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Abstract. We show that the directional derivative of the scalar play operator is the unique solution of a
certain variational inequality. Due to the nature of the discontinuities involved, the variational inequality
has an integral form based on the Kurzweil-Stieltjes integral.
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1. INTRODUCTION

The scalar stop operator Sr arises as the solution operator (u,z0) 7→ z of the rate-independent
evolution variational inequality

(u̇(t)− ż(t))(z(t)−ζ )≥ 0 ∀ζ ∈ Z , for a.e. t ∈ (a,b) , (1.1a)

z(t) ∈ Z ∀ t ∈ [a,b] , z(a) = z0 , (1.1b)

with Z = [−r,r], r > 0. Its twin, the scalar play operator Pr, is given by

Pr[u;z0] = u−Sr[u;z0] . (1.2)

The properties of these operators have been studied extensively in, e.g., [1, 2, 3, 4, 5, 6, 7, 8].
The operators Sr and Pr are Lipschitz continuous from W 1,1(a,b)×Z to W 1,1(a,b) and can

be extended to Lipschitz continuous operators from C[a,b]×Z to C[a,b], and even to spaces of
regulated functions. However, they are not differentiable in the classical sense.

In this paper we investigate the pointwise directional derivative

g(t) = lim
λ↓0

Pr[u+λh;z0 +λy0](t)−Pr[u;z0](t)
λ

, t ∈ [a,b] , (1.3)

at a point (u,z0) in function space in the direction (h,y0). (The corresponding derivative for the
stop is then given by h−g.) We have shown already in [9, Proposition 5.3] that this limit exists
for u,h∈C[a,b] and that it can be computed (in principle, at least) with the aid of the chain rule,
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applied to a certain composition of mappings involving cumulated maxima of the type u 7→ f ,
f (t) = max[t∗,t] u with t∗ ∈ [a,b].

As the main result (Theorem 2.1) of this paper, we show that g is the unique solution of a
certain system of variational inequalities if u ∈C[a,b] and h ∈C[a,b]∩BV [a,b]. The function g
turns out to belong to BV [a,b] and to be one-sided continuous at each t ∈ [a,b]; however, it may
be discontinuous from the right at some points and discontinuous from the left at other points
even if u and h are smooth. (See Example 4.1 below.)

To our knowledge, this is the first result in the literature which characterizes a generalized
derivative of the solution operator of a rate-independent evolution by a variational inequality.
Let us add the remark that the play operator represents the solution operator of the simplest
nontrivial energetic rate-independent system in the sense of [6].

Since the derivative g is not absolutely continuous, it will not satisfy a variational inequality
based on pointwise time derivatives like (1.1). Instead, one expects the variational inequality
for g to be of integral form. Such an integral form already arises when one is interested in a
variational inequality formulation for the play operator itself if u does not belong to W 1,1(a,b).
Indeed, for u ∈C[a,b]∩BV [a,b] a proper substitute for (1.1a) is given by (see Theorem 4.1 in
[4]) ∫ b

a
(z(t)− v(t))dw(t)≥ 0 for all v ∈C[a,b] with values in Z . (1.4)

Here w = Pr[u;z0] = u− z, and the integral is a Riemann-Stieltjes integral.
When u is discontinuous, an integral

∫ b
a f (t)dg(t) of Stieltjes type must be able to deal with

functions f and g which are simultaneously discontinuous at certain points of [a,b], in order
to be useful in the present context. The Kurzweil-Stieltjes integral in particular satisfies this
requirement, see Chapter 6 in [10]. Indeed, this integral was used in, e.g., [11, 12] to deal with
rate-independent evolutions where the “driving function” u is discontinuous.

As g may be discontinuous and the integral
∫ b

a g(t+)dg(t) appears in the variational charac-
terization of g, we also use the Kurzweil-Stieltjes integral.

Another problem to be overcome is the formulation of the constraint in place of Z in the
variational inequality for g. In a general setting this constraint represents a first order conical
approximation of the original constraint near the point where the derivative has to be computed.
Its exact formulation and the accompanying proofs, however, are not immediately obvious and
can be rather tricky, as the literature on the differentiability of solution operators for elliptic and
parabolic variational inequalities shows; see, e.g., [13, 14, 15, 16, 17, 18, 19, 20].

Here, the constraint for the directional derivative h−g of the stop operator, or more precisely
for the right limit of h−g, turns out to be a time-dependent cone K(t) depending on u via w and
z.

In (1.1), there is no space variable, so PDE regularity problems are absent. But on the other
hand, for rate-independent evolutions there is no natural Hilbert (or reflexive Banach) space
framework w.r.t. the time variable. This creates problems when trying to pass to the limit in
difference quotient approximations of g based on (1.1). Instead, our proof of the main result is
based on the decomposition of the play already used in [9] (which is not visible in the resulting
variational inequality) and on piecewise constant approximations of h (which, as it turns out,
yield piecewise constant approximations of g). It heavily uses the well-known explicit formula
for the directional derivative of the maximum functional.
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Let us close this introduction with the remark that Newton and Bouligand derivatives of the
scalar play have been obtained in [21].

2. BASIC NOTIONS AND MAIN RESULT

We use the standard notations C[a,b], BV [a,b] and W 1,1(a,b) for the spaces of continuous
functions, of functions of bounded variation and of absolutely continuous functions on the in-
terval [a,b]⊂ R. We also denote by G[a,b] the space of regulated functions on [a,b]. As usual,
for a function u : [a,b]→ R we denote its supremum norm by ‖u‖∞ and its variation by

var(u) = sup
∆

N

∑
k=1
|u(tk)−u(tk−1)| ,

the supremum being taken over all partitions ∆ : a = t0 < · · ·< tN = b of [a,b].
We repeat the definition of the scalar stop from (1.1), allowing arbitrary initial values in order

to simplify the formalism associated with directional derivatives. Let Z = [−r,r] with r > 0, let
πZ : R→ R denote the projection on Z. It is well known that for given (u,z0) ∈W 1,1(a,b)×R
there exists a unique solution z ∈W 1,1(a,b) of the evolution variational inequality

(u̇(t)− ż(t))(z(t)−ζ )≥ 0 ∀ζ ∈ Z , for a.e. t ∈ (a,b) , (2.1a)

z(t) ∈ Z ∀ t ∈ [a,b] , z(a) = πZ(z0) . (2.1b)

The operators Sr and Pr defined by Sr[u;z0] = z and Pr[u;z0] = w = u− z are thus well-
defined on W 1,1(a,b). It is also well known that, for w = Pr[u;z0] and w̃ = Pr[ũ; z̃0],

‖w̃−w‖∞ ≤ ‖ũ−u‖∞ + |z̃0− z0| . (2.2)

Thus, Sr and Pr can be uniquely extended to Lipschitz continuous operators Sr,Pr : C[a,b]×
R→C[a,b], and (2.2) continues to hold for this extension.

Let (u,z0) ∈ C[a,b]×R be given, and let z = Sr[u;z0] and w = Pr[u;z0]. The variational
inequality for the directional derivative of Pr at (u,z0) involves the directional derivative of
the projection πZ as well as a time-dependent restriction K(t), the so-called critical cone. The
sets K(t) depend on u by means of the behaviour of the trajectory {(w(t),z(t)) : t ∈ [a,b]} as
follows. We set

A1 = {t ∈ [a,b] : |z(t)|< r} ,
A+

2 = {t ∈ [a,b] : z(t) = r, ∃ε > 0,w = w(t) on [t, t + ε)} ,
A−2 = {t ∈ [a,b] : z(t) =−r, ∃ε > 0,w = w(t) on [t, t + ε)} ,
A2 = A+

2 ∪A−2 ,

A3 = {t ∈ [a,b) : |z(t)|= r, ∃ε > 0,w 6= w(t) on (t, t + ε)} .

(2.3)

The definition of A±2 is to be understood as b ∈ A±2 if z(b) =±r.
Note that [a,b] = A1 ∪A+

2 ∪A−2 ∪A3 since w is piecewise monotone (see, e.g., Lemma 4.4
below), and that this union is disjoint.
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We define the critical cone K(t)⊂ R, t ∈ [a,b], by

K(t) =


R , t ∈ A1 ,

R− , t ∈ A+
2 ,

R+ , t ∈ A−2 ,

{0} , t ∈ A3 ,

(2.4)

where R+ = [0,∞) and R− = (−∞,0].
The sets GK[a,s] of admissible test functions associated to K are defined for s ∈ (a,b] as

GK[a,s] = {v : v ∈ G[a,s], v(t) ∈ K(t) for all t ∈ [a,s]} . (2.5)

Given (h,y0) ∈ G[a,b]×R, we consider the following system of variational inequalities for
an unknown function g ∈ BV [a,b].

g(a) = h(a)−π
′
Z(z0;y0) , (2.6a)

h(t)−g+(t) ∈ K(t), ∀ t ∈ [a,b] , (2.6b)∫ s

a
(h(t)−g+(t)− v(t))dg(t)≥ 0, ∀ s ∈ (a,b], v ∈ GK[a,s] . (2.6c)

The integral in (2.6c) is a Kurzweil-Stieltjes integral, see [10]. In (2.6b) and (2.6c), g+ : [a,b]→
R denotes the right limit of g : [a,b]→ R defined by g+(b) = g(b+) = g(b) and

g+(t) = g(t+) = lim
τ→t,τ>t

g(τ) , a≤ t < b . (2.7)

We also use the left limit defined by g−(a) = g(a−) = g(a) and

g−(t) = g(t−) = lim
τ→t,τ<t

g(τ) , a < t ≤ b . (2.8)

We now state the main result of this paper.

Theorem 2.1. Let (u,z0) ∈ C[a,b]×R, let h ∈ C[a,b]∩BV [a,b], y0 ∈ R. Then the pointwise
directional derivative

g(t) = lim
λ↓0

Pr[u+λh;z0 +λy0](t)−Pr[u;z0](t)
λ

, (2.9)

exists for all t ∈ [a,b] and is the unique solution in BV [a,b] of system (2.6). Moreover, var(g)≤
var(h)+ |y0| as well as g(t) ∈ {g+(t),g−(t)} for all t ∈ [a,b].

Proof. That the limit in (2.9) exists for h ∈ C[a,b] and belongs to BV [a,b] for h ∈ C[a,b]∩
BV [a,b] was proved in [9], Corollary 5.4 and Proposition 6.3. These results will also be ob-
tained during the course of the exposition below. That g solves system (2.6) and satisfies
g(t) ∈ {g+(t),g−(t)} for all t ∈ [a,b] as well as var(g)≤ var(h)+ |y0| will be proved in Propo-
sitions 5.1 and 5.2.

The proof of uniqueness follows standard lines. We present it for the sake of completeness.
Let g, g̃ ∈ BV [a,b] be two solutions of (2.6), and let s ∈ (a,b] be arbitrary. By (2.6b), the
restrictions of h−g+ and of h− g̃+ to [a,s] belong to GK[a,s]. Inserting each of these functions
into the variational inequality (2.6c) for the other one and adding the resulting inequalities, we
obtain ∫ s

a
(g̃+−g+)d(g̃−g)≤ 0 .
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It follows from Proposition 6.2, applied to g̃−g in place of g and [a,s] in place of [a,b], that
1
2

(
(g̃(s)−g(s))2− (g̃(a)−g(a))2

)
≤
∫ s

a
(g̃+−g+)d(g̃−g) .

Since g̃(a) = g(a) by (2.6a) and s was arbitrary, it follows that g̃(s) = g(s) for all s > a. This
completes the proof of uniqueness. �

Remark 2.1. In (2.6), we might replace the system (2.6c) w.r.t. s by the single variational
inequality for s = b; Proposition 5.2 shows that for the directional derivative g this is equivalent.
However, we then obtain uniqueness only in the set BVrl[a,b]⊂ BV [a,b] of functions which are
one-sided continuous (that is, v(t) ∈ {v+(t),v−(t)}) at every point t of [a,b]. Indeed, in our
uniqueness proof, we need not only g but also g̃ to satisfy system (2.6c), and the one-sided
continuity is crucially used in the proof of Proposition 5.2.

Our proof of the main theorem above requires a detailed study of g, which will be represented
as the derivative of the composition of certain mappings. As this involves the chain rule, and as
the chain rule does not hold in general for mappings which are only directionally differentiable,
we need the slightly stronger concept of the Hadamard derivative. Let

F : U → Y , U ⊂ X

be a mapping, where X and Y are normed spaces, and U ⊂X is open. If the directional derivative
F ′(u;h) exists and satisfies

F ′(u;h) = lim
λ↓0

F(u+λh+ r(λ ))−F(u)
λ

(2.10)

for all functions r : [0,λ0)→ X with r(λ )/λ → 0 as λ ↓ 0, F ′(u;h) is called the Hadamard
derivative of F at u in the direction h. If this is true for all h ∈ X , F is called Hadamard
differentiable at u.

It is well known and elementary to prove that F is Hadamard differentiable at u if it is direc-
tionally differentiable and locally Lipschitz at u and that the chain rule is valid for the composi-
tion of Hadamard differentiable functions. In the study of g we will use these facts.

In this paper, we are mainly concerned with the pointwise directional derivative g from (2.9).
We may also view g as the directional derivative of Pr : C[a,b]×R→ Y for an appropriate
function space Y , a result which has already been obtained in [9].

Proposition 2.1. The play and the stop operator are Hadamard differentiable as mappings
Pr,Sr : C[a,b]×R → Lp(a,b) for all p ∈ [1,∞). For u,h ∈ C[a,b] and z0,y0 ∈ R, their
Hadamard derivatives at (u,z0) in the direction (h,y0) are given by

P ′
r([u;z0]; [h;y0]) = g , S ′

r ([u;z0]; [h;y0]) = h−g (2.11)

with g from (2.9). Moreover, Pr([u;z0]; [h;y0]) and Sr([u;z0]; [h;y0]) belong to G[a,b].

Proof. For h ∈C[a,b], the pointwise limit (2.9) exists for all t ∈ [a,b] by Proposition 5.3 of [9],
or by Proposition 4.6 below. Since∥∥∥∥Pr[u+λh;z0 +λy0]−Pr[u;z0]

λ

∥∥∥∥
∞

≤ ‖h‖∞ + |y0| ,

the difference quotients on the right side of (2.9) converge to g in Lp(a,b) for all p ∈ [1,∞) by
dominated convergence. That g ∈ G[a,b] has been proved in Proposition 6.6 of [9]. �
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The mapping (h,y0) 7→ g is Lipschitz continuous on C[a,b]×R with respect to the supremum
norm (not only with respect to the Lp norm) in the range space.

Proposition 2.2. Let (u,z0) ∈C[a,b]×R be given. Then

‖P ′
r([u;z0]; [h̃; ỹ0])−P ′

r([u;z0]; [h;y0])‖∞ ≤ ‖h̃−h‖∞ + |ỹ0− y0| (2.12)

for all h̃,h ∈C[a,b] and all ỹ0,y0 in R.

Proof. See Proposition 4.2 below. �

In view of the foregoing two propositions, we may view the mapping (h,y0) 7→P ′
r([u;z0]; [h,y0])

as the natural extension of the solution operator of the evolution variational inequality system
(2.6) to the space C[a,b]×R.

3. THE MAXIMUM FUNCTIONAL

Let ϕ : C[a,b]→ R be the maximum functional

ϕ(u) = max
t∈[a,b]

u(t) , u ∈C[a,b] , (3.1)

and let
M(u) = {t ∈ [a,b] : u(t) = ϕ(u)} (3.2)

denote the set where u attains its maximum. It is well-known (see, e.g., [22]) that ϕ possesses
a directional derivative given by

ϕ
′(u;h) = max

t∈M(u)
h(t) (3.3)

at each u ∈C[a,b] in any direction h ∈C[a,b].
Since in the proof of the main result we approximate h by discontinuous functions (namely,

step functions), we want to obtain a result corresponding to (3.3) for the extension of ϕ to a
larger space. For this, we choose the space G[a,b] of regulated functions, the closure of the step
functions with respect to the supremum norm. We consider

ϕ(u) = sup
t∈[a,b]

u(t) , u ∈ G[a,b] . (3.4)

In order to utilize the result (3.3) on C[a,b], we employ a time transformation. This is a common
technique when dealing with evolutions involving discontinuous state functions, see, e.g., [2,
23, 24].

Let u,h ∈ G[a,b] be given. Let

D⊃ {t : t ∈ [a,b],u or h are discontinuous at t} (3.5)

be a finite or countably infinite set which includes all discontinuity points of u and h. (The set
on the right side of (3.5) has this property, see, e.g., Theorem 4.1.8 in [10].) The idea is to
expand the points t ∈ D to intervals Jt and interpolate the values u(t−), u(t) and u(t+) as well
as h(t−), h(t) and h(t+) continuously on Jt , in order to obtain continuous functions uD and hD

to which (3.3) then can be applied.
We intend to define a suitable time transformation

β : ID→ I , I = [a,b] , ID = [a,bD] . (3.6)



A VARIATIONAL INEQUALITY FOR THE DERIVATIVE OF THE SCALAR PLAY OPERATOR 269

Let δ : D→ R be a function with δ > 0 and ∑s∈D δ (s)< ∞. We define α+,α− : I→ R by

α−(t) = t + ∑
s∈D,s<t

δs , α+(t) = t + ∑
s∈D,s≤t

δs . (3.7)

Then
α+(t) = α−(t) ⇔ t /∈ D . (3.8)

We set
Jt = [α−(t),α+(t)] . (3.9)

By (3.8), Jt consists of a single point if and only if t /∈ D.
We now set ID = [a,bD] with bD = b+α+(b) and define the time transformation β : ID→ I

by
β (τ) = t if τ ∈ Jt . (3.10)

The function β is nondecreasing, surjective, continuous and satisfies Jt = β−1({t}) for all t ∈ I.
Let α(t) be the midpoint of Jt ,

α(t) =
1
2
(α+(t)+α−(t)) , t ∈ I . (3.11)

For any given v ∈ G[a,b], we define vD : ID→ R by

vD(α(t)) = v(t) if t /∈ D, (3.12)

and, if t ∈ D, we define vD on Jt as the linear interpolate of the values

vD(α−(t)) = v(t−) , vD(α(t)) = v(t) , vD(α+(t)) = v(t+) . (3.13)

Hence, the restrictions of vD to the intervals Jt are continuous for all t ∈ [a,b]. Since α : I→ ID

is strictly monotone by construction, the mapping v 7→ vD is injective.
Choosing v = u resp. v = h one may check that the functions uD and hD are continuous on

the whole interval ID, since all discontinuity points of u and h belong to D.

Proposition 3.1. Let u,h ∈G[a,b]. Then ϕ : G[a,b]→R is Hadamard differentiable in u in the
direction h. If in particular u ∈C[a,b], then

ϕ
′(u;h) = max

t∈M(u)
max{h(t−),h(t),h(t+)} (3.14)

with the convention h(a−) = h(a), h(b+) = h(b).

If u has discontinuity points, (3.14) has to be replaced by a more complicated formula.

Proof. Let D, uD and hD be defined as above. Let ϕD denote the maximum functional on C(ID).
By construction,

ϕ(u+λh) = ϕ
D((u+λh)D) = ϕ

D(uD +λhD)

holds for every λ ≥ 0. It follows that, for all λ > 0

ϕ(u+λh)−ϕ(u)
λ

=
ϕD(uD +λhD)−ϕD(uD)

λ
. (3.15)

Since uD and hD are continuous, (ϕD)′(uD;hD) exists. By (3.15), the directional derivative
ϕ ′(u;h) exists, too, and

(ϕD)′(uD;hD) = ϕ
′(u;h) .
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Applying (3.3) to ϕD, we obtain

ϕ
′(u;h) = max

τ∈MD(uD)
hD(τ) , MD(uD) = {τ : uD(τ) = ϕ

D(uD)} . (3.16)

Since u is continuous, uD|Jt is constant for all t ∈ [a,b]. Therefore,

MD(uD) =
⋃

t∈M(u)

Jt , max
τ∈Jt

hD(τ) = max{h(t−),h(t),h(t+)} .

Now (3.14) follows from (3.16). As ϕ is Lipschitz continuous on G[a,b], the directional deriv-
ative is a Hadamard derivative. �

In the context of the play operator, we will need to consider the maximum over subintervals
of [a,b]. Let J = [t∗, t∗]⊂ [a,b]. For t ∈ J, we define

Ft(u) = sup
t∗≤s≤t

u(s) , u ∈ G[a,b] ,

M(u, t) = {τ ∈ [t∗, t] : u(τ) = Ft(u)} , u ∈ G[a,b] .
(3.17)

Corollary 3.1. The functional Ft is Hadamard differentiable on G[a,b] for every t ∈ J = [t∗, t∗]⊂
[a,b]. For u ∈C[a,b] and h ∈ G[a,b], its directional derivative is given by F ′t∗(u;h) = h(t∗) and

F ′t (u;h) = max
s∈M(u,t)

ĥ(s) , ĥ(s) =


max{h(t∗),h(t∗+)} , s = t∗ ,
max{h(s−),h(s),h(s+)} , t∗ < s < t ,
max{h(t−),h(t)} , s = t ,

(3.18)

for t ∈ (t∗, t∗].

Proof. This is a direct consequence of Proposition 3.1 and the chain rule applied to the mapping
u 7→ u|J 7→ Ft(u). �

4. THE DIRECTIONAL DERIVATIVE OF THE SCALAR PLAY

Let (u,z0) ∈ C[a,b]×R be given, and let w = Pr[u;z0] and z = Sr[u;z0]. The trajectories
{(u(t),w(t)) : t ∈ [a,b]} lie within the subset {(x,y) : |x−y| ≤ r} of the plane R2. They consist
of parts which belong to the interior, the right or the left boundary of this subset. Accordingly,
the time interval [a,b] decomposes into the three disjoint sets

I0 = {t ∈ [a,b] : |u(t)−w(t)|= |z(t)|< r} ,
I+ = {t ∈ [a,b] : u(t)−w(t) = z(t) = r} ,
I− = {t ∈ [a,b] : u(t)−w(t) = z(t) =−r} .

(4.1)

We also define
I∂ = I+∪ I− . (4.2)

The set I0 is a relatively open subset of [a,b], the sets I± and I∂ are compact.
A closed interval J ⊂ [a,b] is called a plus interval for (u,z0) if J ⊂ I+∪ I0 and J∩ I+ 6= /0;

it is called a minus interval for (u,z0) if J ⊂ I−∪ I0 and J ∩ I− 6= /0. Thus, on a plus interval
the trajectory {(u(t),w(t))} hits the right but not the left boundary of the admissible domain
{(x,y) : |x− y| ≤ r}, and vice versa on a minus interval.

A partition ∆ : a = τ0 < ... < τR = b is called regular for (u,z0) if z(τi) = 0 for all 0 < i < R
and if all intervals [τi−1,τi] are plus or minus intervals for (u,z0).
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If I0 = [a,b], that is, if the trajectory never touches the boundary, then w = u−z is constant on
[a,b] and |z0|< r. Since this continues to hold if we vary (u,z0) by a sufficiently small amount,

Pr[ũ; z̃0](t) = ũ(a)− z̃0 , t ∈ [a,b] ,

if (ũ, z̃0) is sufficiently close to (u,z0). Consequently, at (u,z0) the play Pr : C[a,b]×R→
C[a,b] has the Fréchet derivative P ′

r[u;z0] given by

P ′
r[u;z0](h,y0)(t) = h(a)− y0 , t ∈ [a,b] . (4.3)

Since Sr[u;z0]+Pr[u;z0] = u,

S ′
r [u;z0](h,y0)(t) = h(t)−h(a)+ y0 , t ∈ [a,b] . (4.4)

Thus, we only have to study the case [a,b] 6= I0.

Lemma 4.1. Let (u,z0) ∈ C[a,b]×R, let [a,b] 6= I0. Then there exists a regular partition for
(u,z0).

Proof. Starting from ∆ = {a,b}, we successively add points t ∈ (a,b) with z(t) = 0 as follows
until we arrive at a regular partition. Let δ > 0 be such that |z(t)− z(s)| < r for all s, t ∈ [a,b]
with |s− t| ≤ δ . Let ∆ = {τi} be a partition of [a,b] such that every interval [τi−1,τi] includes at
least one point from I∂ and that z(τi)= 0 at all partition points in (a,b). (The partition ∆= {a,b}
has this property since we assumed that [a,b] 6= I0.) If ∆ is not regular, there exists an interval
J = [τk−1,τk], which includes points s, t with z(s) = −r and z(t) = r. We choose τ ′ between s
and t with z(τ ′) = 0. All partition intervals of ∆′ = ∆∪{τ ′} then include at least one point from
I∂ . Since the distance of the new point τ ′ from s and t, and thus from all partition points of ∆, is
at least δ , this process comes to an end after a finite number of steps. The resulting partition is
regular. �

Lemma 4.2. Let (u,z0) ∈C[a,b]×R. We have

Pr[−u;−z0] =−Pr[u;z0] . (4.5)

If J is a minus interval for (u,z0), then J is a plus interval for (−u,−z0). If ∆ is a regular
partition for (u,z0), then ∆ is a regular partition for (−u,−z0).

Proof. The equality (4.5) is an elementary property of the play and can be derived, e.g., via
(2.1). The other assertions follow directly from (4.5). �

Lemma 4.3. Let J = [t∗, t∗] be a plus resp. a minus interval for (u,z0) ∈ C[a,b]×R. Then
w = Pr[u;z0] satisfies

w(t) = max{w(t∗), max
t∗≤s≤t

u(s)− r} , for all t ∈ J,

w(t) = min{w(t∗), min
t∗≤s≤t

u(s)+ r} , for all t ∈ J,
(4.6)

respectively. In particular, w is nondecreasing resp. nonincreasing on J.

Proof. The first equality was proved in [9, Lemma 5.1]. The second follows from the first, using
Lemma 4.2. �
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For a given pair (u,z0) ∈C[a,b]×R, let

Uδ = {(ũ, z̃0) ∈ G[a,b]×R : ‖ũ−u‖∞ < δ , |z̃0− z0|< δ} (4.7)

be its δ -neighbourhood in G[a,b]×R, where δ > 0. Let (ũ, z̃0) ∈Uδ , and let D⊂ [a,b] include
all discontinuity points of ũ. With αD = α and ũD as in (3.11)-(3.13) we define w̃ : [a,b]→ R
by

w̃(t) = w̃D(αD(t)) , w̃D = Pr[ũD; z̃0] . (4.8)

Lemma 4.4. Let ∆ be a regular partition for (u,z0) ∈C[a,b]×R. Then there exists δ > 0 such
that, for all (ũ, z̃0) ∈Uδ from (4.7) and all plus resp. minus partition intervals J = [t∗, t∗] of ∆,
the function w̃ defined in (4.8) satisfies

w̃(t) = max{w̃(t∗), sup
t∗≤s≤t

ũ(s)− r} , for all t ∈ J,

w̃(t) = min{w̃(t∗), inf
t∗≤s≤t

ũ(s)+ r} , for all t ∈ J,
(4.9)

respectively. In particular, w̃ is piecewise monotone on [a,b]. Moreover, the mapping (ũ, z̃0) 7→
w̃ is Lipschitz continuous on Uδ ,

‖w̃2− w̃1‖∞ ≤ ‖ũ2− ũ1‖∞ + |z̃0,2− z̃0,1| . (4.10)

Proof. Let J = [t∗, t∗] be a plus interval for (u,z0), so minJ z+r > 0. Let (ũ, z̃0)∈G[a,b]×R. let
D⊂ [a,b] include all discontinuity points of ũ, and let JD = [αD(t∗),αD(t∗)]. By construction,
z̃D = Sr[ũD; z̃0] satisfies minJD z̃D = minJ z̃. Since Sr is Lipschitz continuous on C[a,b]×R,
there exists δJ > 0 such that minJ z̃+ r > 0 if ‖ũ−u‖∞ < δJ and |z̃0− z0|< δJ . For every such
pair (ũ, z̃0), JD is thus a plus interval for (ũD, z̃0). From Lemma 4.3, applied to (ũD, z̃0) on JD,
it follows that

w̃(t) = w̃D(αD(t)) = max{w̃D(αD(t∗)), max
αD(t∗)≤σ≤αD(t)

ũD(σ)− r}

= max{w̃(t∗), sup
t∗≤s≤t

ũ(s)− r} .

If J is a minus interval, an analogous argument applies. Taking δ = minδJ over all subintervals
J of ∆ yields (4.9). To prove (4.10), one checks by induction over the subintervals of ∆, using
(4.9), that |w̃2(t)− w̃1(t)| is bounded by the right side of (4.10) for all t ∈ [a,b]. �

By Lemma 4.4, for given (u,z0) ∈C[a,b]×R
Pr,t [ũ; z̃0] = w̃(t) (4.11)

defines operators
Pr,t : Uδ → R , t ∈ [a,b] , (4.12)

for sufficiently small δ > 0. By Lemmas 4.3 and 4.4, we have that

Pr,t [ũ; z̃0] = Pr[ũ; z̃0](t) , t ∈ [a,b] , (4.13)

holds for all pairs (ũ, z̃0) ∈Uδ ∩ (C[a,b]×R). Extending Pr,t to −Uδ by

Pr,t [ũ; z̃0] =−Pr,t [−ũ;−z̃0] , (4.14)

we see from Lemma 4.2 that (4.13) holds on (−Uδ )∩ (C[a,b]×R), too.
We derive a formula for the directional derivative of Pr,t at (u,z0). For t = a,

Pr,a[u;z0] = u(a)−πZ(z0) , (4.15)
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so Pr,a is Hadamard differentiable at (u,z0) and

P ′
r,a([u;z0]; [h;y0]) = h(a)−π

′
Z(z0;y0) (4.16)

holds for all (h,y0) ∈ G[a,b]×R.

Proposition 4.1. Let J = [t∗, t∗] be a plus interval for (u,z0)∈C[a,b]×R, let Pr,t∗ be Hadamard
differentiable at (u,z0). Then Pr,t is Hadamard differentiable at (u,z0) for all t ∈ J. The
derivative

g(t) = P ′
r,t([u;z0]; [h;y0]) , t ∈ J , (4.17)

in the direction (h,y0) ∈ G[a,b]×R satisfies, for all t ∈ (t∗, t∗],

g(t) =


g(t∗) , w(t∗)> Ft(u)− r ,
max{g(t∗),F ′t (u;h)} , w(t∗) = Ft(u)− r ,
F ′t (u;h) , w(t∗)< Ft(u)− r ,

(4.18)

where F ′t (u;h) is given in (3.18).

Proof. The maximum f : R2→ R, f (x,y) = max{x,y}, is Hadamard differentiable and has the
directional derivative

f ′((x,y);(ξ ,η)) =


ξ , y < x ,
max{ξ ,η} , y = x ,
η , y > x .

By (4.11) and Lemma 4.4, for (ũ, z̃0) ∈Uδ , we have

Pr,t [ũ; z̃0] = max{Pr,t∗[ũ; z̃0],Ft(ũ)− r} .
Therefore, all assertions follow from the chain rule and Corollary 3.1. �

Proposition 4.2. Let (u,z0) ∈C[a,b]×R. Then Pr,t : Uδ ∪ (−Uδ )→ R is Hadamard differen-
tiable at (u,z0) and (−u,−z0) for all t ∈ [a,b] if δ > 0 is sufficiently small, and

P ′
r,t([u;z0]; [h,y0]) =−P ′

r,t([−u;−z0]; [−h,−y0]) (4.19)

for all h ∈ G[a,b], y0 ∈ R. Moreover, setting

g̃(t) = P ′
r,t([u;z0]; [h̃, ỹ0]) , g(t) = P ′

r,t([u;z0]; [h,y0]) ,

we have that
sup

t∈[a,b]
‖g̃−g‖∞ ≤ ‖h̃−h‖∞ + |ỹ0− y0| (4.20)

for all h̃,h ∈ G[a,b] and all ỹ0,y0 ∈ R.

Proof. We first prove (4.19). By (4.14), Pr,t is defined on Uδ ∪ (−Uδ ) for δ > 0 small enough
and satisfies Pr,t [ũ; z̃0] =−Pr,t [−ũ;−z̃0] on Uδ . Passing to the limit in the difference quotients
corresponding to (4.19) shows that if, for given (t,h,y0), one of the derivatives appearing in
(4.19) exists, then the other exists too, and (4.19) holds.

For t = a, we refer to (4.15) and (4.16). On (a,b], we use induction over the successive
subintervals of a regular partition ∆ for (u,z0). Let J = [t∗, t∗] be such a subinterval. By the
induction hypothesis, Pr,t∗ is Hadamard differentiable at (u,z0), and hence also at (−u,−z0).
If J is a plus interval for (u,z0), we apply Proposition 4.1. It follows that Pr,t is Hadamard
differentiable at (u,z0), and hence also at (−u,−z0), for all t ∈ (t∗, t∗]. If J is a minus interval for
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(u,z0), it is a plus interval for (−u,−z0) by Lemma 4.2. By Proposition 4.1, Pr,t is Hadamard
differentiable at (−u,−z0), and hence at (u,z0), for all t ∈ (t∗, t∗]. This completes the induction
step and thus the proof of (4.19).

That (4.20) holds follows from (4.10) applied to the difference quotients which define g̃ and
g. �

The pointwise directional derivative g can be discontinuous from the right or from the left at
certain points of [a,b] even if u and h are smooth, as the following example shows.

Example 4.1. Let [a,b] = [0,4], z0 = r and y0 = 0. Let u : [0,4]→ R be a smooth function
which satisfies

r = u(0) = u(1)< u(2) = u(3)< u(4)

0≤ u < r on (0,1)

u(2)− r ≤ u < u(2) on (2,3)

u′ > 0 on (1,2) and on (3,4) .

Then [0,4] is a plus interval for (u,z0) and w=Pr[u;z0] coincides with the cumulated maximum

w(t) = Ft(u)− r = max
0≤s≤t

u(s)− r , t ∈ [0,4] .

The sets M(u, t) from (3.17) become

M(u, t) =


{0} , t ∈ [0,1) ,
{0,1} , t = 1 ,
{t} , t ∈ (1,2) ,

M(u, t) =


{2} , t ∈ [2,3) ,
{2,3} , t = 3 ,
{t} , t ∈ (3,4) .

For every h∈C[0,4], we obtain from Corollary 3.1 and Proposition 4.1 that the one-sided limits
of g satisfy

g(1−) = h(0) , g(1) = max{h(0),h(1)} , g(1+) = h(1) ,

g(3−) = h(2) , g(3) = max{h(2),h(3)} , g(3+) = h(3) .

Thus, all combinations of discontinuity behavior of g at t = 1 and t = 3 can be achieved by
suitable choices of an arbitrarily smooth variation h.

5. THE VARIATIONAL INEQUALITY FOR THE DERIVATIVE

We want to derive a variational inequality for the function g : [a,b]→ R,

g(t) = P ′
r,t([u;z0]; [h,y0]) = lim

λ↓0

Pr,t [u+λh;z0 +λy0]−Pr,t [u;z0]

λ
. (5.1)

In this section, we generally assume that (u,z0) ∈ C[a,b]×R as well as (h,y0) ∈ G[a,b]×R
are given and that ∆ is a regular partition for (u,z0). As before, we set w = Pr[u;z0] and
z = Sr[u;z0].

We first investigate the behaviour of g on a plus interval. In the following development up to
Lemma 5.8, we assume that J = [t∗, t∗] is a given plus interval for (u,z0).

We look at intervals where the trajectory {(u(t),w(t))} does not touch the boundary of the
admissible region {(x,y) : |x− y| ≤ r}.
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Lemma 5.1. The function g is constant on every interval contained in J∩ I0.

Proof. Let K = [τ∗,τ
∗]⊂ J∩ I0. Since w=Pr[u;z0] is locally constant on I0, according to (5.1),

(4.11) and Lemma 4.4, it suffices to show that the function

w̃(t) = max{w̃(t∗), sup
t∗≤s≤t

ũ(s)− r} (5.2)

is constant on K if (ũ, z̃0) is sufficiently close to (u,z0).
Let us assume that w̃ is not constant on K. As w̃ is nondecreasing on J, we must have

w̃(τ∗)> w̃(τ∗). It follows from (5.2) that

sup
s∈K

w̃(s) = w̃(τ∗) = sup
s∈K

ũ(s)− r .

Now
r = sup

K
ũ− sup

K
w̃≤ sup

K
(ũ− w̃)≤ sup

K
(u−w)+‖ũ−u‖∞ +‖w̃−w‖∞ .

Since K ⊂ I0, we have supK(u−w)< r. Thus, if (ũ, z̃0) is sufficiently close to (u,z0), a contra-
diction arises due to (4.10).

If K is half-open or open, interior approximation by closed intervals yields the assertion. �

We recall the definitions (u is continuous)

Ft(u) = max
t∗≤s≤t

u(s) , M(u, t) = {τ ∈ [t∗, t] : u(τ) = Ft(u)} . (5.3)

Since t 7→ Ft(u) is nondecreasing, we have for all s, t ∈ J with t < s

M(u, t)⊂M(u,s) or M(u, t)< M(u,s) (5.4)

(to be understood pointwise, τ < σ for all τ ∈M(u, t) and all σ ∈M(u,s)).
Next, we investigate the behaviour of g at points t /∈ I0. We denote by

t+ = min(J∩ I+) (5.5)

the first point in J where the trajectory {u(t),w(t))} touches the right boundary of {(x,y) :
|x− y| ≤ r}.

Lemma 5.2. We have w(t∗) = w(t+) = u(t+)− r, [t∗, t+) ⊂ I0, M(u, t+) = {t+} and M(u, t) ⊂
[t+, t] for all t ∈ [t+, t∗].

Proof. By definition of t+, we have w(t+) = u(t+)− r and [t∗, t+) ⊂ I0. Since w is locally
constant in I0, it follows that u− r < w = u(t+)− r on [t∗, t+). Thus M(u, t+) = {t+}. From
(5.4), it follows that M(u, t)⊂ [t+, t] if t ≥ t+. �

The value of g at a boundary point t depends on h(t) and on the left limits of g and h at t.

Lemma 5.3. Let t∗ < t ∈ J∩ I+. Then g(t−) exists and

g(t) = max{h(t),h(t−),g(t−)} . (5.6)

More precisely, for t > t+ three cases arise.
(i) Let u < u(t) on [t+, t). Then

g(t) = max{h(t),h(t−)} , g(t−) = h(t−) . (5.7)

(ii) If for some t̂ ∈ [t+, t) we have u(t̂) = u(t) and u < u(t) on (t̂, t), then

g(t) = max{h(t),h(t−),g(t−)} , g(t−) = g(t̂) . (5.8)
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(iii) Let u(τk) = u(t) for some sequence τk ↑ t with τk < t for all k. Then

g(t) = max{h(t),g(t−)} , g(t−)≥ h(t−) . (5.9)

Proof. For t∗ < t = t+ we have g(t∗) = g(t−) by Lemma 5.1. From Lemma 5.2, it follows
that M(u, t) = {t} and that the second case in (4.18) arises. From Corollary 3.1, we obtain
F ′t (u;h) = max{h(t−),h(t)}. Thus (5.6) holds at t = t+.

Let now t > t+. We have u≤ u(t) on some interval (t− ε, t), since otherwise

u(τ)−w(τ)≥ u(τ)−w(t)> u(t)−w(t) = r

for some τ < t, which is impossible. Therefore, for t > t+ no other cases arise besides (i)-(iii).
(i) We have g(t) = F ′t (u;h) = max{h(t−),h(t)} since M(u, t) = {t} and w(t∗) = u(t+)− r <

u(t)− r. We define

τk = min{s : s ∈ [a, t], u(s) = u(t)−1/k} , k > 1/(u(t)−u(t+)) .

Then M(u,τ)⊂ [τk, t) for all τ ∈ [τk, t). Since τk < t for all k and τk ↑ t, it follows that g(t−) =
h(t−).

(ii) We have w(t̂) ≤ w(t) = u(t)− r = u(t̂)− r. It follows that w(t̂) = w(t), M(u, t) =
{t} ∪M(u, t̂) and M(u,τ) = M(u, t̂) for all τ ∈ (t̂, t). Thus g is constant on [t̂, t) and g(t) =
max{h(t−),h(t),g(t̂)} no matter whether the second or the third case in (4.18) applies.

(iii) We repeatedly use (3.18). We have M(u,τ) ⊂M(u,σ) for all τ ≤ σ with τ,σ ∈ [τ1, t].
Thus, g is nondecreasing on [τ1, t]. Moreover, h(τk) ≤ g(τk) ≤ g(t) for all k. It follows that
h(t−)≤ g(t−)≤ g(t). We also have

g(t) = max{g(τk), ĝk} , ĝk := max{ĥ(s) : s ∈ (τk, t]∩M(u, t)} .
Since ĝk→max{h(t),h(t−)} as k→ ∞, we have that (5.9) follows. �

The right limit of g at a boundary point t behaves as follows.

Lemma 5.4. Let t ∈ J∩ I+, t < t∗. Then g(t+) exists and the following three cases arise.
(i) Let u < u(t) on some interval (t, t+ε). Then g is constant on [t, t+ε), in particular g(t+)=
g(t).
(ii) Let Fτk(u) = u(τk) = u(t) for some sequence τk ↓ t with τk > t for all k. Then g(t+) =
max{h(t+),g(t)}.
(iii) Let Fτ(u)> u(t) for all τ ∈ (t, t + ε), with some ε > 0. Then g(t+) = h(t+) and w > w(t)
on (t, t + ε).

Proof. Again, we use Proposition 4.1. We have u(t)−r =w(t) since t /∈ I0. If neither case (i) nor
case (ii) arises, we have u(t)≤ u(τk)< Fτk(u) for some sequence τk ↓ t; therefore Fτ(u)> u(t)
in some interval (t, t + ε) since τ 7→ Fτ(u) is nondecreasing.

In case (i), we have M(u,τ) = M(u, t) for all τ ∈ (t, t + ε), so g = g(t) on [t, t + ε).
In case (ii), we observe that M(u,τ) ⊂M(u,σ) for all τ ≤ σ , with τ,σ ∈ [t,τ1]. Thus, g is

nondecreasing on [t,τ1]. We have

g(τk) = max{g(t), ĝk} , ĝk := max{ĥ(s) : s ∈ (t,τk]∩M(u,τk)} .
Since ĝk→ h(t+) as k→ ∞, the claim follows.

In case (iii), we have, for all τ ∈ (t, t + ε),

w(τ)≥ Fτ(u)− r > u(t)− r = w(t)≥ w(t∗)
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and M(u,τ)⊂ (t,τ]. Thus, g(τ) = F ′τ(u;h)→ h(t+) for τ ↓ t. �

Lemma 5.5. Let h be constant on an interval J∗ = [τ∗,τ
∗]⊂ J. Then g has at most one discon-

tinuity point t in (τ∗,τ
∗). Moreover, g = h on (t,τ∗) if t is such a point.

Proof. If J∗ ⊂ I0, then g is constant on J∗ by Lemma 5.1. Otherwise, J∗ is a plus interval. Let
h = h∗ ∈ R in J∗. It follows from Proposition 4.1 and Corollary 3.1, applied to J∗ in place of
J, that the only possible values for g in J∗ are g(τ∗) and h∗. Therefore and since g has right
and left limits at all points of J∗, g has only finitely many discontinuities in J∗ and is constant
between discontinuities. Let g be discontinuous at t ∈ (τ∗,τ

∗). Then t ∈ I+ by Lemma 5.1. It
follows from Lemma 5.3 that g(t) = h∗ or g(t−) = g(t) 6= g(t+); in both cases g(t+) = h∗ by
Lemma 5.4. There can be no discontinuity s ∈ (t,τ∗) of g, since the smallest such s would have
to satisfy h∗ = g(t+) = g(s−) = g(s) 6= g(s+) by Lemma 5.3, a contradiction. �

We next relate the function g to the critical cone K defined in (2.4). Since J is a plus interval,
we have z >−r on J. Therefore, for t ∈ J, we have

K(t) =


R , t ∈ A1 ,

R− , t ∈ A2 ,

{0} , t ∈ A3 ,

(5.10)

where A1,A2,A3 are given by (2.3).

Lemma 5.6. Let t ∈ (t∗, t∗] or t = t∗ = a. Then (g(t+)−g(t−))v≤ 0 for all v ∈ K(t).

Proof. If t ∈ A1, we have g(t+) = g(t) = g(t−) by Lemma 5.1. If t ∈ A2, we have g(t)≥ g(t−)
by Lemma 5.3 and g(t+) ≥ g(t) by Lemma 5.4(i),(ii); recall that g(a−) = g(a) and g(b+) =
g(b) by convention. If t ∈ A3, we have v = 0. �

Lemma 5.7. Let h be right-continuous at t ∈ J. Then h(t)−g(t+) ∈ K(t).

Proof. For t ∈ A1, there is nothing to prove. For t ∈ A3, we have t < t∗, and h(t)− g(t+) =
h(t+)− g(t+) = 0 ∈ K(t) by Lemma 5.4(iii). Let now t ∈ A2, t < t∗. In case (ii) of Lemma
5.4, we have h(t)− g(t+) = h(t+)− g(t+) ≤ 0 ∈ K(t). In case (i) of Lemma 5.4, we have
h(t)− g(t+) = h(t)− g(t) ≤ 0 ∈ K(t) since t ∈M(u, t). Finally, if t = t∗ ∈ A2, we have t = b
since ∆ is regular, K(b) = R− and g(b+) = g(b)≥ h(b) by Lemma 5.3. �

We define γh : [a,b]→ R by

γh(t) = (h(t)−g(t+))(g(t+)−g(t−)) , t ∈ [a,b] . (5.11)

Lemma 5.8. Let h be right-continuous at t ∈ J, t 6= a. Then γh(t) = 0 or

γh(t) = (h(t)−h(t−))(h(t−)−g(t−)) , g(t) = h(t−) . (5.12)

We also have γh(a) = 0.

Proof. Let γh(t) 6= 0. Then g(t+) 6= g(t−) and therefore t /∈ I0 by Lemma 5.1. Moreover,
h(t+)= h(t) 6= g(t+), so g(t) = g(t+) 6= h(t) by Lemma 5.4 if t 6= b; also, g(b) = g(b+) by def-
inition. In addition, g(t)−g(t−) = g(t+)−g(t−) 6= 0. Since g(t) = max{h(t),h(t−),g(t−)}
by Lemma 5.3, it follows that g(t) = h(t−). That γh(a) = 0 is a direct consequence of Lemma
5.4 applied with t = a. �
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Now we consider the behaviour of g on the whole interval [a,b].

Lemma 5.9. The function g is constant on every interval contained in I0.

Proof. By Lemma 5.1, g is constant on intervals IJ contained in I0∩ J. By Proposition 4.2, this
also applies if J is a minus interval. Concatenating such intervals yields the result for arbitrary
intervals contained in I0. �

Lemma 5.10. Let g be discontinuous at t ∈ (a,b). Then

g(t+) ∈ {h(t−),h(t),h(t+)} . (5.13)

If moreover h is continuous at t, then g(t) ∈ {g(t+),g(t−)}.

Proof. We have t /∈ I0 by Lemma 5.9 and, since ∆ is regular, t ∈ int(J) for some partition interval
of ∆. Let J be a plus interval for (u,z0). Then g(t+) = h(t+) or g(t+) = g(t) by Lemma 5.4;
in the latter case, g(t) 6= g(t−) and hence g(t) = h(t) or g(t) = h(t−) by Lemma 5.3. Thus
(5.13) holds. If h is continuous at t, then g(t) = max{h(t),g(t−)} by Lemma 5.3 and therefore
g(t) = g(t−) or g(t) = h(t); in the latter case, g(t+) = g(t) by Lemma 5.4.

If J is a minus interval for (u,z0), it is a plus interval for (−u,−z0) and

g(t) =−P ′
r,t([−u;−z0]; [−h,−y0])

by Proposition 4.2. Applying what we just have shown for plus intervals completes the proof.
�

We say that f : [a,b]→ R is a step function if the set of its values and the set of its dis-
continuity points are finite. (Thus, a step function is constant between successive discontinuity
points.)

Lemma 5.11. Let (u,z0) ∈C[a,b]×R, y0 ∈R, and let h : [a,b]→R be a step function. Then g
is a step function, and

var(g)≤ var(h)+ |y0| . (5.14)

Proof. In order to prove that g is a step function, it suffices to prove that g|J is a step function
for every partition interval J of ∆. If J is a plus interval for (u,z0), this follows immediately
from Lemma 5.5. If J is a minus interval for (u,z0), we pass to (−u,−z0) and (−h,−y0). Since
−h is a step function, in view of Proposition 4.2 the claim again follows from Lemma 5.5.

Let us now prove (5.14). Let t1 < · · ·< tN−1 be the discontinuity points of g in (a,b), and let
t0 = a and tN = b. (That is, N = 1 if g is constant on (a,b).) We have

var(g) = |g(a+)−g(a)|+
N

∑
k=1

(|g(tk+)−g(tk)|+ |g(tk)−g(tk−1+)|) . (5.15)

By
g0,g1,g2, . . . ,g2N ,g2N+1,

we denote the finite sequence g(a),g(a+),g(t1), . . . ,g(tN−1+),g(b). We define a partition 0 =
i0 < .. . iM = 2N +1 of 0, . . . ,2N +1 by

i j =

{
minB j , B j 6= /0 ,
2N +1 , B j = /0 ,

, B j := {i : i j−1 < i≤ 2N +1,gi j 6= gi j−1} .
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Thus, gi is constant on [i j−1, i j−1] resp. [i j−1,2N +1]. It follows from (5.15) that

var(g) =
M

∑
j=1
|gi j −gi j−1| . (5.16)

Since g is locally constant on I0, by definition of a regular partition, each point tk 6= b belongs
to the interior of some interval J of ∆. If J is a plus interval, by Lemmas 5.3 and 5.4 and by
(4.16), we have

gi j = h(tk+), if gi j corresponds to g(tk+),

gi j = h(tk) or gi j = h(tk−), if gi j corresponds to g(tk),

gi0 = h(a)−π
′
Z(z0;y0), and |π ′Z(z0;y0)| ≤ |y0|.

If Ji is a minus interval, the same is true due to (4.19). From (5.16), we conclude that var(g)≤
var(h)+ |y0|. �

Lemma 5.12. Let (u,z0) ∈C[a,b]×R, y0 ∈R, and let h : [a,b]→R be a right-continuous step
function. Then

∑
t∈[a,b]

|γh(t)| ≤ (var(h)+ |y0|) · max
t∈[a,b]

|h(t)−h(t−)| . (5.17)

Proof. Since g is a step function by Lemma 5.11, the set Γ = {γh 6= 0} is finite. Let t1 < · · ·< tN
be the elements of Γ. The assertions of Lemma 5.8 hold on minus intervals of ∆ as well as on
plus intervals, because g and h both change sign by passing over to (−u,−z0) and (−h,−y0).
Thus, t1 > a and

γh(tk) = (h(tk)−h(tk−))(h(tk−)−g(tk−)) , 1≤ k ≤ N , (5.18)

by Lemma 5.8. Since g(t1−) = g(a) = h(a)−π ′Z(z0;y0), we conclude from (4.16) that

|γh(t1)| ≤ |h(t1)−h(t1−)|(|h(t1−)−h(a)|+ |y0|) . (5.19)

For k > 1, we have g(tk−) = g(tk−1+). Since tk−1 ∈ Γ, we obtain from (5.18) and Lemma 5.10
that

γh(tk) = (h(tk)−h(tk−))(h(tk−)− h̃k−1) (5.20)
with h̃k−1 ∈ {h(tk−1+),h(tk−1),h(tk−1−)}. It follows that by setting h̃0 = h(a)

∑
t∈[a,b]

|γh(t)|= |y0| · |h(t1)−h(t1−)|+
N

∑
k=1
|h(tk−)− h̃k−1| · |h(tk)−h(tk−)|

≤ (var(h)+ |y0|) · max
t∈[a,b]

|h(t)−h(t−)| .

�

Lemma 5.13. Let (u,z0) ∈C[a,b]×R, (h,y0) ∈ G[a,b]×R. Then the following holds:
(i) We have (g(t+)−g(t−))v≤ 0 for all t ∈ [a,b] and all v ∈ K(t).
(ii) Let t ∈ [a,b] with h right-continuous at t. Then h(t)−g(t+) ∈ K(t).

Proof. On each interval J of ∆, we apply Lemma 5.6 and Lemma 5.7, either directly if J is a
plus interval for (u,z0), or after passing to (−u,−z0) and (−h,−y0) if J is a minus interval,
using Proposition 4.2 again. Note that the boundary points of J which are different from a and
b belong to A1. �
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We recall that g+,g− : [a,b]→ R denote the right and left limit g+(t) = g(t+) and g−(t) =
g(t−) of g.

Proposition 5.1. Let u∈C[a,b], h∈C[a,b]∩BV [a,b], z0,y0 ∈R. Then the pointwise directional
derivative g from (5.1) belongs to BVrl[a,b], satisfies var(g) ≤ var(h)+ |y0| as well as g(t) ∈
{g(t+),g(t−)} for all t ∈ [a,b], and solves the system

g(a) = h(a)−π
′
Z(z0;y0) , (5.21)

h(t)−g+(t) ∈ K(t) , for all t ∈ [a,b], (5.22)∫ b

a
(h(t)−g+(t)− v(t))dg(t)≥ 0 (5.23)

for all v ∈ G[a,b] with v(t) ∈ K(t) for all t ∈ [a,b].

Proof. Since h ∈ C[a,b]∩BV [a,b], there exist right-continuous step functions hn : [a,b]→ R
with hn → h uniformly and var(hn) ≤ var(h) for all n. We define gn : [a,b]→ R by gn(t) =
P ′

r,t([u;z0]; [hn,y0]). By Lemma 5.11, gn is a step function with var(gn) ≤ var(hn) + |y0| ≤
var(h)+ |y0|. By the Lipschitz estimate (4.20), gn → g uniformly and thus g ∈ BV [a,b] with
var(g)≤ var(h)+ |y0|. Moreover, g(t) ∈ {g(t+),g(t−)} for all t ∈ [a,b] by Lemma 5.10 since
we assume that h ∈C[a,b]. For all n, we have gn(a) = hn(a)−π ′Z(z0;y0), and hn(t)−gn(t+) ∈
K(t) for all t ∈ [a,b] due to Lemma 5.13(ii). Passing to the limit n→∞ yields (5.21) and (5.22).

In order to prove (5.23), let n be fixed and let t1 < · · ·< tN be the discontinuity points of gn in
(a,b) (set N = 0 if there are no such points) and set tN+1 = b. Let {s−1, . . . ,sN+1} be a partition
of [a,b] of the form

a = t0 = s−1 < s0 < t1 < s1 < · · ·< sN−1 < tN < sN < sN+1 = tN+1 = b .

Since gn is a step function, gn = gn(tk−) on [sk−1, tk) and gn = gn(tk+) on (tk+,sk] for 1≤ k≤N.
Let v ∈ G[a,b] with v(t) ∈ K(t) for all t ∈ [a,b]. Then, for every k ∈ {0, . . . ,N + 1}, we have
from (6.2) that ∫ sk

sk−1

(hn(t)−gn(t+)− v(t))dgn(t)

= (hn(tk)−gn(tk+)− v(tk))(gn(tk+)−gn(tk−)) .
(5.24)

Using Lemma 5.12, we obtain the estimate∫ b

a
(hn(t)−gn(t+))dgn(t) =

N+1

∑
k=0

(hn(tk)−gn(tk+))(gn(tk+)−gn(tk−))

=
N+1

∑
k=0

γhn(tk)≥−(var(hn)+ |y0|) · max
t∈[a,b]

|hn(t)−hn(t−)| . (5.25)

Moreover, var(gn) ≤ var(hn)+ |y0| ≤ var(h)+ |y0| by Lemma 5.11. Due to Proposition 6.3,
we may pass to the limit n→ ∞ on the left side of (5.25). Since var(hn) ≤ var(h) and h is
continuous, the right side of (5.25) converges to 0 as n→ ∞. Moreover,∫ b

a
−v(t)dgn(t) =

N+1

∑
k=1

(−v(tk))(gn(tk+)−gn(tk−))≥ 0
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by Lemma 5.13(i). It follows from Proposition 6.3 that∫ b

a
−v(t)dg(t)≥ 0.

Thus (5.23) holds and the proof is complete. �

From the variational integral over [a,b] in (5.23), we can obtain a variational integral over
[a,s] for all s ∈ (a,b) as required in Theorem 2.1.

Proposition 5.2. In the situation of Proposition 5.1, moreover∫ s

a
(h(t)−g+(t)− v(t))dg(t)≥ 0 (5.26)

holds for all s ∈ (a,b] and all v ∈ GK[a,s], where

GK[a,s] = {v : v ∈ G[a,s], v(t) ∈ K(t) for all t ∈ [a,s]} .

Proof. The proof is based on the choice of suitable test functions in (5.23). For s = b, there
is nothing left to prove. Let s ∈ (a,b) and v ∈ GK[a,s] be given. We have already proved in
Proposition 5.1 that g(s) = g−(s) or g(s) = g+(s). In the first case, we set

ṽ = vχ[a,s)+(h−g+)χ[s,b] .

Here and below, for A ⊂ [a,b] by χA we denote the characteristic function of A that is 1 on A
and 0 elsewhere.

By (5.22), ṽ is an admissible test function in (5.23). By (5.23) and since h− g+− ṽ = 0 on
[s,b], we have from Proposition 6.1 and (6.1) that

0≤
∫ b

a
(h−g+− ṽ)dg =

∫ s

a
(h−g+− ṽ)dg

=
∫ s

a
(h−g+− v)dg+

∫ s

a
(v− ṽ)χ{s} dg

=
∫ s

a
(h−g+− v)dg+(v(s)− ṽ(s))(g(s)−g(s−)) .

Thus (5.26) holds due to g(s) = g(s−). In the case g(s) = g(s+), we choose

ṽ = vχ[a,s]+(h−g+)χ(s,b] .

Again, ṽ is an admissible test function in (5.23). It follows from (5.23) that

0≤
∫ s

a
(h−g+− v)dg+

∫ b

s
(h−g+− ṽ)dg .

Using Proposition 6.1 and (6.1), we get∫ b

s
(h−g+− ṽ)dg =

∫ b

s
(h−g+− v)χ{s} dg = (h−g+− v)(s)(g(s+)−g(s)) = 0 .

Again, (5.26) holds and the proof is complete. �
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6. APPENDIX: RESULTS FROM INTEGRATION THEORY

For the definition and properties of the Kurzweil-Stieltjes integral of functions f ,g : [a,b]→
R, denoted by ∫ b

a
f dg or

∫ b

a
f (t)dg(t) ,

we refer to [10]. In particular, it is defined if f ∈ G[a,b] and g ∈ BV [a,b], see [10, Theorem
6.3.11]. The mappings f 7→

∫ b
a f dg and g 7→

∫ b
a f dg are linear.

We present some specific formulas and results which we use in the paper. The definitions
g(a−) = g(a) and g(b+) = g(b) always apply.

For f : [a,b]→ R, g ∈ G[a,b] and τ ∈ [a,b], we have∫ b

a
f χ{τ} dg = f (τ)

∫ b

a
χ{τ} dg = f (τ)(g(τ+)−g(τ−)) . (6.1)

If f ,g : [a,b]→ R, τ ∈ [a,b] and g is constant on [a,τ) as well as on (τ,b], then∫ b

a
f dg = f (τ)(g(τ+)−g(τ−)) . (6.2)

Both (6.1) and (6.2) follow from the formulas in Lemma 6.3.2 and Lemma 6.3.3 in [10].

Proposition 6.1. Let f ∈ G[a,b], g ∈ BV [a,b], a < s < b. Then∫ b

a
f dg =

∫ s

a
f dg+

∫ b

s
f dg . (6.3)

Proof. See Theorem 6.2.10 in [10]. �

Proposition 6.2. Let g ∈ BV [a,b]. Then∫ b

a
g+ dg =

1
2
(g(b)2−g(a)2)+

1
2 ∑

a≤t≤b
(g(t+)−g(t−))2 . (6.4)

Proof. This is a special case of Corollary 1.13 in [12]. It can also be derived from Proposition
6.4.2 and the second formula of Lemma 6.3.16 in [10]. �

Proposition 6.3. Let { fn} ⊂G[a,b], {gn} ⊂ BV [a,b] with supn var(gn)< ∞ and fn→ f as well
as gn→ g uniformly for n→ ∞. Then f ∈ G[a,b], g ∈ BV [a,b] and

lim
n→∞

∫ b

a
fn dgn =

∫ b

a
f dg . (6.5)

Proof. This is a special case of Theorem 6.8.8 in [10]. �
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[10] G.A. Monteiro, A. Slavı́k, M. Tvrdý, Kurzweil-Stieltjes Integral, World Scientific, Singapore 2015.
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