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PHASE RETRIEVAL WITH SUB-GAUSSIAN MEASUREMENTS VIA
RIEMANNIAN OPTIMIZATION

HUIPING LI, YU XIA∗

School of Mathematics, Hangzhou Normal University, Hangzhou 311121, China

Abstract. This paper concerns the phase retrieval problem under random sub-Gaussian measurements.
We propose one type of gradient descent method based on Riemannian optimization, namely, truncated
Riemannian gradient descent algorithm (TRGrad), to deal with the sub-gaussian phase retrieval problem.
Compared with traditional methods, the careful selection rule in our work ensures a tighter initial guess.
The sequence generated by the TRGrad converges to the true solution xxx ∈ Rn at a geometric rate with
high probability provided that the number of measurements m = O(n). This implies that the sample
complexity is optimal. In addition, several numerical experiments are provided to show the effectiveness
and stability of the TRGrad, and demonstrates that the TRGrad performs better than the state-of-the-art
methods, such as Wirtinger Flow (WF) algorithm, and Generalized WF algorithm.

Keywords. Gradient descent method; Phase retrieval; Riemannian optimization; Sub-Gaussian mea-
surements.

1. INTRODUCTION

1.1. Problem setting. The problem of Phase Retrieval (PR) is generally stated as the problem
of estimating a vector xxx ∈ Rn or Cn from the certain measurements of the form

yyy = |AAAxxx|2, (1.1)

where yyy ∈ Rm is the observation, and AAA ∈ Rm×n is the sensing matrix. The notation | · |2 is
denoted as:

|zzz|2 = [|z1|2, ..., |zm|2]> for zzz = [z1, ...,zm]
> ∈ Rn.

The above phase retrieval problem has important applications in imaging, optics, signal pro-
cessing, and communication.

Throughout the paper, the measurement matrix AAA is drawn from the sub-Gaussian distribu-
tion, which is widely used in applications [1, 2, 3]. Before going further, we give the definition
of sub-Gaussian random variables.

Definition 1.1. (Sub-Gaussian random variables, [4, 5]) A random variable φ is called a sub-
Gaussian random variable if there exists constants κ > 0 such that P(|φ | ≥ t) ≤ exp(1−κt2)
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for all t > 0. The sub-Gaussian norm of φ is denoted as

‖φ‖ψ2 = supp≥1
(E|φ |p)1/p
√

p
.

Now we make the explicit definition of sub-Gaussian measurements used in our paper.

Definition 1.2. (sub-Gaussian measurements) Let AAA ∈ Rm×n be the measurements matrix. The
elements of AAA are independently copies of some sub-Gaussian random variable a, which meets
the conditions as below:
(1) Ea = 0, Ea2 = 1;
(2) Ea4 = τ > 1;
(3) ‖a‖ψ2 ≤ K(K ≥ 1).

Remark 1.1. For general sub-Gaussian matrix AAA, we can normalize the elements to meet the
condition Ea2 = 1. The forth moment condition Ea4 > 1 is necessary, otherwise the expectation
of the concentration inequalities may be smaller than 0. More details can be seen in Remark
5.1. Based on the definition of ‖ · ‖ψ2 , if ‖a‖ψ2 ≤ K, one has τ ≤ 16K4, and

P(|a|> t)≤ exp(1− c0t2/K2), (1.2)

where c0 > 0 is some absolute constant.

For simplicity, we focus on the reconstruction of real signal xxx from the PR problem in this
paper. Based on a standard lifting of the signal xxx to XXX = xxxxxx>, the quadratic measurements (1.1)
can be expressed as

yyy = A (XXX), (1.3)
where A : Rn×n→ Rm is defined as below

A (WWW ) =
{
〈WWW ,aaa jaaa>j 〉

}m

j=1
,

with aaa>j as the j-th row of AAA. Thus, our goal is to estimate the rank-one, and positive semidefi-
nite matrix XXX from the measurements (1.3), which also solves the PR problem and provides an
estimate for the real signal xxx up to the inevitable global phase ambiguity.

1.2. Notations. For n ∈ N+, denote [n] = {1, ...,n}. Given and index set T ⊂ [n], T c is the
complement of T in [n]. Denote cα or Cα as constant depending on parameter α . For example,
CK depends on parameter K, and CK,τ depends on K and τ . To be convenient, C and c are
absolute constants, which may not be the same in different theorems. A & B is denoted as
A ≥ C0B, where C0 is an absolute positive constant. The notation . can be defined similarly.
sign(x) is denoted as

sign(x) =

{
1 x≥ 0,
−1 x < 0.

For a vector xxx ∈ Rn, denote ‖xxx‖p =
(

∑
n
j=1 |x j|p

)1/p
as the p-th(1≤ p < ∞) norm of xxx. Sn−1 is

the unit `2-norm sphere in Rn. For a matrix XXX ∈Rm×n, write XXX> as the transpose of XXX . For any
XXX ,YYY ∈ Rn, set 〈XXX ,YYY 〉 := Tr(XXXTYYY ). XXX i, j is considered as the i-th row and j-th column element
of XXX . If xxx = [x1, ...,xn]

> ∈ Rn, then Diag(xxx) ∈ Rn×n is a diagonal matrix with [Diag(xxx)]i,i = xi.
If XXX ∈ Rn×n with Diagonal elements (Xi,i)

n
i=1, then Diag(XXX) = Diag([X1,1, ...,Xn,n]

>).
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1.3. Our contributions. The main challenge in the PR problem under random sub-Gaussian
measurements in its general formulation is to design an accurate and computationally tractable
estimator that has optimal sample complexity. In this paper, we try to address this challenge
by Riemannian optimization. Namely, we propose one kind of truncated Riemannian gradient
descent algorithm that

(i) generates a sequence of successive iterates which provably converges to the solution at a
geometric rate in the noiseless case;

(ii) the sample complexity is optimal, namely, m = O(n).
Specifically, to confirm our results, we are greatly inspired by the works in [6, 7] and attempt

to establish a property similar to the restricted isometry property (RIP) and the restricted weak
correlation property (RWC) about the sensing operator. However, the linear operator consid-
ered here is composed of sub-Gaussian measurements which is more complicated that random
Gaussian measurements. For example, the expectation of some complicated functions based on
sub-Gaussian vector can not be calculated directly like Gaussian vectors. Therefore, to over-
come such difficulties, we need delicate truncation rules and novel update rules to produce a
tighter initial guess, better descent directions, and thus enhanced practical performance. This
implies that our work is substantially different from that in [6]. Thus, it is by no means trivial
to establish the convergence for sub-Gaussian measurements. Our analyses rely on several key
technical lemmas, namely, Lemma 3.1 and Lemma 3.2.

1.4. Related works. As is well known, the PR problem arises in many areas of science and
engineering such as in X-ray crystallography, astronomy, quantum mechanics, and diffraction
imaging; see, e.g., [8, 9, 10, 11, 12, 13]. Because of the practical significance of the phase
retrieval problem in different areas, the community has developed a large body of methods for
recovering a signal from the PR problem. For the classical PR problem, which focuses on the
Fourier transform, the most widely used method are perhaps Gerchberg-Saxton algorithm [14]
and Fienup algorithm [15]. While such methods perform well in practice, the fundamental
mathematical questions concerning their convergence remain unresolved. Recently, a family
of algorithms based on convex or non-convex optimizations have been developed to solve the
general PR problem under different measurements. We refer the reader to [16] for a recent
review. The most popular convex method is the perhaps PhaseLift algorithm proposed in [17,
18, 19] and for Gaussian or sub-Gaussian measurements, the PhaseLift method is proved to
provide exact solutions for the general PR problem using an optimal number of sampling vectors
[2, 20]. While such method based on SDP relaxations offer tractable solutions, it becomes
computationally prohibitive as the dimension of the signal increases. As a result, many non-
convex algorithms have also been provided to directly solve the phase retrieval problem in the
original signal space; see, e.g., [1, 21, 22, 23, 24, 25]. For the theoretical side, the generalized
WF algorithm is demonstrated to produce a good estimator for the sub-Gaussian PR problem,
provided that the number of measurements m = O(n log2 n) in [1]. Besides, to the best of our
knowledge, there are few algorithms with theoretical guarantees established for PR problem in
the case of random sub-Gaussian measurements.
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2. TRUNCATED RIEMANNIAN GRADIENT DESCENT ALGORITHM

In this section, we establish the truncated Riemannian gradient descent algorithm for sub-
Gaussian phase retrieval problem. The truncated Riemannian gradient descent algorithm (TR-
Grad) in Algorithm 1 exploits the embedded manifold of rank-1 and positive semidefinite ma-
trices.

Algorithm 1 The truncated Riemannian gradient descent algorithm (TRGrad)

1: Input: The measurement matrix AAA ∈ Rm×n, the observations yyy ∈ Rn, the parameters R and
MAXiter.

2: Output: A matrix ZZZ#.
3: Initial: Set τ := 1

mn ∑i, j A4
i, j, and

YYY R :=
1
m

m

∑
j=1

y jaaa jaaa>j 1{y j≤R( 1
m ∑

m
j=1 yi)}.

Let uuu1 be the eigenvector corresponding to the largest eigenvalue of

MMMR := YYY R−
τ−3
τ−1

Diag

(
YYY R−

1
m

m

∑
j=1

y jIII

)
.

ZZZ0 = ( 1
m ∑

m
j=1 yi)uuu1uuu>1 .

4: Loop: for l = 0 to MAXiter

GGGl = A >
l (Al(ZZZl)− yyy), (2.1)

WWW l = ZZZl−ηlPTl(GGGl), (2.2)
ZZZl+1 = T1(WWW l). (2.3)

5: ZZZ# = ZZZMAXiter.

The estimation of forth moment τ depends on the law of large numbers since ZZZl is rank-1
and positive semidefinite with

ZZZl = zzzlzzz>l ,

In (2.1), AAAl is some linear operator defined as

Al(WWW ) =

{〈
WWW ,aaa jaaa>j 111{

{|aaa>j zzzl |≤‖zzzl‖2}∩{
√y j≤R

√
1
m ∑

m
j=1 yi}

}〉}m

j=1
.

Then the adjoint of Al is given by

A >
l (bbb) =

m

∑
j=1

b jaaa jaaa>j 111{
{|aaa>j zzzl |≤‖zzzl‖2}∩{

√y j≤R
√

1
m ∑

m
j=1 yi}

},
for all bbb ∈ Rm. The projection PTl in (2.2) can be computed as follows:

PTl(WWW ) = uuuluuu>l WWW +WWWuuuluuu>l −uuuluuu>l WWWuuuluuu>l ,

where uuul = zzzl/‖zzzl‖2.
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In (2.3), PT1 returns the best rank-1 and positive semidefinite approximation of WWW l . Since
WWW l = WWW>l and the rank of WWW l is no larger than 2, the eigenvalue decomposition of WWW l can be
constructed easily.

3. MAIN RESULTS

In this section, we first show the convergence result on the TRGrad by considering general
measurement matrix AAA. For any zzz ∈ Rn, denote

Tzzz = {zzzwww>+wwwzzz> | www ∈ Rn},

Azzz(WWW ) =

{〈
WWW ,aaa jaaa>j 111{

{|aaa>j zzz|≤R‖zzz‖2}∩{
√y j≤R

√
1
m ∑

m
j=1 yi}

}〉}m

j=1
,

and
Pzzz(WWW ) = uuuuuu>WWW +WWWuuuuuu>−uuuuuu>WWWuuuuuu>,

with uuu = zzz/‖zzz‖2.
We propose two important local conditions as below.
Condition 1: Truncated Local Restricted Isometry Property(TL-RIP(α ,β )).
The measurement matrix AAA satisfies the Truncated Local Restricted Isometry Property with

parameters α,β > 0 if, for all zzzzzz> obeying ‖zzzzzz>− xxxxxx>‖F ≤ ε0‖xxxxxx>‖F and WWW ∈ Tzzz,

α‖WWW‖2
F ≤

1
m
‖Azzz(WWW )‖2

2 ≤ β‖WWW‖2
F .

Condition 2: Truncated Local Weak Correlation Property(TL-WCP(θ )).
The measurement matrix AAA satisfies the Truncated Local Weak Correlation Property with

parameter θ > 0 if, for all zzzzzz> obeying ‖zzzzzz>− xxxxxx>‖F ≤ ε0‖xxxxxx>‖F and WWW ∈ Tzzz,

1
m

∥∥∥PTzzzA
>

zzz Azzz(III−PTzzz)(zzzzzz>− xxxxxx>)
∥∥∥

F
≤ θ

∥∥∥zzzzzz>− xxxxxx>
∥∥∥

F
.

Theorem 3.1 relies on TL-RIP(α,β ) and TL-WCP(θ).

Theorem 3.1. (General convergence result) Denote XXX = xxxxxx>. Assume that the initial guess
ZZZ0 = zzz0zzz>0 satisfies ‖zzz0zzz>0 − xxxxxx>‖F ≤ ε0‖XXX‖F . If the measurement matrix AAA satisfies TL-
RIP(α,β ) and TL-WCP(θ ), then

‖ZZZl+1−XXX‖F ≤ ν‖ZZZl−XXX‖F ,

for some 0 < ν < 1. The step-size ηl is taken as

ηl ∈

1−1/
√

1+16ε2
0 + ε0

α−θ
,
1+1/

√
1+16ε2

0 − ε0

β +θ


provided that

θ < α and
(

1−1/
√

1+16ε2
0 + ε0

)
β +2θ ≤

(
1+1/

√
1+16ε2

0 − ε0

)
α. (3.1)

When ε0 and θ is small enough, the condition in (3.1) can be satisfied easily.
Now we focus on sub-Gaussian measurements drawn from distribution in Definition 1.2 to

show that the conditions in Theorem 3.1 can be achieved with optimal sampling complexity.
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Theorem 3.2. (Initialization result on sub-Gaussian measurements) Assume that the elements
of AAA∈Rm×n are independently copies of sub-Gaussian random variable a in Definition 1.2 with
parameters K and τ . ZZZ0 is the initialization generated as in Algorithm 1, if m≥Cδ ,K,τn, then

‖ZZZ0−XXX‖F ≤
√

5δ (
√

5δ +2)‖XXX‖F ,

with probability at least 1− exp(−cn).

The following two lemmas demonstrate the TL-RIP and TL-WCP on sub-Gaussian measure-
ments.

Lemma 3.1. The elements of AAA ∈ Rm×n are independently copies of sub-Gaussian random
variable a in Definition 1.2 with parameters K and τ > 1. aaa>j is the j-th row of AAA. Then with
probability at least 1− exp(−cKm), we have

min
{

1
8
,
τ−1

16

}
‖WWW‖2

F ≤
1
m
‖Azzz(WWW )‖2

2 ≤
3+2|τ−3|

2
‖WWW‖2

F

holds uniformly for all zzz ∈ Rn and all WWW = zzzwww>+wwwzzz> provided that m≥CKn.

Lemma 3.2. The elements of AAA ∈ Rm×n are independently copies of sub-Gaussian random
variable a in Definition 1.2 with parameters K and τ > 1. aaa>j is the j-th row of AAA. Denote
aaa j ∈ Rn( j = 1, ...,m) as the row elements of AAA. Then with probability at least 1− exp(−cKm),
we have

1
m

∥∥∥PTzzzA
>

zzz Azzz(III−PTzzz)(zzzzzz>− xxxxxx>)
∥∥∥

F

≤

(√
3+2|τ−3|

2

)(
δ +5R4K2 exp

(
1− c1R2

K2

))
‖zzzzzz>− xxxxxx>‖F

holds uniformly for all zzzzzz> obeying ‖zzzzzz>− xxxxxx>‖ ≤ ε0‖XXX‖F provided that m≥CKm. Here

ε0 ≤
1
2

min

{√
δ

2(2R4 +5R3 +8R2)
,

δ

32R
,
1
2

}
. (3.2)

Combining Lemma 3.1, Lemma 3.2, Theorem 3.2, and Theorem 3.1, and taking constants δ

and R sufficiently small and large, respectively, the following result can be obtained immedi-
ately.

Theorem 3.3. (Convergence result on sub-Gaussian measurements) The elements of AAA ∈Rm×n

are independently copies of sub-Gaussian random variable a in Definition 1.2 with parameters
K and τ > 1. Algorithm 1 generates ZZZl such that

‖ZZZl+1−XXX‖F ≤ ν‖ZZZl−XXX‖F ,

for some 0 < ν < 1 with probability 1− exp(−cKm) provided that m≥CKn.

4. NUMERICAL EXPERIMENTS

4.1. Experiment settings. In this following numerical experiments, we will investigate the
performance of the TRGrad in Algorithm 1 compared with Generalized WF [1] and WF [21].
Here we choose R = 3

√
τ in TRGrad. To make the comparison fair, the maximum iterations are
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taken to be the same in different algorithms. All experiments are carried out on Matlab 2018
with a 2.9 GHz Intel Core i7-10700F and 16 GB memory.

The signal dimension n = 128. The target signal xxx = [x1, ...,xn]
> is drawn from Gaussian

distribution, i.e.,

x j =

{
x̃ j j ≤ n−1,
100x̃ j j = n,

where x̃xx = [x̃1, ..., x̃n] is standard random Gaussian vector with x̃ j ∼ N (0,1). Besides, two
measurement models are considered:

(1) Uniform distribution model: the elements of AAA are drawn from
√

3U [−1,1].
(2) Ternary distribution model: the elements of AAA are drawn from the following distribution

t =


√

3/2, with Prob. 1/3,
0, with Prob. 1/3,
−
√

3/2, with Prob. 1/3.

If the algorithm output is ZZZ# = zzz#ZZZ># , we obtain the performance in terms of relative mean
square error (MSE), that is,

Relative MSE :=
dist(zzz#,xxx)
‖xxx‖2

,

where
dist(zzz#,xxx) = min{‖zzz#− xxx‖2,‖zzz# + xxx‖2}.

We consider an algorithm to have successfully reconstructed a target signal xxx if the relative MSE
is smaller than 10−5.

4.2. Numerical performance. First of all, we investigate the initialization step of our algo-
rithm TRGrad compared with WF and generalized WF. The sampling ratio m/n ranges from 2
to 10. For each m/n, we repeat the experiments for 50 times and show the average value of the
relative error. Figure 4.1 depicts the relative error versus m/n for uniform distribution model
and ternary distribution model. We find that the relative error by Generalized WF and TRGrad
is smaller compared with that by WF. However, the performance on initialization is comparable
between Generalized WF and TRGrad. Since the sampling complexity is optimal in TRGrad,
we believe that with more delicate proofs, the sampling complexity can be reduce in generalized
WF [1].

Then we test the success rate under different algorithms. We set the maximal iteration number
as 1000 and evaluate the algorithms by 50 trials. The plots of successful recovery probability
against the sampling ratio m/n are shown in Figure 4.2. We find that TRGrad has improved per-
formance over Generalized WF and WF, and 3.5n measurements are enough for exact recovery
in both uniform distribution model and ternary distribution model. To discuss the computational
efficiency, we consider the convergence time on successful recovery. Table 1 shows the average
running time in 50 tests when m/n ranges from 5 to 8. Since the maximal iteration number is
fixed, it also includes the unsuccessful recovery examples in WF (the relative MSE may still be
larger than 10−5 when iteration ends). On one hand, TRGrad exhibits a superior performance
under two measurement models. On the other hand, the computational time on successfully
recover signal may decrease even when the sampling ratio m/n increases. Besides, we also
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FIGURE 4.1. Initialization comparison under different measurements: (a) uni-
form distribution model; (b) ternary distribution model.

compare the convergence rates of different algorithms when m/n = 6. In Figure 4.3, TRGrad
converges much faster than the other two algorithms.
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FIGURE 4.2. Success rate comparison under different measurements: (a) uni-
form distribution model; (b) ternary distribution model.

Furthermore, we demonstrate the performance on different algorithms under additive noise.
The white Gaussian noise is followed by MATLAB function awgn(A (xxxxxx>),snr), i.e., yyy =

|AAAxxx|2 +www with www ∼
√
‖A (xxx)‖2

2/m
10snr/10 N (0,Im). Here m/n = 6 and 50 trials are conducted. The

SNR varies from 10dB to 50dB. We compute the signal-to noise ratio of reconstruction in dB as
−20log10(relative MSE). The average relative reconstruction error is dB plotted against SNR
is shown in Figure 4.4. For TRGrad and Generalized WF, the desirable linear scaling between
the noise levels and the relative reconstruction errors can be observed. The WF fails to meet
the property since the signal may not be recovered even in noiseless case. Although the relative
error is comparable between Generalized WF and TRGrad in noisy case, the convergence rates
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TABLE 1. Average running time (seconds) under different measurements

sampling ratio (m/n) 5 6 7 8

Uniform distribution model
WF 0.0577 0.0434 0.0444 0.1325

Generalized WF 0.0450 0.0347 0.0365 0.0824
TRGrad 0.0247 0.0183 0.0185 0.0358

Ternary distribution model
WF 0.0597 0.0487 0.0524 0.1458

Generalized WF 0.0349 0.0355 0.0369 0.0829
TRGrad 0.0195 0.0176 0.0184 0.0358

are quite different. In Figure 4.5, we find that TRGrad also converges much faster than WF and
Generalized WF, when the observations are corrupted by additional noise.
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FIGURE 4.3. Convergence rate comparison under different measurements: (a)
uniform distribution model; (b) ternary distribution model.
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FIGURE 4.4. Performance under different SNR: (a) uniform distribution model;
(b) ternary distribution model.
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FIGURE 4.5. Relative MSE against iteration: (a) uniform distribution model;
(b) ternary distribution model.

5. PROOFS

5.1. The estimation of expectation. We estimate the expectation of
(

1
m ∑

m
i=1 |〈xxx,aaa j〉|2aaa jaaa>j

)
first and then calculate its upper and lower bounds, which will play important roles in the main
results.

Theorem 5.1. Assume that yyy = |AAAxxx|2 with AAA ∈ Rm×n and xxx = [x1, ...,xn]
>. The elements of

AAA ∈ Rm×n are independently copies of sub-Gaussian random variable a in Definition 1.2 with
parameters K and τ . aaa>j is the j-th row of AAA. Then

E

(
1
m

m

∑
i=1
|〈xxx,aaa j〉|2aaa jaaa>j

)
= 2xxxxxx>+‖xxx‖2

2III +(τ−3)Diag(|xxx|2).

Proof. Denote aaa = [a1, ...,an]
> ∈ Rn, where ai are independently copies of sub-Gaussian ran-

dom variable a in Definition 1.2. Then

E

(
1
m

m

∑
i=1
|〈xxx,aaa j〉|2aaa jaaa>j

)
= E

(
|〈xxx,aaa〉|2aaaaaa>

)
.

By simple calculation, we have

E
[
〈xxx,aaa〉|2aaa>aaa

]
j,k

= E

( n

∑
i=1

xiai

)2

a jak

=

{
τ|x j|2 +∑l 6= j |xl|2, j = k,
2x jxk, j 6= k,

=

{
2|x j|2 +‖xxx‖2

2 +(τ−3)|x j|2, j = k,
2x jxk, j 6= k,

which meets the conclusion. �

Lemma 5.1. Let τ > 1 be some fixed constant. For any www,xxx ∈ Rn such that ‖www‖2 = ‖xxx‖2 = 1,

0 < min
{

1,
τ−1

2

}
≤ www>

(
2xxxxxx>+ III +(τ−3)Diag

(
|xxx|2
))

www≤ 3+ |τ−3|.
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Remark 5.1. The condition that τ > 1 can not removed, otherwise, the lower bound may be
smaller than 0. For example, take xxx = [

√
2/2,
√

2/2]> and www = [−
√

2/2,
√

2/2]>. Then

www>
(

2xxxxxx>+ III +(τ−3)Diag
(
|xxx|2
))

www = 1+(τ−3)/2 < 0.

Proof. Since

www>
(

2xxxxxx>+ III +(τ−3)Diag
(
|xxx|2
))

www = 2|〈xxx,www〉|2 +1+(τ−3)〈|xxx|2, |www|2〉, (5.1)

we need to estimate the upper and lower bound of 2|〈xxx,www〉|2 +1+(τ−3)〈|xxx|2, |www|2〉.
The upper bound can be obtained directly, that is,

2|〈xxx,www〉|2 +1+(τ−3)〈|xxx|2, |www|2〉 ≤ 2+1+ |τ−3|= 3+ |τ−3|,

applying Cauchy-Swartcz inequality. Then we should estimate the lower bound of (5.1). If
τ ≥ 3, then

2|〈xxx,www〉|2 +1+(τ−3)〈|xxx|2, |www|2〉 ≥ 1. (5.2)

Therefore, the only thing left is to calculate the lower bound of (5.1) when τ < 3. For any
www = [w1, ...,wn]

> and xxx = [x1, ...,xn]
> with ‖www‖2 = ‖xxx‖2 = 1, denote

I := {i ∈ [n] | sign(wi) = sign(xi)}.

Take A = ∑i∈I xiwi and B = −∑i∈Ic xiwi. Since xiwi ≥ 0 for i ∈ I and −xiwi ≥ 0 for i ∈ Ic, we
have

A≥ 0, B≥ 0, and |〈xxx,www〉|2 = (A−B)2.

Then

2|〈xxx,www〉|2 +1+(τ−3)〈|xxx|2, |www|2〉

=2(A−B)2 +1+(τ−3)

(
∑
i∈I

(xiwi)
2 + ∑

i∈Ic
(xiwi)

2

)
≥2(A−B)2 +1+(τ−3)(A2 +B2)

≥max
{

2(A−B)2 +(A+B)2 +(τ−3)(A2 +B2),1+(τ−3)(A2 +B2)
}

≥max
{
(A−B)2 +(A+B)2 +(τ−3)(A2 +B2),1+(τ−3)(A2 +B2)

}
=max

{
(τ−1)(A2 +B2),1+(τ−3)(A2 +B2)

}
.

The second line is based on

∑
i∈I

(xiwi)
2 ≤

(
∑
i∈I

xiwi

)2

= A2,

and

∑
i∈Ic

(xiwi)
2 ≤

(
∑
i∈Ic

xiwi

)2

= B2.

The third line is based on

A+B≤ 1
2 ∑

i∈I
(x2

i +w2
i )+

1
2 ∑

i∈Ic
(x2

i +w2
i ) = 1.
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Therefore, when τ < 3, the lower bound can be taken as

2|〈xxx,www〉|2 +1+(τ−3)〈|xxx|2, |www|2〉

≥ min
A2+B2≤1

(
max

{
(τ−1)(A2 +B2),1+(τ−3)(A2 +B2)

})
= min

0≤t≤1
(max{(τ−1)t,1+(τ−3)t}) = τ−1

2
.

Combining (5.2) and (5.1), we arrive at

2|〈xxx,www〉|2 +1+(τ−3)〈|xxx|2, |www|2〉 ≥min
{

1,
τ−1

2

}
,

for any www,xxx ∈ Rn such that ‖www‖2 = ‖xxx‖2 = 1. �

5.2. Proof of Theorem 3.1.

Proof of Theorem 3.1. Since WWW l = ZZZl− ηl
m PTl

(
A >

l Al(ZZZl)− yyy
)
= ZZZl− ηl

m PTlA
>

l Al(ZZZl−XXX).
we have

‖WWW l−XXX‖F =
∥∥∥(ZZZl−XXX)− ηl

m
PTlA

>
l Al(ZZZl−XXX)

∥∥∥
F

≤
∥∥∥(PTl −

ηl

m
PTlA

>
l AlPTl

)
(ZZZl−XXX)

∥∥∥
F
+‖(III−PTl)XXX‖F

+
ηl

m

∥∥∥PTzzzA
>

zzz Azzz(III−PTzzz)(ZZZl−XXX)
∥∥∥

F
. (5.3)

According to TL-RIP(α,β ) and TL-WCP(θ ), we have∥∥∥(PTl −
αl

m
PTlA

>
l AlPTl

)
(ZZZl−XXX)

∥∥∥
F
≤max{|1−ηlα|, |1−ηlβ |}‖ZZZl−XXX‖F (5.4)

and
ηl

m

∥∥∥PTzzzA
>

zzz Azzz(III−PTzzz)(ZZZl−XXX)
∥∥∥

F
≤ ηlθ ‖ZZZl−XXX‖F . (5.5)

Applying (5.4), (5.5), and Lemma 4.1 in [7], inequality (5.3) becomes

‖WWW l−XXX‖F ≤ (max{|1−ηlα|, |1−ηlβ |}+ηlθ + ε0)‖ZZZl−XXX‖F := µ‖ZZZl−XXX‖F ,

where µ = max{|1−ηlα|, |1−ηlβ |}+ηlθ + ε0. According to Lemma 4.4 in [6], we have

‖ZZZl+1−XXX‖F ≤ µ

√
1+16µ2ε2

0‖ZZZl−XXX‖F .

Denote ν := µ

√
1+16µ2ε2

0 . In order to obtain ν < 1, we should have µ ≤ 1/
√

1+16ε2
0 ,

which leads to
max{|1−ηlα|, |1−ηlβ |}+ηlθ ≤ 1/

√
1+16ε2

0 − ε0,

i.e.,

ηl ∈

1−1/
√

1+16ε2
0 + ε0

α−θ
,
1+1/

√
1+16ε2

0 − ε0

β +θ


provided that

θ < α and
(

1−1/
√

1+16ε2
0 + ε0

)
β +2θ ≤

(
1+1/

√
1+16ε2

0 − ε0

)
α.

�
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5.3. Proof of Theorem 3.2.

Proof of Theorem 3.2. Based on Lemma 6.1, we have

YYY R
√

1−δ
:=

1
m

m

∑
j=1

∣∣〈xxx,aaa j〉
∣∣2 aaa jaaa>j 1{|〈aaa j,xxx〉|≤R

√
1−δ‖xxx‖2} � YYY R

� YYY R
√

1+δ
:=

1
m

m

∑
j=1

∣∣〈xxx,aaa j〉
∣∣2 aaa jaaa>j 1{|〈aaa j,xxx〉|≤R

√
1+δ‖xxx‖2}

with probability at least 1−exp(−cn) provided that m& K4

δ 2 n. Meanwhile, according to Lemma
6.3, we have

‖MMMR−2xxxxxx>−‖xxx‖2
2III‖ ≤

(
δ/2+

(
1+
|τ−3|
|τ−1|

)
64C4K4 exp

(
1− c0R2(1−δ )/(CK)2))‖xxx‖2

2.

with probability at least 1− exp(−cn) provided that

m≥max


8CC2R2(1+δ )K2(

1+ |τ−3|
|τ−1|

)
δ

2

n,

 8CC2K2(
1+ |τ−3|

|τ−1|

)
δ

2

n

 .

Take R as an constant sufficiently large enough such that

δ/2+
(

1+
|τ−3|
|τ−1|

)
64C4K4 exp

(
1− c0R(1−δ )/(CK)2)≤ δ .

Since the leading eigenvector of MMMR is uuu1, and zzz0 =
√

1
m ∑

m
j=1 yiuuu1, by standard calculation in

[21], we have

min{‖zzz0− xxx‖2,‖zzz0 + xxx‖2} ≤
√

5δ‖xxx‖2.

Without loss of generality, assume that ‖zzz0− xxx‖2 ≤
√

5δ‖xxx‖2. Here ‖zzz0 + xxx‖2 ≤
√

5δ‖xxx‖2 can
be discussed similarly. Thus

‖ZZZ0−XXX‖F ≤ ‖zzz0zzz>0 − xxxxxx>‖F ≤ ‖zzz0(zzz0− xxx)>‖F +‖(zzz0− xxx)xxx>‖F ≤ (
√

5δ +2)
√

5δ‖XXX‖F .

�

5.4. Proof of Lemma 3.1.

Proof of Lemma 3.1. First of all, we find that

1
m
‖Azzz(WWW )‖2

2 =
1
m

m

∑
k=1

∣∣∣∣〈aaakaaa>k ,zzzwww>+wwwzzz>〉111{
{|aaa>j zzz|≤R‖zzz‖2}∩{

√y j≤R
√

1
m ∑

m
j=1 yi}

}∣∣∣∣2
=

1
m

m

∑
k=1
|〈aaak,zzz〉|2 |〈aaak,www〉|2 111{

{|aaa>j zzz|≤R‖zzz‖2}∩{
√y j≤R

√
1
m ∑

m
j=1 yi}

}

= www>
(

1
m

m

∑
k=1
|aaa>k zzz|2aaakaaa>k 111{

{|aaa>j zzz|≤R‖zzz‖2}∩{
√y j≤R

√
1
m ∑

m
j=1 yi}

}
)

www.
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Applying Lemma 6.5, we have∣∣∣∣∣www>
(

1
m

m

∑
k=1
|aaa>k zzz|2aaakaaa>k 111{

{|aaa>j zzz|≤R‖zzz‖2}∩{
√y j≤R

√
1
m ∑

m
j=1 yi}

}
)

www

−
(

2www>zzzzzz>www+‖zzz‖2
2‖www‖2

2 +(τ−3)www>Diag
(
|zzz|2
)

www
)∣∣∣∣∣

≤
(
(5+4R+6R2K2)ε +(16K2R4 +64C4K4)exp

(
1− cR2

K2

)
+

10R2K2

ε2 exp
(

1− c1

K2ε2

))
‖zzz‖2

2‖www‖2
2.

According to Lemma 5.1, we have

min
{

1,
τ−1

2

}
‖zzz‖2

2‖www‖2
2 ≤ 2www>zzzzzz>www+‖zzz‖2

2‖www‖2
2 +(τ−3)www>Diag

(
|zzz|2
)

www

≤ (3+ |τ−3|)‖zzz‖2
2‖www‖2

2.

Taking R2 = 1√
ε

and choosing ε as a constant sufficiently small enough, we have

min
{

1
2
,
τ−1

4

}
‖zzz‖2

2‖www‖2
2 ≤

1
m
‖AZ(WWW )‖2

2 ≤ (3+2|τ−3|)‖zzz‖2
2‖www‖2

2.

Since WWW = zzzwww>+wwwzzz>, we have ‖WWW‖2
F = 2‖zzz‖2

2‖www‖2
2 +2|zzz>www|2 ≤ 4‖zzz‖2

2‖www‖2
2. Therefore,

min
{

1
8
,
τ−1

16

}
‖WWW‖2

F ≤
1
m
‖AZ(WWW )‖2

2 ≤
3+2|τ−3|

2
‖WWW‖2

F .

�

5.5. Proof of Lemma 3.2.

Proof of Lemma 3.2. Withou loss of generality, assume that ‖xxx‖2 = 1. Applying Lemma 3.1,
we have ∥∥∥∥ 1√

m
PTzzzA

>
zzz

∥∥∥∥≤
√

3+2|τ−3|
2

.

The only thing we need to do is to estimate the upper bound of 1√
m

∥∥Azzz(III−PTzzz)(zzzzzz>− xxxxxx>)
∥∥

2.
Letting hhh = zzz− xxx, we have

(III−PTzzz)(zzzzzz>− xxxxxx>) =−
(

zzz>hhh
‖zzz‖2

2
zzz−hhh

)(
zzz>hhh
‖zzz‖2

2
zzz−hhh

)>
.

If |aaa>k zzz| ≤ R‖zzz‖2 and |aaa>k xxx| ≤ R‖xxx‖2, then

|aaa>k hhh| ≤ |aaa>k zzz|+ |aaa>k xxx| ≤ R(‖zzz‖2 +‖xxx‖2)≤ R

(
2+

ε0

1−
√

5/4ε0

)
‖zzz‖2 ≤ 3R‖zzz‖2. (5.6)
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The third inequality is according to ‖zzzzzz>− xxxxxx>‖2
F ≥ 4

5‖zzz− xxx‖2
2‖xxx‖2

2 in [6, Lemma 5.5], which

leads to ‖zzz−xxx‖2 ≤
√

5
4ε0, and ‖zzz‖2 ≥ 1−

√
5
4ε0. The last inequality is based on ε ≤ 1

2 . There-
fore,

1
m
‖Azzz(III−PTzzz)(zzzzzz>− xxxxxx>)‖2

2

=
1
m

m

∑
k=1

∣∣∣∣aaa>k ( zzz>hhh
‖zzz‖2

2
zzz−hhh

)∣∣∣∣4 111{
{|aaa>j zzz|≤R‖zzz‖2}∩{

√y j≤R
√

1
m ∑

m
j=1 yi}

}

≤ 1
m

∣∣∣∣∣ m

∑
k=1

(aaa>k zzz)4(zzz>hhh)4

‖zzz‖8 111{
{|aaa>j zzz|≤R‖zzz‖2}∩{

√y j≤R
√

1
m ∑

m
j=1 yi}

}
∣∣∣∣∣

+
4
m

∣∣∣∣∣ m

∑
k=1

(aaa>k zzz)3(aaa>k hhh)(zzz>hhh)3

‖zzz‖6 111{
{|aaa>j zzz|≤R‖zzz‖2}∩{

√y j≤R
√

1
m ∑

m
j=1 yi}

}
∣∣∣∣∣

+
6
m

∣∣∣∣∣ m

∑
k=1

(aaa>k zzz)2(aaa>k hhh)2(zzz>hhh)2

‖zzz‖4 111{
{|aaa>j zzz|≤R‖zzz‖2}∩{

√y j≤R
√

1
m ∑

m
j=1 yi}

}
∣∣∣∣∣ (5.7)

+
4
m

∣∣∣∣∣ m

∑
k=1

(aaa>k zzz)(aaa>k hhh)3(zzz>hhh)
‖zzz‖2 111{

{|aaa>j zzz|≤R‖zzz‖2}∩{
√y j≤R

√
1
m ∑

m
j=1 yi}

}
∣∣∣∣∣

+
1
m

∣∣∣∣∣ m

∑
k=1

(aaa>k hhh)4111{
{|aaa>j zzz|≤R‖zzz‖2}∩{

√y j≤R
√

1
m ∑

m
j=1 yi}

}
∣∣∣∣∣

≤2R4‖hhh‖4
2 +5R3‖hhh‖4

2 +8R2‖hhh‖4
2 +16R‖hhh‖3

2‖zzz‖2 +5R4K2 exp
(

1− c1R2

K2

)
‖hhh‖2

2‖zzz‖2
2

≤
(
(2R4 +5R3 +8R2)

‖hhh‖2
2

‖zzz‖2
2
+16R

‖hhh‖2

‖zzz‖2
+5R4K2 exp

(
1− c1R2

K2

))
‖hhh‖2

2‖zzz‖2
2. (5.8)

The second inequality is based on (5.6), Lemma 6.1, and Lemma 6.4. If condition (3.2) holds,
then

‖hhh‖2

‖xxx‖2
≤
√

5/4
‖zzzzzz>− xxxxxxT‖F

‖XXX‖F
≤ 2ε0 ≤min

{√
δ

2(2R4 +5R3 +8R2)
,

δ

32R
,
1
2

}
. (5.9)

Substituting (5.9) into (5.8), we can obtain the conclusion immediately. �

6. APPENDIX

6.1. Properties of sub-Gaussian random variables. Here we show some properties for sub-
Gaussian random vectors. A random vector aaa ∈ Rn is sub-Gaussian if the one-dimensional
marginals 〈aaa,uuu〉 are sub-Gaussian random variables for all uuu ∈ Rn. The sub-Gaussian norm of
aaa is defined as

‖aaa‖ψ2 = sup
uuu∈Sn−1

‖〈aaa,uuu〉‖
ψ2

.

Theorem 6.1. [5, Lemma 5.24] Let x1, ...,xn be independent centered sub-Gaussian random
variables. Then xxx = [x1, ...,xn]

> is a centered sub-Gaussian random vector in Rn, and

‖xxx‖ψ2 ≤C max
i≤n
‖xi‖ψ2 ,
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where C is an positive absolute constant.

Theorem 6.2. [5, Remark 5.40] Suppose that aaai ∈ Rn(i = 1, ...,m) are independently copies of
sub-Gaussian random vector aaa ∈ Rn with Eaaaaaa> = ΣΣΣ, and ‖aaa‖ψ2 ≤Cψ2 . Then, for every t ≥ 0,
the following inequality holds with probability at least 1−2exp(−ct2/C4

ψ2
),∥∥∥∥∥ 1

m

m

∑
i=1

aaaiaaa>i −ΣΣΣ

∥∥∥∥∥≤max{ξ ,ξ 2},

where ξ =CC2
ψ2

√ n
m + t√

m , and C and c are two positive absolute constants.

6.2. Technical tools in the proof of Theorem 3.2. The elements of AAA ∈ Rm×n are indepen-
dently copies of sub-Gaussian random variable a in Definition 1.2 with parameters K and τ . aaa>j
is the j-th row of AAA. First of all, we show some important concentration inequalities on AAA.

Lemma 6.1. With probability at least 1−2exp(−cn), we have∥∥∥∥∥ 1
m

m

∑
j=1

aaa jaaa>j − III

∥∥∥∥∥≤ δ ,

provided m& K4

δ 2 n. Here δ < 1 is some positive constant, and c is some absolute constant.

Proof. Applying Theorem 6.1, we have ‖aaa j‖ψ2 ≤CK, for j = 1, ...,m. Taking

Cψ2 =CK, m≥
(

2CC2K2

δ

)2

n, and t =CC2K2√n

in Theorem 6.2, we have ξ ≤ δ , and∥∥∥∥∥ 1
m

m

∑
j=1

aaa jaaa>j − III

∥∥∥∥∥≤ δ

with probability at least 1− exp(−cn). �

Lemma 6.2. For any fixed xxx ∈ Rn and δ < 1, denote

YYY R :=
1
m

m

∑
j=1

∣∣〈xxx,aaa j〉
∣∣2 aaa jaaa>j 1{|〈aaa j,xxx〉|≤R‖xxx‖2}. (6.1)

With probability at least 1−2exp(−cn), we have

‖YYY R−
(

2xxxxxx>+‖xxx‖2
2III +(τ−3)Diag(|xxx) |2

)
‖

≤
(

δ

2
+64C4K4 exp(1− c0R2/(CK)2)

)
‖xxx‖2

2,

provided m≥Cδ ,R,Kn. Here C, c and c0 are absolute constants.

Proof. Without loss of generality, assume that ‖xxx‖2 = 1. Then YYY R becomes

YYY R =
1
m

m

∑
j=1

∣∣〈xxx,aaa j〉
∣∣2 aaa jaaa>j 1{|〈aaa j,xxx〉|≤R},
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and it is equivalent to estimate the upper bound of ‖YYY R−2xxxxxx>− III− (τ−3)Diag
(
|xxx|2
)
‖. Since

‖YYY R−2xxxxxx>− III− (τ−3)Diag
(
|xxx|2
)
‖

=‖YYY R−EYYY R +EYYY R−2xxxxxx>− III− (τ−3)Diag
(
|xxx|2
)
‖

≤‖YYY R−EYYY R‖+‖EYYY R−2xxxxxx>− III− (τ−3)Diag
(
|xxx|2
)
‖,

we need to estimate ‖YYY R−EYYY R‖ and ‖EYYY R−2xxxxxx>− III− (τ−3)Diag
(
|xxx|2
)
‖ separatively.

(a) Estimation of ‖YYY R−EYYY R‖.
Denote bbb j = |〈xxx,aaa j〉|aaa j111{〈aaa j,xxx〉|≤R}. We have YYY R = 1

m ∑
m
j=1 bbb jbbb>j . For any uuu ∈ Sn−1 and any

integer p≥ 1, we have

|〈bbb j,uuu〉|p = |〈xxx,aaa j〉|p|〈aaa j,uuu〉|p111{〈aaa j,xxx〉|≤R} ≤ Rp|〈aaa j,uuu〉|p.

Therefore, according to Theorem 6.1, we have ‖bbb j‖ψ2 ≤ R‖aaa j‖ψ2 ≤ CRK. In Theorem 6.2,
taking

ΣΣΣ = Ebbb1bbb>1 ,Cψ2 =CRK, m≥
(

4CC2R2K2

δ

)2

n, and t =CC2R2K2√n,

we have

‖YYY R−EYYY R‖= ‖YYY R−ΣΣΣ‖ ≤ δ

2
, (6.2)

with probability at least 1−2exp(−cn).
(b) Estimation of ‖EYYY R−2xxxxxx>− III− (τ−3)Diag

(
|xxx|2
)
‖.

For any fixed uuu ∈ Sn−1, we have

uuu>
(
EYYY R−2xxxxxx>− III− (τ−3)Diag

(
|xxx|2
))

uuu

=uuu>E
(
|〈aaa1,xxx〉|2aaa1aaa>1 1{〈aaa1,xxx〉|≤R}−|〈aaa1,xxx〉|2aaa1aaa>1

)
uuu = E

(
|〈aaa1,xxx〉|2|〈aaa1,uuu〉|21{〈aaa1,xxx〉|>R}

)
≤
(
E
(
|〈aaa1,xxx〉|4|〈aaa1,uuu〉|4

))1/2
(P(〈aaa1,xxx〉|> R))1/2 (6.3)

≤
(
E|〈aaa1,xxx〉|8

)1/4 (E|〈aaa1,uuu〉|8
)1/4

(P(〈aaa1,xxx〉|> R))1/2

≤(
√

8CK)4 exp(1− c0R2/(CK)2) = 64C4K4 exp(1− c0R2/(CK)2). (6.4)

The third line is according to Cauchy-Swartcz inequality and the definition of sub-Gaussian
vector norm. The fifth line is based on (1.2). It leads to

‖EYYY R−2xxxxxx>− III− (τ−3)Diag
(
|xxx|2
)
‖ ≤ 64C4K4 exp(1− c0R2/(CK)2). (6.5)

Combining (6.2) and (6.5), we can obtain that

‖YYY R−2xxxxxx>− III− (τ−3)Diag
(
|xxx|2
)
‖ ≤ δ

2
+64C4K4 exp(1− c0R2/(CK)2)

with probability at least 1−2exp(−cn). �

Lemma 6.3. For any fixed xxx ∈ Rn and δ < 1, denote YYY R as in (6.1) and

MMMR := YYY R−
τ−3
τ−1

Diag

(
YYY R−

1
m

m

∑
j=1
|〈aaa j,xxx〉|2III

)
.
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Then with probability at least 1−2exp(−cn), we have

‖MMMR−2xxxxxx>−‖xxx‖2
2III‖ ≤

(
δ/2+

(
1+
|τ−3|
|τ−1|

)
64C4K4 exp

(
1− c0R2/(CK)2))‖xxx‖2

2

provided m≥Cδ ,R,K,τn. Here Cδ ,R,K,τ can be seen in (6.7).

Proof. Assume that ‖xxx‖2 = 1. We can find that

‖MMMR−2xxxxxx>−‖xxx‖2
2III‖= ‖MMMR−2xxxxxx>− III‖

=‖MMMR−EMMMR +EMMMR−2xxxxxx>−‖xxx‖2
2III‖

≤‖MMMR−EMMMR‖+‖EMMMR−2xxxxxx>−‖xxx‖2
2III‖

≤‖YYY R−EYYY R‖+
τ−3
τ−1

∥∥∥∥∥Diag

(
YYY R−

1
m

m

∑
j=1
|〈aaa j,xxx〉|2III

)
−EDiag

(
YYY R−

1
m

m

∑
j=1
|〈aaa j,xxx〉|2III

)∥∥∥∥∥
+‖EMMMR−2xxxxxx>−‖xxx‖2

2III‖

≤
(

1+
|τ−3|
|τ−1|

)
‖YYY R−EYYY R‖+

|τ−3|
|τ−1|

∣∣∣∣∣ 1
m

m

∑
j=1
|〈aaa j,xxx〉|2−E

(
1
m

m

∑
j=1
|〈aaa j,xxx〉|2

)∣∣∣∣∣
+‖EMMMR−2xxxxxx>−‖xxx‖2

2III‖

≤δ

4
+

δ

4
+‖EMMMR−2xxxxxx>−‖xxx‖2

2III‖, (6.6)

provided

m≥max


 8CC2R2K2(

1+ |τ−3|
|τ−1|

)
δ

2

n,

 8CC2K2(
1+ |τ−3|

|τ−1|

)
δ

2

n

 . (6.7)

The last line is according to inequality (6.2) and Lemma 6.1. In addition,

‖EMMMR−2xxxxxx>−‖xxx‖2
2III‖

= sup
uuu∈Sn−1

∣∣∣∣uuu>(E|〈aaa1,xxx〉|2aaa1aaa>1 1{〈aaa1,xxx〉|>R}−
τ−3
τ−1

EDiag
(
|〈aaa1,xxx〉|2aaa1aaa>1 1{〈aaa1,xxx〉|>R

))
uuu
∣∣∣∣

≤
(

1+
|τ−3|
|τ−1|

)
sup

uuu∈Sn−1

∣∣∣uuu>E|〈aaa1,xxx〉|2aaa1aaa>1 1{〈aaa1,xxx〉|>R}uuu
∣∣∣

≤
(

1+
|τ−3|
|τ−1|

)
64C4K4 exp

(
1− c0R2/(CK)2) . (6.8)

The last line is according to (6.4). Combining (6.6) and (6.8), we have

‖MMMR−2xxxxxx>−‖xxx‖2
2III‖ ≤ δ/2+

(
1+
|τ−3|
|τ−1|

)
64C4K4 exp

(
1− c0R2/(CK)2) .

�
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6.3. Technical tools in the proof of Theorem 3.3. The elements of AAA ∈ Rm×n are indepen-
dently copies of sub-Gaussian random variable a in Definition 1.2 with parameters K and τ .
aaa>j is the j-th row of AAA. Lemma 5.3 in [6] can be applied to sub-Gaussian case by slightly
modification, thus we omit the proof.

Lemma 6.4. Fix R ≥ 1 and let ε ∈ (0,1) be a sufficiently small constant. With probability at
least 1− exp

(
−cKmε2),
∥∥∥∥∥ 1

m

m

∑
k=1

aaakaaa>k 111{|aaa>k zzz|>R‖zzz‖2}

∥∥∥∥∥≤ 5K2R2 exp
(

1− c1R2

K2

)
+ ε

holds uniformly for all ‖zzz‖ 6= 0 provided m ≥CKε−2 logε−1n. Here CK and cK are constants
depending on K.

The following lemma provides a uniform bound, which is different from Lemma 6.2.

Lemma 6.5. Fix R ≥ 2 and let ε ∈ (0,1) be a sufficiently small constant. With probability at
least 1− exp(−cKmε2), we have∥∥∥∥∥ 1

m

m

∑
k=1
|aaa>k zzz|2aaakaaa>k 111{{|aaa>j zzz|≤R‖zzz‖2}}−

(
2zzzzzz>+‖zzz‖2

2III +(τ−3)Diag
(
|zzz|2
))∥∥∥∥∥

≤
(
(5+4R+4R2)ε +(10K2R4 +64C4K4)exp

(
1− cR2

K2

)
+

10R2K2

ε2 exp
(

1− c1

K2ε2

))
‖zzz‖2

2

holds for all zzz ∈ Rn provided that m≥CK,Rε−2 logε−1n. Besides,

∥∥∥∥∥ 1
m

m

∑
k=1
|aaa>k zzz|2aaakaaa>k 111{

{|aaa>j zzz|≤R‖zzz‖2}∩{
√y j≤R

√
1
m ∑

m
j=1 yi}

}−(2zzzzzz>+‖zzz‖2
2III +(τ−3)Diag

(
|zzz|2
))∥∥∥∥∥

≤
(
(5+4R+6R2K2)ε +(16K2R4 +64C4K4)exp

(
1− cR2

K2

)
+

10R2K2

ε2 exp
(

1− c1

K2ε2

))
‖zzz‖2

2.

Proof. Set YYY R,zzz := 1
m ∑

m
k=1 |aaa>k zzz|2aaakaaa>k 111{{|aaa>j zzz|≤R‖zzz‖2}}. Applying Lemma 6.2, for any fixed

zzz ∈ Sn−1, we have

‖YYY R,zzz−2zzzzzz>− III− (τ−3)Diag
(
|zzz|2
)
‖ ≤ 1+R2K2

2
ε +64C4K4 exp(1− c0R2/(CK)2), (6.9)

with probability at least 1−2exp
(
−cmε2) provided m& R4K4

ε2 n. In order to show the uniform
bound for all zzz ∈ Sn−1, we first find that, for all zzz ∈Nε2 , inequality (6.9) holds provided m &
R4K4 logε−1

ε2 n. Here Nε2 denotes a ε2-net of Sn−1, i.e., for any zzz ∈ Sn−1, there exists zzz0 ∈Nε2
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such that ‖zzz− zzz0‖ ≤ ε2. Then∥∥∥∥∥ 1
m

m

∑
k=1
|aaa>k zzz|2aaakaaa>k 111{|aaa>k zzz|≤R}−

1
m

m

∑
k=1
|aaa>k zzz0|2aaakaaa>k 111{|aaa>k zzz0|≤R}

∥∥∥∥∥
≤

∥∥∥∥∥ 1
m

m

∑
k=1
|aaa>k zzz|2aaakaaa>k 111{|aaa>k zzz|≤R}111{|aaa>k zzz0|>R}

∥∥∥∥∥+
∥∥∥∥∥ 1

m

m

∑
k=1
|aaa>k zzz0|2aaakaaa>k 111{|aaa>k zzz|>R}111{|aaa>k zzz0|≤R}

∥∥∥∥∥
+

∥∥∥∥∥ 1
m

m

∑
k=1

(
|aaa>k zzz|2−|aaa>k zzz0|2

)
aaakaaa>k 111{|aaa>k zzz|≤R}111{|aaa>k zzz0|≤R}

∥∥∥∥∥
≤

∥∥∥∥∥ 1
m

m

∑
k=1
|aaa>k zzz|2aaakaaa>k 111{|aaa>k zzz|≤R}111{|aaa>k zzz0|>R}

∥∥∥∥∥+
∥∥∥∥∥ 1

m

m

∑
k=1
|aaa>k zzz0|2aaakaaa>k 111{|aaa>k zzz|>R}111{|aaa>k zzz0|≤R}

∥∥∥∥∥
+

∥∥∥∥∥ 1
m

m

∑
k=1

(
|aaa>k zzz|2−|aaa>k zzz0|2

)
aaakaaa>k 111{|aaa>k zzz|≤R}111{|aaa>k zzz0|≤R}111{|aaa>k (zzz0−zzz)|≤ε}

∥∥∥∥∥
+

∥∥∥∥∥ 1
m

m

∑
k=1

(
|aaa>k zzz|2−|aaa>k zzz0|2

)
aaakaaa>k 111{|aaa>k zzz|≤R}111{|aaa>k zzz0|≤R}111{|aaa>k (zzz0−zzz)|>ε}

∥∥∥∥∥
≤

∥∥∥∥∥ 1
m

m

∑
k=1
|aaa>k zzz|2aaakaaa>k 111{|aaa>k zzz|≤R}111{|aaa>k zzz0|>R}

∥∥∥∥∥+
∥∥∥∥∥ 1

m

m

∑
k=1
|aaa>k zzz0|2aaakaaa>k 111{|aaa>k zzz|>R}111{|aaa>k zzz0|≤R}

∥∥∥∥∥
+

∥∥∥∥∥ 1
m

m

∑
k=1

(
|aaa>k zzz|2−|aaa>k zzz0|2

)
aaakaaa>k 111{|aaa>k zzz|≤R}111{|aaa>k zzz0|≤R}111{|aaa>k (zzz0−zzz)|≤ε}

∥∥∥∥∥
+

∥∥∥∥∥ 1
m

m

∑
k=1

(
|aaa>k zzz|2−|aaa>k zzz0|2

)
aaakaaa>k 111{|aaa>k zzz|≤R}111{|aaa>k zzz0|≤R}111

{
|aaa>k (zzz0−zzz)|> ‖zzz−zzz0‖

ε

}
∥∥∥∥∥

≤R2

(∥∥∥∥∥ 1
m

m

∑
k=1

aaakaaa>k 111{|aaa>k zzz0|>R}

∥∥∥∥∥+
∥∥∥∥∥ 1

m

m

∑
k=1

aaakaaa>k 111{|aaa>k zzz|>R}

∥∥∥∥∥
)

+2Rε

∥∥∥∥∥ 1
m

m

∑
k=1

aaakaaa>k

∥∥∥∥∥+2R2

∥∥∥∥∥ 1
m

m

∑
k=1

aaakaaa>k 111{
|aaa>k (zzz0−zzz)|> ‖zzz−zzz0‖

ε

}
∥∥∥∥∥

≤2R2
(

5K2R2 exp
(

1− c1R2

K2

)
+5

K2

ε2 exp
(

1− c1

K2ε2

)
+2ε

)
+4Rε. (6.10)

The last inequality is according to Lemma 6.1 and Lemma 6.4. Based on (6.9) and (6.10), for
any zzz ∈ Sn−1, we have∥∥∥∥∥ 1

m

m

∑
k=1
|aaa>k zzz|2aaakaaa>k 111{|aaa>k zzz|≤R}−

(
2zzzzzz>+ III +(τ−3)Diag

(
|zzz|2
))∥∥∥∥∥

≤

∥∥∥∥∥ 1
m

m

∑
k=1
|aaa>k zzz|2aaakaaa>k 111{|aaa>k zzz|≤R}−

1
m

m

∑
k=1
|aaa>k zzz0|2aaakaaa>k 111{|aaa>k zzz0|≤R}

∥∥∥∥∥
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+

∥∥∥∥∥ 1
m

m

∑
k=1
|aaa>k zzz0|2aaakaaa>k 111{|aaa>k zzz0|≤R}−

(
2zzz0zzz>0 + III +(τ−3)Diag

(
|zzz0|2

))∥∥∥∥∥
+
∥∥∥(2zzz0zzz>0 + III +(τ−3)Diag

(
|zzz0|2

))
−
(

2zzzzzz>+ III +(τ−3)Diag
(
|zzz|2
))∥∥∥

≤4Rε +2R2
(

5K2R2 exp
(

1− c1R2

K2

)
+5

K2

ε2 exp
(

1− c1

K2ε2

)
+2ε

)
+

1+R2K2

2
ε +64C4K4 exp(1− c0R2/(CK)2)+4(1+ |τ−3|)ε2

≤(5+4R+5R2K2)ε +(10K2R4 +64C4K4)exp
(

1− cR2

K2

)
+

10R2K2

ε2 exp
(

1− c1

K2ε2

)
,

provided (1+ |τ−3|)ε < 1. From Lemma 6.1 and Lemma 6.4, one has∥∥∥∥∥ 1
m

m

∑
k=1
|aaa>k zzz|2aaakaaa>k 111{

{|aaa>j zzz|≤R‖zzz‖2}∩{
√y j≤R

√
1
m ∑

m
j=1 yi}

}−(2zzzzzz>+‖zzz‖2
2III +(τ−3)Diag

(
|zzz|2
))∥∥∥∥∥

≤

∥∥∥∥∥ 1
m

m

∑
k=1
|aaa>k zzz|2aaakaaa>k 111{|aaa>k zzz|≤R}−

(
2zzzzzz>+ III +(τ−3)Diag

(
|zzz|2
))∥∥∥∥∥

+

∥∥∥∥∥ 1
m

m

∑
k=1
|aaa>k zzz|2aaakaaa>k 111{

{|aaa>j zzz|≤R‖zzz‖2}∩{
√y j>R

√
1
m ∑

m
j=1 yi}

}
∥∥∥∥∥

≤(5+4R+5R2K2)ε +(10K2R4 +64C4K4)exp
(

1− cR2

K2

)
+

10R2K2

ε2 exp
(

1− c1

K2ε2

)
+R2

(
6K2R2 exp

(
1− c1R2

K2

)
+ ε

)
≤(5+4R+6R2K2)ε +(16K2R4 +64C4K4)exp

(
1− cR2

K2

)
+

10R2K2

ε2 exp
(

1− c1

K2ε2

)
for any zzz ∈ Sn−1. �
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