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CONVERGENCE OF RELAXED INERTIAL METHODS FOR EQUILIBRIUM
PROBLEMS
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Abstract. In this paper, we first introduce a relaxed inertial algorithm for solving a pseudomonotone
equilibrium problem with a Lipschitz-type condition in a Hilbert space. The algorithm is constructed
around the proximal-like mapping and the inertial technique. The weak convergence of the algorithm is
proved under some mild conditions. We also present a modified version of the first algorithm which can
be implemented more easily without the prior knowledge of the Lipschitz-type constant of bifunction.
Finally, several experiments are performed to illustrate the numerical behavior of the new algorithms,
and also to show their computational efficiency over others.
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1. INTRODUCTION

The equilibrium problem (EP) [1, 2], which is well known as the Ky Fan inequality, were
early studied in [3]. This problem unifies in a simple form various problems, which arise in
economics, optimization and operators research. More precisely, in this general formulation,
the equilibrium problem includes an important class of variational inequalities as well as the
classes of complementarity problems, convex optimisation, saddle point problems, fixed point
problems and famous Nash equilibria problem. In recent years, the equilibrium problem has
been intensively and widely investigated both in theoretically and algorithmically. Many nu-
merical methods have been proposed for approximating solutions of this problem; see, e.g.,
[4]-[16] and the references therein.

One of the most popular methods for solving the equilibrium problem is the proximal point
method (PPM). This method was first introduced by Martinet [17] for monotone variational in-
equality problems. Later, it was extended by Rockafellar [18] to monotone operators. Moudafi
[14] and Konnov [19] further extended the PPM to the equilibrium problem with monotone and
weakly monotone bifunctions, respectively. The PPM is constructed around the resolvent of
a bifunction. Based on this method, many works have been devoted to presenting numerical
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approaches for finding an approximation solution of the equilibrium problem in various ways
with different types of conditions.

In this paper, we are first interested in a method of inertial-type. This method originates from
heavy ball method (an implicit discretization) of the second-order dynamical systems in time
[20, 21, 22]. The main feature of which is that the construction of the next iterate is based
on at least the previous two iterates. Recently, inertial-type algorithms have been applied to
numerous kinds of problems; see, e.g., [23, 24, 25, 26, 27, 28, 29, 30, 31, 32]. In this direction,
by using the resolvent of a bifunction, Moudafi [33] proposed a new inertial method, so-called
the second-order differential proximal method, which combines the (relaxed) original PPM with
inertial effect. Under certain suitable conditions, Moudafi established the weak convergence
of the algorithm. Recently, Chbani and Riahi [34] developed the relaxed inertial proximal
point methods in incorporating with the Mann iteration or the Halpern iteration and obtained
associated convergence results. Several other recent methods in this direction can be found in
[35, 36].

We next focus on the method which is based on the auxiliary problem principle, namely, the
proximal-like algorithm [4]. This method requires at each iteration to compute two-proximal
mappings which is equivalent to solve two strongly convex optimization programs. The proximal-
like algorithm [4] is also called the extragradient method [15] due to the early obtained results in
[37] on saddle point problems. The extragradient method was investigated and further extended
the convergence in [15] under the hypotheses of the pseudomonotonicity and the Lipschitz-type
condition of bifunctions. In recent years, the extragradient method has received a lot of attention
due to its importance in numerical computations. We remark here that the extragradient meth-
ods seem to be easier to solve numerically by optimization tools than the PPM [5, 6, 7, 8, 16]. A
reason to explain this remark may be due to the fact that it is not easy to compute the resolvent
of a bifunction.

In this paper, motivated and inspired by the results in [33, 34, 35, 36, 38], we first intro-
duce a new algorithm with inertial form for solving a pseudomonotone equilibrium problem
with a Lipschitz-type condition in a Hilbert space. The algorithm uses a relaxed version of
the extragradient method to incorporate with inertial terms. The chosen stepsizes in the first
algorithm depend on the Lipschitz-type constants of bifunctions. The theorem of convergence
is established under certain mild conditions. In the inverse case when the information of the
Lipschitz-type constants of bifunctions is unknown, we propose the second algorithm which
can be performed more easily. The stepsizes in the second algorithm are updated at each itera-
tion by a cheap computation based on the previous iterates. In order to show the efficiency of
the new algorithms, several numerical experiments in comparison with others are also imple-
mented.

The remainder of this paper is organized as follows: Section 2 recalls some definitions and
preliminary results used in the paper. Sections 3 and 4 deal with the description of the algo-
rithms and the analysis of their convergence. Finally, in Section 5, we perform several exper-
iments to show the numerical behavior of the new algorithms and also to compare them with
others.
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2. PRELIMINARIES

Let H be a real Hilbert space and let C be a nonempty closed convex subset of H. Let f be
a bifunction from H×H to the set of real numbers ℜ such that f (x,x) = 0 for all x ∈C. The
equilibrium problem (EP) for the bifunction f on C is to find x∗ ∈C such that

f (x∗,y)≥ 0, ∀y ∈C. (EP)

Let us denote by EP( f ,C) the solution set of problem (EP). It was well known that solution
methods are often relative to some concepts of the monotonicity of a bifunction. Recall that a
bifunction f : H×H→ℜ is said to be:

(i) strongly monotone on C if there exists a constant γ > 0 such that

f (x,y)+ f (y,x)≤−γ||x− y||2, ∀x,y ∈C;

(ii) monotone on C if
f (x,y)+ f (y,x)≤ 0, ∀x,y ∈C;

(iii) pseudomonotone on C if

f (x,y)≥ 0 =⇒ f (y,x)≤ 0, ∀x,y ∈C;

(iv) strongly pseudomonotone on C if there exists a constant γ > 0 such that

f (x,y)≥ 0 =⇒ f (y,x)≤−γ||x− y||2, ∀x,y ∈C.

From the aforementioned definitions, it is easy to see that

(i) =⇒ (ii) =⇒ (iii) and (i) =⇒ (iv) =⇒ (iii).

A bifunction f is said to satisfy Lipschitz-type condition on C if there exist two positive con-
stants c1 and c2 such that

f (x,y)+ f (y,z)≥ f (x,z)− c1||x− y||2− c2||y− z||2, ∀x,y,z ∈C.

If A : C→ H is a L-Lipschitz continuous operator, the bifunction f (x,y) = 〈Ax,y− x〉 satisfies
the Lipschitz-type condition with c1 = c2 = L/2. Dealing with the analysis of the convergence
of the proposed algorithms, we consider the following conditions imposed on a bifunction f :
H×H→ℜ:

(A1) f is pseudomonotone on C and f (x,x) = 0 for all x ∈C;

(A2) f satisfies Lipschitz-type condition on H with some constants c1,c2;

(A3) f (x, .) is convex and lower semicontinuos on C for every fixed x ∈ H;

(A4) limsupn→∞ f (xn,y)≤ f (x,y) for each sequence {xn} ⊂C converging weakly to x;

(A5) EP( f ,C) is nonempty;

It is easy to show that under assumptions (A1) and (A3), the solution set EP( f ,C) is closed
and convex. Recall that the proximal mapping of a proper, convex and lower semicontinuous
function g : C→ℜ with a parameter λ > 0 is defined by

proxλg(x) = argmin
{

λg(y)+
1
2
||x− y||2 : y ∈C

}
, x ∈ H.

The following is a property of the proximal mapping.
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Lemma 2.1. [39] For each x ∈ H and λ > 0,

λ
{

g(y)−g(proxλg(x))
}
≥
〈
x−proxλg(x),y−proxλg(x)

〉
,∀ y ∈C.

We need the following technical lemmas.

Lemma 2.2. [39] For all x,y ∈ H and α ∈ℜ, the following equality holds,

||αx+(1−α)y||2 = α||x||2 +(1−α)||y||2−α(1−α)||x− y||2.
Lemma 2.3. [21] Let {Φn}, {∆n} and {θn} be sequences in [0,+∞) such that

Φn+1 ≤Φn +θn(Φn−Φn−1)+∆n, ∀n≥ 1,
+∞

∑
n=1

∆n <+∞,

and there exists a real number θ with 0≤ θn≤ θ < 1 for all n≥ 0. Then the following assertions
hold:

(i) ∑
+∞

n=1[Φn−Φn−1]+ <+∞, where [t]+ := max{t,0};

(ii) There exists Φ∗ ∈ [0,+∞) such that limn→+∞ Φn = Φ∗.

Lemma 2.4. [39, Lemma 2.39] Let C be a nonempty set of H and {xn} be a sequence in H such
that the following two conditions hold:

(i) for every x ∈C, limn→∞ ‖xn− x‖ exists;

(ii) every sequentially weak cluster point of {xn} is in C.

Then {xn} converges weakly to a point in C.

3. RELAXED INERTIAL EXTRAGRADIENT METHOD

In this section, we present a new relaxed inertial algorithm for solving problem (EP) in a
Hilbert space. The algorithm can be considered as a combination between a relaxed version
of the extragradient method and the inertial technique. Precisely, the algorithm is described as
follows:

Algorithm 1. [Relaxed Inertial Extragradient Method for EPs]

Initialization: Choose x0, x1 ∈ H and three control parameter sequences {λn} ⊂ (0,+∞),
{αn} ⊂ (0,+∞) and {θn} ⊂ [0,+∞).

Iterative steps: Assume that xn−1, xn ∈ H are known. Calculate xn+1 as follows:
Step 1. Compute wn = xn +θn(xn− xn−1) and

yn = proxλn f (wn,.)(wn).

Step 2. Compute
xn+1 = (1−αn)wn +αnproxλn f (yn,.)(wn).

Set n := n+1 and go back Step 1.

Stopping criterion: If yn = wn then stop and yn is a solution of problem (EP).
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Remark 3.1. In the case where problem (EP) is a variational inequality problem, i.e., f (x,y) =
〈Ax,y− x〉, where A : H→H is an operator, then Algorithm 1 becomes the following algorithm

wn = xn +θn(xn− xn−1),

yn = PC(wn−λnAwn),

xn+1 = (1−αn)wn +αnPC(wn−λnAyn).

(3.1)

If θn = 0, then wn = xn and (3.1) reduces to the algorithm{
yn = PC(xn−λnAxn),

xn+1 = (1−αn)xn +αnPC(xn−λnAyn),

which is a relaxed version of the extragradient method in [37].

In order to establish the convergence of Algorithm 1, we assume that conditions (A1)-(A5)
hold, and that three parameter sequences {λn}, {αn}, {θn} satisfy the following conditions:

(B1) 0 < λ∗ ≤ λn ≤ λ ∗ < min
{

1
2c1

, 1
2c2

}
;

(B2) 0 < α∗ ≤ αn ≤ α∗ ≤ 1
2 +

1
4 min{1−2c1λ ∗,1−2c2λ ∗};

(B3) 0≤ θn ≤ θ < ε

2ε+1 and {θn} is non-decreasing, where

ε :=
0.5min{1−2c1λ ∗,1−2c2λ ∗}+1−α∗

α∗
.

Remark 3.2. From (B2), we have 2α∗ ≤ 1+0.5min{1−2c1λ ∗,1−2c2λ ∗}. Thus

0.5min{1−2c1λ
∗,1−2c2λ

∗}+1−α
∗ ≥ α

∗.

This implies ε ≥ 1.

We begin with the following lemma.

Lemma 3.1. Under assumptions (A1)-(A3), (A5) and (B1)-(B3), the following estimate holds
for all n≥ 0 and x∗ ∈ EP( f ,C),

||xn+1− x∗||2 ≤ ||wn− x∗||2− κn +1−αn

αn
||xn+1−wn||2,

where κn = 0.5min{1−2λnc1,1−2λnc2}.

Proof. Set zn = proxλn f (yn,.)(wn). Thus, from Lemma 2.1, we obtain

λn( f (yn,y)− f (yn,zn))≥ 〈wn− zn,y− zn〉 , ∀y ∈C. (3.2)

Similarly, by the definition of yn and Lemma 2.1, we get

λn( f (wn,y)− f (wn,yn))≥ 〈wn− yn,y− yn〉 , ∀y ∈C. (3.3)

Substituting y = zn into relation (3.3), we obtain

λn( f (wn,zn)− f (wn,yn))≥ 〈wn− yn,zn− yn〉 . (3.4)

Now, since x∗ ∈ EP( f ,C), we have f (x∗,yn) ≥ 0. Thus, from hypothesis (A1), we obtain
f (yn,x∗)≤ 0. Next, substituting y = x∗ ∈ EP( f ,C)⊂C into relation (3.2) and using f (yn,x∗)≤
0, we see that

−λn f (yn,zn)≥ 〈wn− zn,x∗− zn〉 .
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Thus 〈wn− zn,zn− x∗〉 ≥ λn f (yn,zn), which together with the Lipschitz-type condition of f ,
implies that

〈wn− zn,zn− x∗〉 ≥ λn
{

f (wn,zn)− f (wn,yn)− c1||wn− yn||2− c2||yn− zn||2
}
.

Combining the last inequality with relation (3.4), we obtain

〈wn− zn,zn− x∗〉 ≥ 〈wn− yn,zn− yn〉− c1λn||wn− yn||2− c2λn||yn− zn||2. (3.5)

We have the following facts:

2〈wn− zn,zn− x∗〉= ||wn− x∗||2−||wn− zn||2−||zn− x∗||2,
2〈wn− yn,zn− yn〉= ||wn− yn||2 + ||zn− yn||2−||wn− zn||2.

Multiplying both two sides of inequality (3.5) by 2, after that, using the two last equalities, we
obtain

||zn− x∗||2 ≤ ||wn− x∗||2− (1−2λnc1)||yn−wn||2− (1−2λnc2)||zn− yn||2. (3.6)

Thus, from the definition of κn, we get

||zn− x∗||2 ≤ ||wn− x∗||2−2κn
(
||yn−wn||2 + ||zn− yn||2

)
≤ ||wn− x∗||2−κn (||yn−wn||+ ||zn− yn||)2

≤ ||wn− x∗||2−κn||zn−wn||2. (3.7)

Note that, from the definitions of xn+1 and zn, one has xn+1 = (1−αn)wn +αnzn. Moreover,
two hypotheses (B1) and (B2) imply that αn ∈ (0,1). Thus, it follows from Lemma 2.2 and
relation (3.7) that

||xn+1− x∗||2 = ||(1−αn)(wn− x∗)+αn(zn− x∗)||2

= (1−αn)||wn− x∗||2 +αn||zn− x∗||2−αn(1−αn)||zn−wn||2

≤ ||wn− x∗||2−αn(κn +1−αn)||zn−wn||2,
which, together with the fact ||zn−wn||= 1

αn
||xn+1−wn||, implies that

||xn+1− x∗||2 ≤ ||wn− x∗||2− κn +1−αn

αn
||xn+1−wn||2. (3.8)

This completes the proof of Lemma 3.1. �

Now, we set

ϕn := ||xn− x∗||2−θn||xn−1− x∗||2 +θn(1+ ε)||xn− xn−1||2,
where ε is defined in hypothesis (B3). Let K := ε− (2ε +1)θ . From (B3), we see that K > 0.
We have the following lemma.

Lemma 3.2. Under assumptions as in Lemma 3.1, the following estimate holds, for all n≥ 1,

ϕn+1−ϕn ≤−K||xn+1− xn||2.

Proof. It follows from (B1)-(B2) and the definition of κn that
κn +1−αn

αn
=

0.5min{1−2λnc1,1−2λnc2}+1−αn

αn

≥ 0.5min{1−2λ ∗c1,1−2λ ∗c2}+1−α∗

α∗
= ε.
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Thus, from Lemma 3.1, we obtain

||xn+1− x∗||2 ≤ ||wn− x∗||2− ε||xn+1−wn||2. (3.9)

By the definition of wn and Lemma 2.2, we have

||wn− x∗||2 = ||xn +θn(xn− xn−1)− x∗||2

= ||(1+θn)(xn− x∗)+(−θn)(xn−1− x∗)||2

= (1+θn)||xn− x∗||2−θn||xn−1− x∗||2 +θn(1+θn)||xn− xn−1||2. (3.10)

Moreover, it also follows from the definition of wn and the Cauchy-Schwarz inequality that

||xn+1−wn||2 = ||xn+1− xn−θn(xn− xn−1)||2

= ||xn+1− xn||2 +θ
2
n ||xn− xn−1||2−2θn 〈xn+1− xn,xn− xn−1〉

≥ ||xn+1− xn||2 +θ
2
n ||xn− xn−1||2−2θn||xn+1− xn||||xn− xn−1||

≥ ||xn+1− xn||2 +θ
2
n ||xn− xn−1||2−θn

[
||xn+1− xn||2 + ||xn− xn−1||2

]
= (1−θn)||xn+1− xn||2 +(θ 2

n −θn)||xn− xn−1||2. (3.11)

From relations (3.9) - (3.11), we have

||xn+1− x∗||2 ≤ (1+θn)||xn− x∗||2−θn||xn−1− x∗||2− ε(1−θn)||xn+1− xn||2

−ε(θ 2
n −θn)||xn− xn−1||2 +θn(1+θn)||xn− xn−1||2

≤ (1+θn)||xn− x∗||2−θn||xn−1− x∗||2− ε(1−θn)||xn+1− xn||2

+θn(1+ ε−θn(ε−1))||xn− xn−1||2

≤ (1+θn)||xn− x∗||2−θn||xn−1− x∗||2− ε(1−θn)||xn+1− xn||2

+θn(1+ ε)||xn− xn−1||2, (3.12)

in which the last inequality follows from the fact that ε ≥ 1 and θn ≥ 0. Now, it follows from
the definition of ϕn, the non-decreasing property of {θn}, and relation (3.12) that

ϕn+1−ϕn = ||xn+1− x∗||2− (1+θn+1)||xn− x∗||2 +θn+1(1+ ε)||xn+1− xn||2

+θn||xn−1− x∗||2−θn(1+ ε)||xn− xn−1||2

≤ ||xn+1− x∗||2− (1+θn)||xn− x∗||2 +θn||xn−1− x∗||2

−θn(1+ ε)||xn− xn−1||2 +θn+1(1+ ε)||xn+1− xn||2

≤ −ε(1−θn)||xn+1− xn||2 +θn+1(1+ ε)||xn+1− xn||2

= − [ε(1−θn)−θn+1(1+ ε)] ||xn+1− xn||2

≤ − [ε(1−θ)−θ(1+ ε)] ||xn+1− xn||2 (due to 0≤ θn,θn+1 ≤ θ)

= − [ε− (2ε +1)θ ] ||xn+1− xn||2 =−K||xn+1− xn||2.
Lemma 3.2 is proved. �

Lemma 3.3. Under assumptions as in Lemma 3.1, the following assertions hold:

(i) ∑
∞
n=1 ||xn+1− xn||2 <+∞;

(ii) limn→∞ ||xn− yn||= limn→∞ ||zn−wn||= limn→∞ ||yn−wn||= limn→∞ ||yn− zn||= 0;

(iii) limn→∞ ||xn− x∗||2 ∈ℜ for each x∗ ∈ EP( f ,C) and {xn}, {yn}, {zn}, {wn} are bounded.



222 D.V. HIEU, H.N. DUONG, B.H. THAI

Proof. (i) It follows from Lemma 3.2 that ϕn is a non-increasing. Thus, from the definition of
ϕn, we have

||xn− x∗||2 ≤ θn||xn−1− x∗||2 +ϕn ≤ θn||xn−1− x∗||2 +ϕ1.

Thus, from hypothesis (B3), we get

||xn− x∗||2 ≤ θ ||xn−1− x∗||2 +ϕ1.

This implies that

||xn−x∗||2 ≤ θ
n||x0−x∗||2+ϕ1

(
θ

n−1 +θ
n−2 + . . .+θ +1

)
≤ θ

n||x0−x∗||2+ ϕ1

1−θ
. (3.13)

Moreover,

ϕn+1 = ||xn+1− x∗||2−θn+1||xn− x∗||2 +θn+1(1+ ε)||xn+1− xn||2 ≥−θn+1||xn− x∗||2.

This together with (3.13) implies that

−ϕn+1 ≤ θn+1||xn− x∗||2 ≤ θ ||xn− x∗||2 ≤ θ
n+1||x0− x∗||2 + θϕ1

1−θ
. (3.14)

It follows from Lemma 3.2 that

K||xn+1− xn||2 ≤ ϕn−ϕn+1

for all n ≥ 1. Let a fixed N ≥ 1. Applying the last inequality for n = 1,2, . . . ,N and summing
up those inequalities, we obtain

K
N

∑
n=1
||xn+1− xn||2 ≤ ϕ1−ϕN+1.

Combining this with relation (3.14), we obtain

K
N

∑
n=1
||xn+1− xn||2 ≤ ϕ1 +θ

N+1||x0− x∗||2 + θϕ1

1−θ
≤ θ

N+1||x0− x∗||2 + ϕ1

1−θ
.

From (B3), we obtain θ ≤ ε

2ε+1 < 1. Thus, passing to the limit in the last inequality as N→ ∞

and noting that K > 0, we get
∞

∑
n=1
||xn+1− xn||2 ≤

ϕ1

1−θ
< ∞. (3.15)

(ii) It follows from relation (3.15) that ||xn+1− xn|| → 0. Hence

||xn+1−wn||= ||xn+1− xn +θn||xn− xn−1|| ≤ ||xn+1− xn||+θn||xn− xn−1|| → 0.

It is obvious that ||xn−wn|| ≤ ||xn− xn+1||+ ||xn+1−wn|| → 0. Moreover, from the defition of
xn+1, we also have

||zn−wn||=
1

αn
||xn+1−wn|| → 0

because αn ≥ α∗ > 0. It follows from (3.12) that

||xn+1− x∗||2 ≤ (1+θn)||xn− x∗||2−θn||xn−1− x∗||2 +θn(1+ ε)||xn− xn−1||2.

Thus, by setting Φn = ||xn− x∗||2 and ∆n = θn(1+ ε)||xn− xn−1||2, we obtain

Φn+1 ≤Φn +θn(Φn−Φn−1)+∆n ∀n≥ 1. (3.16)
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It follows from 0≤ θn ≤ θ ≤ ε

2ε+1 < 1, the definition of ∆n and relation (3.15) that ∑
+∞

n=1 ∆n <
+∞. Thus, Lemma 2.3 and relation (3.16) ensure that the limit of {Φn} exists, i.e., limn→∞ ||xn−
x∗||2 = Φ∗ ∈ℜ. We also have limn→∞ ||wn− x∗||2 = limn→∞ ||zn− x∗||2 = Φ∗ because of ||xn−
wn|| → 0 and ||zn−wn|| → 0. Thus, it follows from relation (3.6) that

(1−2λnc1)||yn−wn||2 +(1−2λnc2)||zn− yn||2 ≤ ||wn− x∗||2−||zn− x∗||2→ 0. (3.17)

This together with hypothesis (B1) implies that

||yn−wn|| → 0, ||zn− yn|| → 0. (3.18)

Thus, we also have ||xn− yn|| → 0 due to ||xn−wn|| → 0.

(iii) Since limn→∞ ||xn− x∗||2 = Φ∗, we easily see that {xn} is bounded. Therefore {yn}, {zn}
and {wn} are also bounded. �

Lemma 3.4. Under assumptions (A1)-(A5) and (B1)-(B3), every weakly cluster point of {xn}
belongs to EP( f ,C).

Proof. From relation (3.2), we have

λn f (yn,y)≥ λn f (yn,zn))+ 〈wn− zn,y− zn〉 , ∀y ∈C. (3.19)

It follows from the Lipschitz-type condition of f that

f (yn,zn)≥ f (wn,zn)− f (wn,yn)− c1||wn− yn||2− c2||yn− zn||2.

Multiplying both two sides of this inequality by λn > 0, after that, combining the obtained
inequality with relation (3.4), we get

λn f (yn,zn)≥ 〈wn− yn,zn− yn〉− c1λn||wn− yn||2− c2λn||yn− zn||2,

which, together with relation (3.19), implies that

λn f (yn,y) ≥ 〈wn− yn,zn− yn〉+ 〈wn− zn,y− zn〉
−c1λn||wn− yn||2− c2λn||yn− zn||2 (3.20)

for all y∈C and n≥ 0. Thus, passing to the limit in (3.20) as n→∞, and using Lemma 3.3(ii-iii)
and (B1), we obtain

lim
n→∞

f (yn,y)≥ 0, ∀y ∈C. (3.21)

Note that, from Lemma 3.3(iii), {xn} is bounded. Now, assume that p is some weakly cluster
point of {xn}, i.e., there exists a subsequence {xm} of {xn} converging weakly to p. From
||xm− ym|| → 0, we also obtain ym ⇀ p. Since C is closed and convex in H, we have that C is
weakly closed. Thus, from {ym} ⊂C, we obtain p ∈C. It follows from (A5) and relation (3.21)
that

f (p,y)≥ lim
m→∞

sup f (ym,y)≥ 0, ∀y ∈C.

This means that p ∈ EP( f ,C). The proof of Lemma 3.4 is complete. �

Finally, we obtain the following main result.

Theorem 3.1. Under assumptions (A1)-(A5) and (B1)-(B3), the sequences {xn}, {yn} and
{wn} generated by Algorithm 1 converge weakly to some solution of problem (EP).
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Proof. From Lemmas 2.4, 3.3 (iii) and 3.4, we obtain that {xn} converges weakly to some
solution x† of problem (EP). From Lemma 3.3 (ii), we have that {yn} and {wn} also converge
weakly to x†. This completes the proof of Theorem 3.1. �

4. MODIFIED RELAXED INERTIAL EXTRAGRADIENT METHOD

In view of hypothesis (B1), we see that the stepsize λn depends on the two Lipschitz-type
constants c1, c2 of bifunction f . This means that the convergence of Algorithm 1 is only ensured
when these constants are known. Actually, the Lipschitz-type constants are often unknown or
difficult to approximate in nonlinear problems. In that case, a method of linesearch type can
be used to replace. A linesearch involves an inner loop with some finite stopping criterion
and requires many extra-computations at each (outer) iteration. This can be expensive and
time-consuming. In this section, we introduce a modified version of Algorithm 1 where can
be implemented more easily. For the presentation of Algorithm 2 below, we use the notation
[t]+ = max{0, t} and adopt the convention a

0 =+∞ for a≥ 0.

Algorithm 2. [Modified Relaxed Inertial Extragradient Method for EPs]

Initialization: Choose x0, x1 ∈ H. Take two constants λ0 > 0, µ ∈ (0,1) and two control
parameter sequences, {αn} ⊂ (0,+∞), {θn} ⊂ [0,+∞).

Iterative steps: Assume that xn−1, xn ∈ H and λn are known. Calculate xn+1 and λn+1 as
follows:

Step 1. Compute wn = xn +θn(xn− xn−1) and

yn = proxλn f (wn,.)(wn).

Step 2. Compute
xn+1 = (1−αn)wn +αnproxλn f (yn,.)(wn).

Step 3. Update

λn+1 = min
{

λn,
µ(||wn− yn||2 + ||zn− yn||2)

2 [ f (wn,zn)− f (wn,yn)− f (yn,zn)]+

}
,

where zn = proxλn f (yn,.)(wn). Set n := n+1 and go back Step 1.

Stopping criterion: If yn = wn then stop and yn is a solution of problem (EP).

The main difference between Algorithm 2 and Algorithm 1 is at Step 3. The stepsize λn+1 is
updated at each iteration based on the previous iterates, by a simple computation, and without
a linesearch. Although the convergence of Algorithm 2 requires the Lipschitz-type condition
of bifunction f , the Lipschitz-type constants of f is not necessary to be known. In order to
establish the convergence of Algorithm 2, we consider the following assumptions imposed on
the two sequences {αn}, {θn}:

(B4) 0 < α∗ ≤ αn ≤ α∗ < 3−µ

4 ;
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(B5) 0≤ θn ≤ θ < ε̄

2ε̄+1 and {θn} is non-decreasing, where ε̄ ∈ [1, 3−µ−2α∗

2α∗ ).

Remark 4.1. Since 0 < α∗ < 3−µ

4 , we immediately obtain 3−µ−2α∗

2α∗ > 1.

Theorem 4.1. Under assumptions (A1)-(A5) and (B4)-(B5), the sequences {xn}, {yn} and
{wn} generated by Algorithm 2 converge weakly to some solution of problem (EP).

Proof. We first state that λn > 0 for all n≥ 0 and

f (wn,zn)− f (wn,yn)− f (yn,zn)≤
µ(||wn− yn||2 + ||zn− yn||2)

2λn+1
, ∀n≥ 1. (4.1)

Indeed, we see that λ0 > 0. Assume λn > 0 for some n ≥ 0. Now, if f (wn,zn)− f (wn,yn)−
f (yn,zn) ≤ 0, then from the definition of λn+1, we obtain that λn+1 = λn > 0, and inequality
(4.1) is obviously true. In the inverse case, if f (wn,zn)− f (wn,yn)− f (yn,zn)> 0, then ||wn−
yn||2 + ||zn− yn||2 > 0 and

[ f (wn,zn)− f (wn,yn)− f (yn,zn)]+ = f (wn,zn)− f (wn,yn)− f (yn,zn)> 0.

Thus, it follows from the definition of λn+1 that λn+1 > 0 and

λn+1 ≤
µ(||wn− yn||2 + ||zn− yn||2)

2( f (wn,zn)− f (wn,yn)− f (yn,zn))
,

which follows inequality (4.1). Moreover, using the result in [9, Theorem 1] and hypothesis
(A2), we obtain

limλn = λ > 0. (4.2)
Now, we obtain from Lemma 2.1 and the definition of zn that

λn( f (yn,x∗)− f (yn,zn))≥ 〈wn− zn,x∗− zn〉 , ∀x∗ ∈ EP( f ,C). (4.3)

Similarly, it follows from the definition of yn that

λn( f (wn,zn)− f (wn,yn))≥ 〈wn− yn,zn− yn〉 . (4.4)

Combining relation (4.3) and (4.4) and noting f (yn,x∗)≤ 0, we derive

2〈wn− zn,x∗− zn〉+2〈wn− yn,zn− yn〉 ≤ 2λn ( f (wn,zn)− f (wn,yn)− f (yn,zn)) ,

which together with relation (4.1) implies that

2〈wn− zn,x∗− zn〉+2〈wn− yn,zn− yn〉 ≤
µλn

λn+1
(||wn− yn||2 + ||zn− yn||2). (4.5)

Applying the equality 2〈a,b〉 = ||a||2 + ||b||2−||a−b||2 to relation (4.5), we come to the fol-
lowing inequality

||zn− x∗||2 ≤ ||wn− x∗||2−
(

1− µλn

λn+1

)(
||wn− yn||2 + ||zn− yn||2

)
.

Thus, from the fact (a2 +b2)≥ 1
2(a+b)2 and the triangle inequality, we get

||zn− x∗||2 ≤ ||wn− x∗||2− 1
2

(
1− µλn

λn+1

)
(||wn− yn||+ ||zn− yn||)2

≤ ||wn− x∗||2− 1
2

(
1− µλn

λn+1

)
||zn−wn||2

= ||wn− x∗||2− κ̄n||zn−wn||2, (4.6)
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where κ̄n =
1
2

(
1− µλn

λn+1

)
. Thus, as relation (3.8), we also obtain

||xn+1− x∗||2 ≤ ||wn− x∗||2− κ̄n +1−αn

αn
||xn+1−wn||2. (4.7)

Since λn→ λ > 0, we have κ̄n→ 1
2 (1−µ). Thus, it follows from 0 < αn ≤ α∗ that

κ̄n +1−αn

αn
≥ κ̄n +1−α∗

α∗
→

1
2 (1−µ)+1−α∗

α∗
=

3−µ−2α∗

2α∗
> ε̄.

Thus, there exists n0 ≥ 1 such that
κ̄n +1−αn

αn
> ε̄, ∀n≥ n0. (4.8)

Combining relations (4.7) and (4.8), we obtain

||xn+1− x∗||2 ≤ ||wn− x∗||2− ε̄||xn+1−wn||2, ∀n≥ n0. (4.9)

Set ϕ̄n := ||xn− x∗||2−θn||xn−1− x∗||2 +θn(1+ ε̄)||xn− xn−1||2 and K̄ := ε̄ − (2ε̄ + 1)θ > 0.
Using Lemma 3.2, we also obtain

ϕn+1−ϕn ≤−K̄||xn+1− xn||2, ∀n≥ n0.

The rest of the proof is similar to Theorem 3.1. Theorem 4.1 is proved. �

5. COMPUTATIONAL EXPERIMENTS

In this section, we consider some examples to illustrate the affect of the inertial term to the
numerical behavior of Algorithm 1. We show the behavior of this algorithm because, in the
mentioned examples below, the Lipschitz-type constants of the bifunction are known. Note that
if θn = 0, then Algorithm 1 becomes the original algorithm, which is without inertial effect.
All the programs are written in Matlab 7.0 and computed on a PC Desktop Intel(R) Core(TM)
i5-3210M CPU @ 2.50GHz 2.50 GHz, RAM 2.00 GB.

We choose λn = 0.5min
{

1
2c1

, 1
2c2

}
, λ ∗ = 0.99min

{
1

2c1
, 1

2c2

}
and

αn = α
∗ :=

1
2
+

1
4

min{1−2c1λ
∗,1−2c2λ

∗} .

Hence ε = 1. Six parameters of θn are here chosen to check as

θn ∈ {0, 0.05, 0.1, 0.2, 0.25, 0.3} .
The starting points are x0 = x1 = (1,1, . . . ,1)T ∈ℜm. The feasible set is a box defined by

C = {x ∈ℜ
m :−5≤ xi ≤ 5, i = 1,2, . . . ,m} .

From Algorithm 1, we see that if yn = wn then yn is a solution of the problem. Thus, we use the
sequence Dn = ||yn−wn||2, n = 0,1,2, . . . to study the convergence of the proposed algorithm.
The data is generated randomly such that all the conditions of the problem are satisfied.

Example 5.1. Consider a linear bifunction f : ℜm×ℜm→ℜ defined by f (x,y)= 〈Px+Qy+q,y− x〉,
where q ∈ℜm and P, Q are two m×m matrices such that Q is symmetric positive semidefinite
and Q−P is symmetric negative semidefinite [7]. The bifunction f is pseudomonotone and
satisfies the Lipschitz-type condition with c1 = c2 = ||P−Q||/2. The numerical behavior of Dn
is described in Figure 1 and Figure 2 for respectively m = 20 and m = 50.
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FIGURE 1. Example 1 for
m = 20.
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FIGURE 2. Example 1 for
m = 50.

Example 2. Consider a nonlinear bifunction f : ℜm×ℜm→ℜ of the form f (x,y)= 〈F(x),y− x〉,
where F(x) = Ax+P(x) and A is a m×m symmetric semidefinite matrix and P(x) is the proxi-
mal mapping of the function g(x) = 1

4 ||x||
4, i.e.,

P(x) = argmin
{
||y||4

4
+

1
2
||y− x||2 : y ∈ℜ

m
}
.

In this case, f is pseudomonotone and satisfies the Lipschitz-type condition with c1 = c2 =
1
2(||A||+1). The numerical results are showed in Figure 3 and Figure 4.
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FIGURE 3. Example 2 for
m = 20.
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FIGURE 4. Example 2 for
m = 50.

From the aforementioned numerical results, we see that the proposed algorithm with inertial
effect (θn 6= 0) seems better than the classical extragradient algorithm (θn = 0). Moreover, it is
also seen that the larger θn is, the better the convergence of the new algorithm is.

6. CONCLUSIONS

The paper proposed two relaxed inertial extragradient methods for solving the equilibrium
problem in Hilbert spaces. The algorithms are constructed around the proximal-like mapping
of a bifunction and the inertial method. The algorithms can be implemented with or without
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knowing previously the Lipschitz-type constants of bifunctions. Theorems of weak convergence
were established under some mild conditions. Several of numerical results confirmed that the
proposed algorithm with inertial effect seems to be better than the original method.
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