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CONVERGENCE OF AN ITERATIVE PROCESS GENERATED BY A REGULAR
VECTOR FIELD

ALEXANDER J. ZASLAVSKI

Department of Mathematics, The Technion – Israel Institute of Technology, 32000 Haifa, Israel

Abstract. Given a convex objective function on a Banach space which is Lipschitz on bounded sets and
satisfies a coercivity growth condition, we consider an iterative process generated by a regular vector
field, under the presence of computational errors. We show that if the computational errors are small
enough, then the values of the objective function become close to its infimum.
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1. INTRODUCTION

Given a Lipschitz convex and coercive objective function on a Banach space, we consider a
complete metric space of vector fields, which are self-mappings of the Banach space, with the
topology of uniform convergence on bounded subsets. With each such vector field, we associate
a certain iterative process. The class of regular vector fields was introduced in [1, 2], where it
was shown, using the generic approach and the porosity notion, that a typical vector field is
regular and that, for a regular vector field, the values of the objective function at the points
generated by some iterative process tend to its infimum. Taking into account computational
errors, we study in the present paper the behavior of the values of the objective function for an
iterative processes generated by a regular vector field and show that if the computational errors
are small enough, then the values of the objective functions become close to its infimum.

Assume that (X ,‖ · ‖) is a Banach space with norm ‖ · ‖, (X∗,‖ · ‖∗) is its dual space with
the norm ‖ · ‖∗, and f : X → R1 is a convex continuous function, which is bounded from below.
Recall that, for each pair of sets A,B⊂ X∗,

H(A,B) = max{sup
x∈A

inf
y∈B
‖x− y‖∗, sup

y∈B
inf
x∈A
‖x− y‖∗}

is the Hausdorff distance between A and B.
For each point x ∈ X , let

∂ f (x) = {l ∈ X∗ : f (y)− f (x)≥ l(y− x) for all y ∈ X}

be the subdifferential of f at x [3]. It is well known that the set ∂ f (x) is a nonempty and
bounded subset of (X∗,‖ · ‖∗).

E-mail address: ajzasl@technion.ac.il.
Received August 8, 2020; Accepted November 12, 2020.

c©2021 Journal of Applied and Numerical Optimization

231



232 A. J. ZASLAVSKI

Set
inf( f ) := inf{ f (x) : x ∈ X}.

Denote by A the set of all mappings V : X → X such that V is bounded on every bounded
subset of X (that is, for each K0 > 0, there is K1 > 0 such that ‖V (x)‖ ≤K1 if ‖x‖ ≤K0), and for
each x ∈ X and each l ∈ ∂ f (x), l(V (x))≤ 0. We denote by Ac the set of all continuous V ∈A ,
by Au the set of all V ∈A which are uniformly continuous on each bounded subset of X , and
by Aau the set of all V ∈A which are uniformly continuous on the subsets

{x ∈ X : ‖x‖ ≤ n and f (x)≥ inf( f )+1/n}

for each integer n≥ 1. Finally, let Aauc = Aau∩Ac.
Next we endow the set A with a metric ρ: For each V1,V2 ∈ A and each integer i ≥ 1, we

first set
ρi(V1,V2) := sup{‖V1(x)−V2(x)‖ : x ∈ X and ‖x‖ ≤ i}

and then define

ρ(V1,V2) :=
∞

∑
i=1

2−i[ρi(V1,V2)(1+ρi(V1,V2))
−1].

Clearly, (A ,ρ) is a complete metric space. It is also not difficult to see that the collection of
the sets

E(N,ε) = {(V1,V2) ∈A ×A : ‖V1(x)−V2(x)‖ ≤ ε, x ∈ X , ‖x‖ ≤ N},

where N,ε > 0, is a basis for the uniformity generated by the metric ρ . Evidently, Ac, Au, Aau
and Aauc are closed subsets of the metric space (A ,ρ). In the sequel, we assign to all these
spaces the same metric ρ .

In order to compute inf( f ), we associate in Section 2 with each vector field W ∈A a gradient-
like iterative process.

The study of minimization methods for convex functions is a central topic in optimization
theory. See, for example, [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15] and the references mentioned
therein. Note, in particular, that the counterexample studied in Section 2.2 of Chapter VIII of
[16] shows that, even for two-dimensional problems, the simplest choice for a descent direction,
namely, the normalized steepest descent direction,

V (x) = argmin{ max
l∈∂ f (x)

〈l,d〉 : ‖d‖= 1},

may produce sequences the functional values of which fail to converge to the infimum of f .
In infinite dimensional settings, the problem is even more difficult and less understood. More-

over, positive results usually require special assumptions on the space and on the functions.
However, in [1] (under certain assumptions on the function f ), for an arbitrary Banach space
X , it was established the existence of a set F , which is a countable intersection of open every-
where dense subsets of A such that, for any V ∈F , the values of f tend to its infimum for
some iterative process associated with V .

In [2], it was introduced the class of regular vector fields V ∈ A and it was shown (under
the two mild assumptions A(i) and A(ii) on f stated below) that the complement of the set of
regular vector fields is not only of the first category, but also σ -porous in each of the spaces
A , Ac, Au, Aau and Aauc. It was shown in [2] that, for any regular vector field V ∈ Aau, the
values of f tend to its infimum for some iterative process associated with V if, in addition to
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A(i) and A(ii), f also satisfies assumption A(iii). Note that the results of [2] are also presented
in Chapter 8 of the book [17], which contains many other generic and porosity results. For
more applications of the generic approach and the porosity notion in optimization theory, see
also [18].

These results established in any Banach space and the convex functions satisfying the follow-
ing two assumptions are also used in this paper.

A(i) There exists a norm-bounded set X0 ⊂ X such that

inf( f ) = inf{ f (x) : x ∈ X}= inf{ f (x) : x ∈ X0};
A(ii) for each r > 0, the function f is Lipschitz on the ball {x ∈ X : ‖x‖ ≤ r}.
We may assume that the set X0 in A(i) is closed and convex.
It is clear that assumption A(i) holds if lim‖x‖→∞ f (x) = ∞.
We say that a mapping V ∈A is regular if, for any natural number n, there exists a positive

number δ (n) such that, for each point x ∈ X satisfying

‖x‖ ≤ n and f (x)≥ inf( f )+1/n,

and each l ∈ ∂ f (x), we have
l(V (x))≤−δ (n).

In this connection, we refer to [19].
In the sequel, we also make use of the following assumption:
A(iii) for each integer n≥ 1, there exists δ > 0 such that for each x1,x2 ∈ X satisfying

‖x1‖,‖x2‖ ≤ n, f (xi)≥ inf( f )+1/n, i = 1,2, and ‖x1− x2‖ ≤ δ ,

the following inequality holds:

H(∂ f (x1),∂ f (x2))≤ 1/n.

This assumption is certainly satisfied if f is differentiable and its derivative is uniformly
continuous on those bounded subsets of X over which the infimum of f is larger than inf( f ).

2. THE MAIN RESULT

For each x ∈ X and each r > 0, set

B(x,r) = {y ∈ X : ‖x− y‖ ≤ r}.
Let W ∈A and let {ai}∞

i=0 ⊂ (0,1] be a sequence satisfying

lim
i→∞

ai = 0,
∞

∑
i=1

ai = ∞.

We associate with W the following iterative process. For each initial point x0 ∈ X , we construct
a sequence {xi}∞

i=0 ⊂ X according to the following rule:

xi+1 = xi +aiW (xi) if f (xi +aiW (xi))< f (xi),

xi+1 = xi otherwise,
where i = 0,1, . . . . This process and its convergence were studied in [1, 2]. In particular, in [2],
it was shown that if W is regular, then limn→∞ f (xn) = inf( f ). More precisely, it was shown
in [2] that if V ∈A is regular, ε > 0 and W ∈A belongs to a sufficiently small neighborhood
of V , then f (xn) ≤ inf( f )+ ε for all sufficiently large natural numbers n. Taking into account
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computational errors, in [20], it was studied the behavior of the values of the objective function
for this process generated by a regular vector field and it was shown that if the computational
errors are small enough, then the values of the objective functions become close to its infimum.

Let W ∈A and let {ai}∞
i=0 ⊂ (0,1] be a sequence satisfying

lim
i→∞

ai = 0,
∞

∑
i=1

ai = ∞. (2.1)

In this paper, we associate with W the following iterative process. For each initial point
x0 ∈ X , we construct a sequence {xi}∞

i=0 ⊂ X according to the following rule:

xi+1 = xi +aiW (xi),

where i = 0,1, . . . . This process is simpler than the process considered in [1, 2, 20] but its
iterates do not satisfy the inequality

g(xi+1)≤ g(xi), i = 0,1,2 . . . .

This makes the analysis of its convergence more difficult. Here, we study its convergence taking
into account computational errors.

Let x ∈ X , δ ≥ 0 and i≥ 0 be an integer. Define

QW,δ ,i(x) = {y ∈ X : there exists z ∈ B(W (x),δ ) such that y = x+aiz}. (2.2)

In Section 4, we prove the following result.

Theorem 2.1. Assume that f (x)→ ∞ as ‖x‖→ ∞, the sequence {ai}∞
i=0 ⊂ (0,1] satisfies (2.1),

the vector field V ∈A is regular, assumption A(ii) is valid and that at least one of the following
conditions holds: 1. V ∈Aau; 2. A(iii) is valid.

Let K,ε > 0 be given. Then, there exists δ > 0 such that, for each sequence {xi}∞
i=0 ⊂ X

which satisfies
liminf

i→∞
‖xi‖< K (2.3)

and
xi+1 ∈ QV,δ ,i(xi) (2.4)

for each i = 0,1, . . . , the inequality f (xi) ≤ inf( f )+ ε holds for all sufficiently large natural
numbers i.

This theorem is an extension of an analogous result of [21] obtained under the assumption
that the sequence {xi}∞

i=0 is bounded.
Section 3 contains an auxiliary result.

3. AN AUXILIARY RESULT

In the proof of Theorem 2.1, we use the following lemma, which was proved in [22].

Lemma 3.1. Assume that W ∈A is regular, A(i) and A(ii) are valid and that at least one of the
following conditions holds: 1. W ∈Aau; 2. A(iii) is valid.

Let K̄ and ε̄ be positive. Then there exist positive numbers ᾱ,γ and δ such that for each point
x ∈ X satisfying

‖x‖ ≤ K̄, f (x)≥ inf( f )+ ε̄,
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each number β ∈ (0, ᾱ], and each point y ∈ B(W (x),δ ), we have

f (x)− f (x+βy)≥ βγ.

4. PROOF OF THEOREM 2.1

We may assume without loss of generality that ε < 1, K > 2 and that

{x ∈ X : f (x)≤ inf( f )+4} ⊂ B(0,K−2). (4.1)

Let
K0 > sup{ f (x) : x ∈ B(0,K +1)}. (4.2)

Set
E0 := {x ∈ X : f (x)≤ K0 +1}. (4.3)

Clearly, the set E0 is bounded and closed. Choose

K1 > max{sup{‖x‖ : x ∈ E0}+1+K, sup{‖V (x)‖ : x ∈ E0}+1}. (4.4)

There exists L0 ≥ 1 such that

‖ f (z1)− f (z2)| ≤ L0‖z1− z2‖ for all z1,z2 ∈ B(0,K +2). (4.5)

Lemma 3.1 implies that there exist positive numbers ᾱ,δ ∈ (0,1) and γ > 0 such that the
following property holds:

(a) for each point x ∈ X satisfying

‖x‖ ≤ K1, f (x)≥ inf( f )+ ε/4,

each number β ∈ (0, ᾱ] and each point y ∈ B(V (x),δ ), we have

f (x)− f (x+βy)≥ βγ.

Assume that {xi}∞
i=0 ⊂ X satisfies (2.3) and (2.4) for all integers i≥ 0. In view of (2.1), there

exists a natural number N1 such that

ai < (4L0K1)
−1

ᾱε for all integers i≥ N1. (4.6)

By (2.3), there exists an integer N2 > N1 +2 such that

‖xN2‖< K. (4.7)

In view of (2.1), there exists a natural number N0 > N2 +2 such that
N0−1

∑
i=N2+1

ai > γ
−1(K0− inf( f )). (4.8)

In order to complete the proof of the theorem, it is sufficient to show that f (xi)≤ inf( f )+ε for
all integers i≥ N0.

First, we show that there exists an integer j ∈ [N2,N0] such that

f (x j)≤ inf( f )+ ε/4.

Assume the contrary. It follows that

f (xi)> inf( f )+ ε/4, i = N2, . . . ,N0. (4.9)

Assume that
i ∈ {N2, . . . ,N0}, ‖xi‖ ≤ K1. (4.10)
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From (2.2) and (2.4), we find that there exists

yi ∈ B(V (xi),δ ) (4.11)

such that
xi+1 = xi +aiyi. (4.12)

It follows from property (a), (4.6) and (4.9)-(4.12) that

f (xi)− f (xi+1) = f (xi)− f (xi +aiyi)≥ aiγ.

Thus, we obtain that the following property holds:
(b) If

i ∈ {N2, . . . ,N0}, ‖xi‖ ≤ K1,

then
f (xi)− f (xi+1)≥ aiγ.

We show that
‖xi‖ ≤ K1, i = N2, . . . ,N0.

Assume the contrary. In view of (4.4) and (4.7), we find that there exists an integer

p ∈ (N2,N0]

such that
‖xp‖> K1, (4.13)

‖xi‖ ≤ K1, i = N2, . . . , p−1. (4.14)
Property (b) and (4.14) imply that, for each i ∈ {N2, . . . , p−1},

f (xi+1)≤ f (xi)−aiγ ≤ f (xi). (4.15)

In view of (4.3), (4.7) and (4.15), we have, for all i = N2, . . . , p,

f (xi)≤ f (xN2)≤ K0,

f (xp)≤ K0,

which together with (4.3) and (4.4) implies that

‖xp‖ ≤ K1.

This contradicts (4.13). The contradiction we have reached proves that

‖xi‖ ≤ K1, i = N2, . . . ,N0. (4.16)

Property (b) and (4.16) imply that, for all i = N2, . . . ,N0−1,

f (xi)− f (xi+1)≥ aiγ.

Using (4.2) and (4.7) yields that

K0− inf( f )≥ f (xN2)− f (xN0)

=
N0−1

∑
i=N2

( f (xi)− f (xi+1))

≥ γ

N0−1

∑
i=N2

ai,
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and
N0−1

∑
i=N2

ai ≤ γ
−1(K0− inf( f )).

This contradicts (4.8). The contradiction we have reached proves that there exists

j ∈ {N2, . . . ,N0} (4.17)

such that
f (x j)≤ inf( f )+ ε/4. (4.18)

We show that, for all integers i≥ j,

f (xi)≤ inf( f )+ ε.

Assume the contrary. Then there is an integer k > j for which

f (xk)> inf( f )+ ε. (4.19)

We may assume without loss of generality that

f (xi)≤ inf( f )+ ε for all i = j, . . . ,k−1. (4.20)

From (4.1) and (4.20), we have
‖xk−1‖ ≤ K−2. (4.21)

There are two cases:
f (xk−1)> inf( f )+ ε/4; (4.22)

f (xk−1)≤ inf( f )+ ε/4. (4.23)
From (2.2) and (2.4), we find that there is

yk−1 ∈ B(V (xk−1),δ ) (4.24)

such that
xk = xk−1 +ak−1yk−1. (4.25)

Assume that (4.22) is valid. It follows from property (a), (4.4), (4.6), (4.17), (4.20)-(4.22),
(4.24) and (4.25) that

inf( f )+ ε ≥ f (xk−1)≥ f (xk).

This contradicts (4.19). The contradiction we have reached proves that (4.23) is true. In view
of (4.1) and (4.23), we have

‖xk−1‖ ≤ K−2. (4.26)
By (4.2)-(4.4) and (4.24)-(4.26), we have

‖xk−1− xk‖= ak−1‖yk−1‖ ≤ ak−1K1. (4.27)

In view of (4.6), (4.17), (4.26) and (4.27), we have

‖xk‖ ≤ K−1. (4.28)

It follows from (4.5), (4.6), (4.17), (4.23), (4.26)-(4.28) that
f (xk)≤ f (xk−1)+ | f (xk−1)− f (xk)| ≤ inf( f )+ ε/4+L0‖xk−1− xk‖

≤ inf( f )+ ε/4+L0ak−1K1

≤ inf( f )+ ε/2.
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This contradicts (4.19). The contradiction we have reached proves that

f (xi)≤ inf( f )+ ε

for all integers i≥ j. This completes the proof of Theorem 2.1.

REFERENCES

[1] S. Reich, A. J. Zaslavski, Generic convergence of descent methods in Banach spaces, Math. Oper. Res. 25
(2000), 231-242.

[2] S. Reich, A. J. Zaslavski, The set of divergent descent methods in a Banach space is σ -porous, SIAM J.
Optim. 11 (2001), 1003-1018.

[3] B. S. Mordukhovich, Variational Analysis and Generalized Differentiation. I: Basic theory, Springer, Berlin,
2006.
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