In Section 4, we formulate Wolfe [18] and Mond-Weir [24] type
duality and establish fundamental duality results. Some examples are also given in this section.
Section 5 presents the conclusion of the paper as well as some possible views towards future
work.

2. PRELIMINARIES

This section recalls some necessary notations, definitions, and preliminaries, that will be used
later. S" is denoted as the space of n x n symmetric matrices. The notation X > 0(X > 0) means
that X is a positive semidefinite matrix (positive definite matrix), and we denote by S’ (S,)
the set of all positive semidefinite matrices (positive definite matrices). The inner product of the
symmetric matrices A, B € S" is denoted by (A, B), and defined by (A, B) =tr(AB), where tr(.)
denotes the summation of the diagonal elements of a square matrix. The inner product of x =
(X15-,%), ¥y = (V1,---,yn) € R" is defined and denoted by x”y = ¥ | x;y;. The norm associated

with matrix inner product is called the Frobenius norm ||A||r = tr(AA)% = (X =1 alzj)% The
vector space S" with this norm is a Hilbert space, and S'} is a closed convex cone in S". The
interior of the positive semidefinite matrices is the positive definite matrices. For more basics
on matrices, we refer to [9, 25]. Fory,z € R", y <z <= y=<z,y#2,y<z <= y; =z, and

y<z <= y;<z,i=1,...,n. Some sets are as follows
S={XeSl: g&(X)<0 (e},
Ir={1,..p} If = {1,... p}\ {k}, I(X) = {i : i(X) = 0},
0= {X €Sl : fi(X) < filX) (i€ Iy), g(X) S0 (€D},
Q' ={XeSL:fiX)S fiX) (i €I}), gi(X) S0 (i€}, where X €5,
R ={xeR":x20}, R, ={xeR":x>0}.
The motivation for the solution of (NSD-MOP), we refer to [14].

Definition 2.1. A feasible point X is said to be a weak efficient solution of (NSD-MOP) if there
is no other X € S such that f;(X) < fi(X), Vi € I.

Definition 2.2. A feasible point X is said to be a local weak efficient solution of (NSD-MOP)
if there exists a neighborhood N(X) of X such that there is no other X € SNN(X) such that

filX) < fiX),Viels.

Given a nonempty subset S of S”, the closure, the convex hull, and the convex cone (including
the origin) generated by S are denoted by clS,coS, and coneS, respectively. The negative and

fi
fi
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the strictly negative polar cone of S are defined, respectively, by
ST ={veS(VW)<0,VWeS} §:={VeS:(VW)<0, VW e S}
Contingent cone T'(S,X) to S at point X € clS is defined by
T(8,X):={veS":31,10,V,— Vsuchthat X +1,V, €SV n}.

The notion of semi-regular convexificators [23] will be used. It is observed that for locally
Lipschitz functions many generalized subdifferential like Clarke subdifferential [26], Michel-
Penot subdifferential [27], Mordukhovich subdifferential [28], and Treiman subdifferential [29]
are examples of upper semi-regular convexificators.

Let f:S" — RU{+oco} be an extended real-valued function, and let X € S" at which f is
finite. The lower and upper Dini derivatives of f at X in the direction V € S" are defined,

respectively, by f~(X;V) := liminf; o w, and f*(X;V) := limsup, g w
Now, we recall the definition of upper and lower semi-regular convexificators from [22, 23].

Definition 2.3. Let f : S" — RU {400} be an extended real-valued function, and let X € S" at
which f is finite. The function f is said to admit an upper semi-regular convexificator 9 f(X) C
§" at X if 9* f(X) is closed and for each V € §", f*(X;V) < supgcy- r(x)(E, V). f is said to
admit a lower semi-regular convexificator d, f(X) C S" at X if d, f(X) is closed and, for each
VeSs", fr(X;V) 2infeen, x) (8, V).

Definition 2.4. Set df(X) is said to be semi-regular convexificators if it satisfies both upper
semi-regular convexificators and lower semi-regular convexificators.

Definition 2.5. Let f: S”" — RU {400} be an extended real-valued function. Suppose that
X €S", f(X) is finite and admits a convexificator 0* f(X) at X.
— f is said to be d*—convex at X if and only if, for all Y € ",

V)= F(X) > (E,Y —X), V& €9 F(X).
— f is said to be strictly 0*—convex at X if and only if, for all Y (# X) € §",
F(Y) = F(X) > (£,Y —X), ¥ € € 9" F(X).
— f is said to be d*-pseudoconvex at X if and only if, for all ¥ € S",
FY) < F(X) = (E,Y —X) <0,V E € F(X).
— f is said to be strictly d*-pseudoconvex at X if and only if, for all Y (# X) € ",
(EY—X)20 = f(¥)> f(X) ¥ E € " f(X).
—f is said to be d* —quasiconvex at X if and only if, for all Y € S",
fY)<f(X) = (6, Y —X) <0,V ¢ e€df(X).
Now, we recall generalized version of Farkas’ lemma [30], which plays a vital role in this
paper.
Lemma 2.1. (Farkas’ Lemma) Let h : S" — R™ be convex functions. Then the following system:

{h(X) <0,

Xes,.
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has no solution if and only if there exists (A, U) € R" xS" withA 20, U <0and (A,U) # (0,0)
such that ATh(X) +(U,X) 2 0,VX € S".

3. OPTIMALITY CONDITIONS

Now, we present necessary and sufficient optimality conditions for a local weak efficient
solution.

Theorem 3.1. (Fritz-John necessary optimality conditions) Let X be a local weak efficient so-
lution to (NSD-MOP). Assume that f; (i € I7), g; (i € I(X)) admit bounded upper semi-regular
convexificators, and each g; (i € I\ 1(X)) is continuous. Then there exist A; 20 (i € Iy), [I; =
0(ie€l),andU € S", not all zero, such that

OGZlcoaf, i

i=

<X,(_]> =0, Higi( ):0, Viel.
Proof. We claim that
((Ua*ﬁ()‘()) +X)ﬂ<( U a*g,)‘(> -|-X>ﬂS++—(Z) 3.1)
iEIf ZEI
On the contrary, we suppose that
(o) ) (( Y ) )
icly i€l(X)

Since f; and g;, i € I(X) admit bounded upper semi-regular convexificators, we deduce that
[T (X, X—-X)<0,Vieland g (X,X —X) <0, i€ I(X). Hence, there exists § > 0 such that

filX+t(X—X)) < fi(X), iels, gi(X+t(X—X))<0,iel(X),Yre(0,0). (3.2)
By the continuity of g;, i ¢ I(X), there exists § > 0 such that
gi(X+1(X—-X))<0,i¢1(X), Ve (0,0). (3.3)

From (3.2), (3.3), and the convexity of §'}, we obtain a contradiction with the local weak
efficient point of X. Now, we define ¢;(X) = supg,cgrx) (6, X —X), Vi € I, and yi(X) =
SUPy,c9+g,(X) (Mis X —X), Vi e I(X). It is easy to see that ¢; and y; are convex functions. From
(3.1), it follows that the following system has no solution

¢;i(X) <0 ifiely,
W=<Sw(X)<0 ifiel(X),
st .
Therefore, by the Farkas’ Lemma 2.1, there exist ;; = 0 (i € Iy), fi; =2 0 (i € I(X)), and
U € 8%, not all zero, such that Ycr Aii(X) + Licycx) Hiyi(X) — (U,X) 2 0, VX € S". This
implies (U,X) < 0. On the other hand, U and X are two elements in S".. Hence (U,X) =
0. Consequently, ®(X) = Lies, 4i9i(X) + Licy(x) LiWi(X) — (U, X), which is a convex func-

tion and @w(X) = 0. Hence 0 € dw(X), where (9 is the symbol of the subdifferential in the
sense of convex analysis. Thus 0 € Z,elfl 9¢i(X) + Liey(x) Lo wi(X) — U. This shows that
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0 Yl  Aicod*fi(X) + X" licod*gi(X) — U. Setting fi; = 0 for i ¢ I(X), we conclude the
desired results immediately. U

Definition 3.1. We say that the generalized Cottle constraint qualification (GCCQ) is satisfied
at X if
s N
(Uco&*fi()?)) ﬂ( U cod*gi(X ) (St #0,Vkel.
ic 1}’; icl(X)

Theorem 3.2. Let X be a local weak efficient solution to (NSD — MOP). Suppose that f; and
gi (i € I(X)) admits bounded upper semi-regular convexificator at X. If (GCCQ) holds at X,
then there exists A >0, i; >0 (i € I) and U € S". such that

OEZlcoo"?f +Zu,co8 gi(X)-U

i=1 i=1
<X,U> =0, [L,-gi(X) =0, Viel.
Proof. Since X is a local weak efficient solution, it follows from Theorem 3.1 that there exist

220 (i€lf), ;=0 (i€l)and U € S" such that

OEle&f +Zu,co8 gi(X)-U
i=1

<X7U> =0, .u'igi( ) =0, Viel.
Without loss of generality, we may assume that A; = 0. Then there exist & € cod fi(X) (i €
I}), n; € codgi(X) (i € I(X)) such that 0 = Zlell MEi+ Z f;n; — U. By (GCCQ), there ex-

ists X € S"_ such that 0 > Ziel} L& X)+ Y, mi(ni, X > (U,X) = <Ziel}. L&Y mmi —
U,X) = 0, which is a contradiction. Thus, A; > 0. By the continuation of the above process for
each k € Iy, we conclude the desired result. 0

Definition 3.2. We say that the generalized Guignard constraint qualification (GGCQ) holds at
X if
D = cone co ( J cod*gi (X)) — S} is closed set and
i€l(X)
(Uco&*f,-(X)) m< U cod*gi(X ) S CﬂcoTQ ,X).
i€ly iel(X)

Lemma 3.1. Let X be any feasible solution to problem (NSD-MOP). Suppose that f; (i € I5)
and g; (i € (X)) admit bounded upper semi-regular convexificators, and each g; (i € I\{I(X)})
is a continuous function. If D is closed and (GCCQ) holds at X, then (GGCQ) holds at X .

Proof. Without loss of generality, we assume that X satisfies (GCCQ) for k = 1.

e(Ucoa*ﬁ(X))ﬂ< U cod si(X ) NS #0.

iel} i€l(X)
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Since all f; (i € Iy) and g; (i €] ()_( )), admit bounded upper semi-regular convexificators, we
have " (X;X) <0,Vie I1 and g (X;X) <0, Vi€ I(X). Since S". is a convex cone, there exists
0 > 0 such that

[ilX+1X) < fi(X) (i€lf), gi(X+1X) <0Viel(X), X+1X €S}, V1 €(0,8).

On the other hand, each g;, (i € I'\ (X)) is a continuous function. Therefore, there exists 6 > 0
such that g;(X +1X) <0,VieI,and X +tX € S", t € (0,6). Thus, X € T(Q',X). Therefore,

:(Ucoa*ﬁ(X))ﬂ< U coa*ngf) st

i€ly i€l (X)

:d((Ucoa*fi(X))sﬂ( U coa*g,x> Ns )

iely i€l(X)
N
C cl(( U co&*f,-(f()) ﬂ < U cod*gi(X ) mS )
iel_} i€l(X)
C clcoT (Q",X) = coT (0!, X).
Similarly, it can be proved that A C coT(Q',X), Vi € I . Therefore

(Ucoa*ﬁ()_())_ﬂ( U cod"gi(X ) Ns: CﬂcoTQ ).

icly iel(X)
[

In what follows, by applying the generalized Guignard constraint qualification, we derive the
Karush-Kuhn-Tucker type necessary optimality conditions for (NSD-MOP).

Theorem 3.3. Let X be a local weak efficient solution of (NSD — MOP). Suppose that f;
and g; admit bounded upper semi-regular convexificator 9* f;(X) (i € Iy), d*gi(X) (i € (X)),
respectively at X. If (GGCQ) holds at X, then there exists A; >0 (i € I5), fi; >0 (i € I) and

_ P _ _ - _
U €'} suchthat0 .Zl Aicod™ fi(X)+ Y icod*gi(X)—U, (X,U) =0, fligi(X) =0,Viel.
1=
Proof. 1t is sufficient to show that
P
0€ Y Aicod*f;(X)+D, A >0. (3.4)
i=1

On the contrary, we assume that 0 ¢ Y'7 | A;cod* f;(X) +D, A > 0. Since f; (i € Iy) admits
an upper semi-regular convexificator, we have that the right side in (3.4) is a closed convex
set in S”. By the classical separation theorem, there exists X € S" such that (7,X) <0, V1 €

b Aicod* f;(X) + D, A > 0. Consequently, (&, X) <0, V& € cod*f;(X) (i € If), (m;,X) <0,
Vni € cod*gi(X) (i € I(X)),and —(U,X) £ 0, VU € S".. It follows from the inequalities above
and (GGCQ) that

c <Ucoa*ﬁ(;z))ﬂ( U cod"si(X ) Ns: cﬂczcoTQ X).

i€ly i€l(X)
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Thus, X € N}_, coT(Q',X), which implies that there exist #,, | 0 such that X +1,X € S. It follows
that f;(X +1X) < fi(X), Vi € I;. Thus, we obtain the contradiction that the feasible point X is a
local weak efficient solution to (NSD-MOP). O

Example 3.1. Consider following optimization problem
min (f1(X), f2(X)), subjectto g(X) = —2x, <0, X = LC B } cS?,
2 A3

where fi(X) = [x1 — 1|, £2(X) = |x3].

Feasible set S = ¢ |1 *2 eSﬁ:xle,)@gO,)@zO X = 1o is a weak effi-
X2 X3 00

cient solution to the problem. Now, we can find the upper semi-regular convexificator of each
functions at point X easily as follows:

a*m):{[—ol . g”,a*ﬁ(x):{[g DR ﬂ},(—,*g@:{[ﬂ ‘01]}.

1) | x 2. > > 2 1 x| 2. S

So, we conclude that

PﬂﬁM@XmUMﬁ {B%gﬂ““H%'

i=1
It follows that

Since,

c0d"g(X) = { {_01 _01} } then (coa*g(;z)) o { {2 Z] X =0V i},

we have
2 ) A 00 2 -
(Uco&*fi(X)) N (co&*g(X)) S: = { {O O} } C ()coT(Q',X).
i=1

i=1
Obviously, D = cone cod*g(X) — Si is closed set. Hence (GGCQ) satisfied at X. Now, for

m=tia=tu=0.0= 0t &= |0 o ccrnim o= g §] € cod i),
and = {_01 _01} € cod*g(X), we have

oosinem-0- G Yl S 8

€ Aicod” f1(X) 4+ Aacod” fo(X) + ucod*g(X) — U,
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and (X,U) = Tr( [(1) 8] lg ﬂ ) = 0. Hence, KKT conditions are satisfied at weak efficient

point X.

Corollary 3.1. Let X be a local weak efficient solution to (NSD —MOP). Suppose that f; admits
a bounded upper semi-regular convexificator 9* f;(X) (i € Iy) at X. If (GGCQ) holds at X, then
there exists 2; >0 (i € I), fi; >0 (i € I), and U € S"_ such that

OGZlcoaf, —|—Zu,coa gi(X)-U,
i=1 i=1

Mm

Ai =0, ;gi(X)=0,Viel
i=1

Proof. Since all the conditions of Theorem 3.3 are satisfied for some A > 0 and u = 0, and

OEZ?Lcoaf, +Z,ulco8 gi(X)-U

i=1
)Li>07 <X>U>:07 .u'igi( ):()7VI€I- (35)

p
Now, dividing (3.5) by Y A, and taking
=1

. A - U
2fi P ) .ai = p‘Ul s U= )
Y A Y A YA
i=1 i=1 i=1
and A; > 0, (X, U) = 0 and f1;g;(X) = 0, Vi € I. Hence, we obtain the desired result. O

Theorem 3.4. (Sufficient Karush-Kuhn-Tucker optimality conditions) Let f; (i € Ir), gi (i € 1)
admit bounded upper semi-regular convexificators at X. Suppose that (X A, i, U) satisfy the
KKT optimality conditions. If f; (i € If), g;i (i € I) are d*-convex, then X is a weak efficient
solution to the (NSD-MOP).

Proof. Suppose that X is not a weak efficient solution to (NSD-MOP). Then there exists a
feasible point Y such that f;(Y) < f;(X), Vi € Iy. On the other hand, (X A,01,0) satisfies the
KKT conditions. Thus, there exist § € cod f;(X) (i € If), n; € codgi(X) (i € I(X)) such that

Y A&+ Y, umi—U=0. (3.6)
i€ly iel(X)
By the d-convexity of functions, we obtain 0 > A;fi(Y) — Aifi(X) = (L&, Y —X), Vi€ Iy, 0=
pigi(Y) — igi(X) = (am;,Y —X), Vi€ I, and 0 =2 —(U,Y) + (U,X) =2 —(U,Y — X). From
above relations, we reach a contradictions of (3.6). This completes the proof. ]

Theorem 3.5. (Sufficient Karush-Kuhn-Tucker optimality conditions) Let f; (i € Ir) and g; (i €
I), admit bounded upper semi-regular convexificators at X . Suppose that (X, A,u,U) satisfies
the KKT optimality conditions. If f; (i € Ir), are d*-pseudoconvex and g; (i € I), are 9*-
quasiconvex, then X is a weak efficient solution to (NSD-MOP).
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Proof. Suppose that X is not a weak efficient solution to (NSD-MOP). Then there exists a
feasible point Y such that f;j(Y) < f;(X), Vi € Ir. On the other hand, (X,A,u,U) satisfies the
KKT conditions thus there exist § € cod fi(X) (i € Iy) and 1; € codg;(X) (i € (X)) such that
Zzelf AiGi + Lici(x) MiMi — U = 0. By the d-pseudoconvexity of f; (i € Ir), we obtain (§;,Y —

X) <0,Viel. By the d-quasi-convexity of g; (i € ), we obtain (1;,Y —X) <0,V i€ I. Since
U, Y eSS, wehave —(U,Y)+ (U,X) = —(U,Y —X) < 0. From the inequalities above, we
obtain a contradictions. Hence, the result follows. O

4. DUALITY
In this section, we formulate Wolfe and Mond-Weir dual type models for the NSD-MOP and
establish fundamental duality results.
4.1. Wolfe dual-type model. Following the lines of [18], we define Wolfe dual type model,
and give some duality results
(WD-NSD-MOP) max ¢@(Y,A,u,U), subject to (Y,A,u,U) € F,
where @(Y,A,u,U) = f(Y)+ulg(Y)e—(U,Y) e, e=(1,1,....,1) €R”, and

F={Y,A,uU)eS, xR xR" xS : OEZ?Lcoafl +Z,u,coa gi(Y)—-U,

A>0,ATe=1,p20,U,Y €S}, F' = {YeSi:(Y,)L,u,U)eF}.

The following result shows how the feasible points of problems NSD-MOP and correspond-
ing WD-NSD-MOP are connected.

Theorem 4.1. (Weak duality) Let X and (Y,A,,U) be the feasible point of the NSD-MOP and
the WD-NSD-MOP, respectively. If f; and g; admit bounded upper semi-regular convexificators
and all functions are d* —convex at feasible point Y, then f(X) < @(Y,A,u,U).

Proof. Suppose on contrary that f(X) < f(Y)+u’g(Y) e—(U,Y) e. Multiplying by A €
R? ATe =1, we obtain

ATFX) AT f(r)—u"e(Y)+(U,Y) <0. (4.1)

Since all functions are d*-convex at Y, we have f;(X)—fi(Y) = (fif,X —-Y), V{‘,l-f ccod*fi(Y) (ie
Ir),and g;(X) —gi(Y) = (§5. X —Y), V&S € cod*g;(Y) (i €I). These imply that

P+ L s ()+(E 2 + g X,

M"c

p m
Y Aifi(X)+ ) migi(X) Z
i=1 i=1

1

~.

for all ﬁl-f € cod*f;(Y) and & € cod*g;(Y), which gives

iljﬁ(X)‘Fi.uigi( 2 +Z,ulgz > <UaY>
i=1

i=1

WM\: ,TLM‘

im&g Ux-v),
=1
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for all ﬁl-f € cod*f;(Y), &F € cod*g;(Y), and U € S".. Since, g;(X) <0, i; 20, and (U,X) =
0V X,U €87, then we can rewrite as:

m

p 14 p m

L AfiX) 2 YL AAW) + Y igih) — (U + (L 28] + Y e ~U. X=1). @)
i=1 i=1 i=1 i=1 i=1

for all éif € cod*f;(Y), &8 € cod*gi(Y), and U € S".. Now, we choose é_if € cod*fi(Y), Ef €

c0d*g;(Y), and U such that

P m
Z &+ Y wiEf -0 =0, asOEZ?Lco&f, +Z,ulco8 g¥)-U.  (43)
i=1 i=1 i=1 i=1
Substituting (4.3) into (4.2), we obtain AT f(X) — AT f(Y) — uTg(Y) + (U,Y) = 0, which is
contradiction to (4.1). Hence, we obtain the desired conclusion. ]

The following result provides the sufficient conditions for the existence of the optimal solu-
tion of the WD-NSD-MOP with zero duality gap.

Theorem 4.2. (Strong duality) Let f; and g; admit bounded upper semi-regular convexificators,
and be 0* —convex on S". Suppose that X is an optimal solution to the NSD-MOP, and satisfies
generalized Guignard constraint qualifications at X. Then there exist A > 0, o e RY, and
U € S such that (X, 4, 1,U) solves the WD-NSD-MOP and f(X) = ¢(X,,i1,0).

Proof. Since, f;, g; are d*—convex at X and satisfying generalized Guignard constraints quali-
fications at X, then from Theorem 3.2, there exist L >0, ATe =1, it € R”, U € S", such that
0y, Aicod* fi(X) + Y, ficod*gi(X) —U, (X,U) =0, fi;g;(X) =0, Vi € I. So it is obvious
(X,A,[1,0) is a feasible point of the WD-NSD-MOP. Let (X,A,u,U) be an arbitrary feasible
point of the WD-NSD-MOP. From Theorem 4.1, we have f(X) = f(X) + il g(X)e— (U,X)e &
fX)+ulg(X)e—(U,X)eand f(X)=@(X,A,[i,0). Hence, we achieve the desired result. [J

The following result is important from the viewpoint of applications, as it gives optimal
solutions to the NSD-MOP provided that one has a feasible point of the corresponding WD-
NSD-MOP with few additional conditions.

Theorem 4.3. (Converse duality) Let (Y,A,i1,0) be a feasible solution to the WD-NSD-MOP
such that 1;g;(Y) = 0, (U,Y) < 0. If f; and g; admit bounded upper semi-regular convexifica-
tors, and f; is *-convex and g; is 0*-quasiconvex at Y, then Y is a weak efficient solutions to
the NSD-MOP.

Proof. We prove the result by contradiction. On contrary, we assume Y is not a weak efficient
solution to the NSD-MOP. Therefore, there exist another feasible point Y*, which is a weak
efficient solution, that is, f;(Y*) < f;(¥). From 0*—convexity, we have

EL Yy =Ty S [(Y) = £i(7) <0, V& € cod*fi(T). (4.4)
Ligi(Y") S0 igi(V) = m(&f,Y"—Y) <0, VES €cod*gi(Y), 4.5)

and
(—U,Y*—Y)=—(U,Y*)+(U,7) <0. (4.6)
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Now, multiplying (4.4) by A; > 0 and adding (4.5) and (4.6) yield that

iéf—l- Zu]g;g U,y —Y) <o, Véif € cod* f;(Y), Véig € cod*g;(Y),

M""'

{,

1

~.

which contradicts the fact that (¥, 4, f1,0) is a feasible point of the WD-NSD-MOP. Thus, ¥ is
a weak efficient solution to the NSD-MOP. This completes the proof. U

The beauty of the following result is, without being an optimal solution to the NSD-MOP,
one can not obtain the zero duality gap.

Theorem 4.4. (Restricted converse duality) Let X, (Y, Y, ,,0) b e feasible solutions of the
NSD-MOP and the WD-NSD-MOP, respectively, and f(X) = @(Y, U). If f; and g; admit
bounded upper semi-regular convexificators and are 0*-convex at Y, hen X is a weak efficient

solution to the NSD-MOP.

Proof. We suppose that X is not a weak efficient solution of the NSD-MOP. Then, there exists a
feasible point X* of NSD — MOP such that f(X*) < f(X), which implies that f(X*) < f(X) =
o(Y,A,1,U). Hence, the weak duality theorem is contradicted. Thus, we obtain the desired
result. 0J

The following result provides sufficient conditions under which, an optimal solution of the
NSD-MOP coincides with first coordinate of an optimal solution of the corresponding WD-
NSD-MOP.

Theorem 4.5. (Strict converse duality) Let X be a local weak efficient solution of the NSD-MOP
such that the GGCQ be satisfied at X. Let (Y, A, [i,U) be a global weak efficient solution of the
WD-NSD-MOP. If f; and g; admit bounded upper semi-regular convexificators and f; is strictly
0*-convex and g; is 0*-convex, then X =Y .

Proof. Suppose that X # Y. Since X is a local weak efficient solution to the NSD-MOP, and
satisfies the GGCQ, we find from thestrong duality result that there exist A*, u*, U* such that
fX) =X 251" U%) = (Y,A,0,0), f(X) = f(¥)+n"g(¥) e~ (U,7) e,and AT f(X) =
ATF(¥)4+aTg(Y)—(TU,Y). In view of the following facts f;(X) — f;(¥) > (/. X 1), Vﬁl-f €
cod* f;(Y),Viels, gi(X)—gi(V) 2 (£, X —Y),VEF € cod*gi(Y),i€l,and —(U,X)+(U,Y) =
(—=U,X —Y), we conclude

Ms

g

figi(X) — (0, %) > iz f i) — (0, 7)

i=1

(YA + Y RE-U.X-T)

for all éif € cod* f;(Y) and &F € cod*g;(¥). Since, figi(X) <0, —(U,X) <0,and (Y,4,,0) is
a feasible solutions, we obtain A7 f(X) > AT f(¥) + " g(Y) — (T,Y), which is a contradiction.
Thus, we have the desired result. ]
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4.2. Mond-Weir dual-type model. In this subsection, following the idea of [24], we introduce
the Mond-Weir dual type model, and present various duality results.

(MWD — NSD — MOP) max f(Y) subject to (Y,A,u,U) € Fywp, where

14 m
Fywp = {(Y,4,1,U) € S| xRP xR" xS :0€ Y Aicod* fi(Y) + Y picod*gi(¥Y) — U,
i=1 i=1

A>0,u>0 ulg(Y)>0, (UY)=0}, Fiwp={Y : Y € Fywp}.

The following result connects a feasible point of the NSD-MOP and a feasible point of the
MWD-NSD-MOP.

Theorem 4.6. (Weak duality) Let f; and g; admit bounded upper semi-regular convexificators
atY. Let X, (Y, A, u,U) be feasible points of the NSD-MOP and the MWD-NSD-MOP, respec-
tively. If f; is d*-pseudoconvex and g; is d*-quasiconvex at feasible point Y, then f(X) £ f(Y).

Proof. Suppose that f(X) < f(Y) = fi(X) < fi(Y), i € I. Since f; are d*-pseudoconvex
at Y, then <§l.f,X —Y) <0, Vﬁl-f € cod* fi(Y), i € Iy. From the d*-quasiconvexity of g; at Y, we
have that u”g(X) < u”g(Y) implies (Y7, &, X —Y) £ 0, V&P € cod*g;(Y). Observe that
(~U,X —Y) = —(U,X)+ (U,Y) £0,¥(Y,u,U) € Fywp and VX € S". Hence, (X7, L& +

mowES —UX —Y) <0, VE € cod* fi(Y), VEE € cod*gi(Y), V(Y,A,u,U) € Fywp, and
VX € S, which contradicts the feasibility of (Y,A,u,U) € Fywp. Thus, we obtain the desired
result. 0J

The following result is known as the strong duality theorem, which gives the sufficient con-
ditions for the existence of optimal solutions of the MWD-NSDP with zero duality gaps.

Theorem 4.7. (Strong duality) Let f; and g; admit bounded upper semi-regular convexificators
at X. If f; and g; are 0*-pseudoconvex and 0*-quasiconvex, respectively, at X, which solves
the NSD-MOP, and let the (GGCQ) be satisfied at X. Then there exist A € ]Ri +, L eRY and
U € S such that (X A0 ) is a solution of the MWD-NSD-MOP and the values of both
objective functions are equal.

Proof. Since the generalized Guignard constraint qualification is satisfied at X, then from The-
orem 4.6 there exist L € R"_, i € R and U € S". such that 0 € Y2 dicod* fi(X) + X0
cod*gi(X)—U, (X,U) =0, f;g:(X) =0, Vi€ I. Thatis, (X,A,[1,U) is the feasible solution
of the MWD-NSD-MOP. So, from weak duality Theorem 4.6, (X, Z, fi,U) is a weak efficient
solution to the MWD-NSD-MOP, and both objectives have same value. Hence, we obtain the
desired conclusion. 0

The following result provides sufficient conditions for the first component of the feasible
solution of the MWD-NSD-MOP to be an optimal solution of the corresponding NSD-MOP.

Theorem 4.8. (Converse duality) Let f; and g; admit bounded upper semi-regular convexifica-
tors at Y, and let (Y,A,1,U) be a feasible solution of the MWD-NSD-MOP with conditions
figi(Y) =0, (U,Y) 0. If fi is d*-pseudoconvex and g; is d-quasiconvex, then Y is a weak
efficient solutions to the NSD-MOP.

Proof. Assume that Y is not an optimal solution of the NSD-MOP. Therefore, there exist another
feasible point Y*, which is an optimal solutions, thatis, f(Y*) < f(Y) = fi(Y*) < fi(Y), i €
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I¢. From the d*-pseudoconvexity and the d*-quasiconvexity, we have (&l-f JY*—Y) <0, Wjif €
cod* fi(Y),i€ly, figi(Y*) S0 = gi(Y) = mi(§f,Y* —Y) £0,VEF € cod*gi(Y), i, and
(=0,Y*—Y)=—(U,Y*)+(U,Y) £0. Hence, we have (Y'¥_, L& 4y mEE -0,y —¥) <
0,VE/ € cod*f;(V),V EF € cod*gi(Y), which contradicts that (¥, 4, 1, ) is a feasible point of
the MWD-NSD-MOP. Hence, Y is a weak efficient solution of the NSD-MOP. ]

The following result gives conditions for a feasible solution of the NSD-MOP to be the opti-
mal solution.

Theorem 4.9. (Restricted converse duality) Let f;, g; admit bounded upper semi-regular convex-
ificators at Y. Let X, (Y, A, i,0) be feasible solutions of the NSD-MOP, the MWD-NSD-MOP,
respectively with f(X) = f(Y). If f; is d*-pseudoconvex and g; is d*-quasiconvex at Y , then X
is a weak efficient solution to the NSD-MOP.

Proof. Suppose that X is not a weak efficient solution of the NSD-MOP. Then, there exist a
feasible point X* of the NSD-MOP such that f(X*) < f(X), which implies that f(X*) < f(X) =
f(Y). Hence, the weak duality theorem is contradicted. Thus, we have the desired result. [

Theorem 4.10. (Strict converse duality) Let f;, g; admit bounded upper semi-regular convexi-
ficators at Y. Let X be a local weak efficient solution of the NSD-MOP such that the GGCQ is
satisfies at X. Let (Y, A, [i,0) be a global weak efficient solution of the MWD-NSD-MOP. If f;
is strictly 0*-pseudoconvex and g; is d*-quasiconvex, then X =Y .

Proof. Suppose that X # Y. Since X is a local weak efficient solution of the NSD-MOP and
satisfies the GGCQ, we find from the strong duality result that there exist A*, u*, and U*
such that (X,A*,u*,U*) is a feasible solution of the MWD-NSD-MOP, but it is given that
(Y, A0 ) is a global weak efficient solution of the MWD-NSD-MOP. Hence, using the weak
duality theorem, we conclude that f(X) = f(¥). Observe that g;(X) S0 < g;(¥) = (&8, X —
Y) £0, V&8 € cod*gi(Y), and (—U,X —Y) = —(U,X) +(U,Y) < 0. Hence, (Y, &’ —
U,X —Y)Z0,VE € cod*gi(Y). Since (Y,A,[i,U) is a feasible solutions of the MWD-NSD-
MOP, then (éif,)_( -Y) 20, Vélf € cod*f;(Y), i € Iy, which shows that f;(X) > fi(Y),i € If
= f(X) > f(Y). Thus, we obtain a contradiction. Hence, the result follows. 0J

The following semidefinite programming problem supports the result that we proved in The-
orem 4.3.

Example 4.1. Consider the following problem

min (f1(X) =x1, f2(X) =x3), subjectto g(X)=—2x, <0, X = Bl iz} €S
2 X3
We have the feasible set S = { B] f} x1 20, x20,x3 20, xjx3—x3 = 0} and
2 X3

sr={f G w5 ) v

7“207)}:

B[ —

We observe that all functions are d*—convex for all Y € S}.. For 4; = %, A=

1
{8 8} €S, U= {(2) (1)} €S2, we have ug(¥Y) =0 and (U,Y) < 0. Now, it is easy to see
2
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that 0 € Y7 | Aicod* fi(Y) + cod*g(Y) — U. Thus, we conclude that (Y,A,u,U) is a feasible

point of the Wolfe dual model. Therefore, from Theorem 4.3, Y = {8 8] 1s a weak efficient

solution of the problem.

5. CONCLUSIONS

In this paper, we established necessary and sufficient optimality conditions under new pro-
posed constraints qualifications, and formulated Wolfe and Mond-Weir type dual models to
the primal nonlinear semidefinite multiobjective programming problems. We also established
weak, strong, converse, restricted converse, and strict converse duality results under the assump-
tions of generalized convexity. Furthermore, we included examples to verify our results.
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