J. Appl. Numer. Optim. 3 (2021), No. 1, pp. 197-210 Available online at http://jano.biemdas.com https://doi.org/10.23952/jano.3.2021.1.11

A WEAK CONVERGENCE THEOREM FOR RELATIVELY NONEXPANSIVE MAPPINGS AND MAXIMAL MONOTONE OPERATORS IN A BANACH SPACE

WATARU TAKAHASHI

Research Center for Interneural Computing, China Medical University Hospital, China Medical University, Taichung 40447, Taiwan Keio Research and Education Center for Natural Sciences, Keio University, Yokohama 223-8521, Japan

Department of Mathematical and Computing Sciences, Tokyo Institute of Technology, Tokyo 152-8552, Japan

Abstract. In this paper, using the idea of Mann's iteration, we prove a weak convergence theorem for finding a common element of the fixed point sets of two relatively nonexpansive mappings and the zero point set of a maximal monotone operator in a Banach space. We apply this result to get well-known and new weak convergence theorems which are connected with relatively nonexpansive mappings and maximal monotone operators in Hilbert spaces and in Banach spaces.

Keywords. Relatively nonexpansive mapping; Generalized projection; Maximal monotone operator; Generalized resolvent; Fixed point.

1. INTRODUCTION

Let *E* be a Banach space and let *C* be a nonempty, closed and convex subset of *E*. Let *T* be a mapping of *C* into *E*. We denote the set of fixed points of *T* by F(T). A mapping $T : C \to E$ is called demiclosed if for a sequence $\{x_n\}$ in *C* such that $\{x_n\}$ converges weakly to a point *p* and $x_n - Tx_n \to 0$, p = Tp holds.

Assume that *E* is a smooth Banach space and *C* is a nonempty, closed and convex subset of *E*. A mapping $T : C \to E$ is called relatively nonexpansive [1] if $F(T) \neq \emptyset$, it is demiclosed and

$$\phi(z,Tx) \le \phi(z,x), \quad \forall x \in C, \ z \in F(T),$$

where $\phi(x, y) = ||x||^2 - 2\langle x, Jy \rangle + ||y||^2$ for all $x, y \in E$ and *J* is the duality mapping of *E*.

In 1953, Mann [2] introduced the following iteration process. Let $T : C \to C$ be a nonexpansive mapping, that is, $||Tx - Ty|| \le ||x - y||$ for all $x, y \in C$. For an initial guess $x_1 \in C$, an iteration process $\{x_n\}$ is defined recursively by

$$x_{n+1} = \alpha_n x_n + (1 - \alpha_n) T x_n, \quad \forall n \in \mathbb{N},$$

where $\{\alpha_n\}$ is a sequence in [0,1]. Later, Reich [3] discussed Mann's iteration process in a uniformly convex Banach space with a Fréchet differentiable norm and obtained that the sequence $\{x_n\}$ converges weakly to a fixed point of *T* under some conditions. On the other

E-mail addresses: wataru@is.titech.ac.jp; wataru@a00.itscom.net.

Received September 4, 2020; Accepted October 20, 2020.

hand, Matsushita and Takahashi [4] proved a weak convergence theorem under Mann's iteration process for relatively nonexpansive mappings in a smooth and uniformly convex Banach space.

In this paper, using the idea of Mann's iteration, we prove a weak convergence theorem for finding a common element of the fixed point sets of two relatively nonexpansive mappings and the zero point set of a maximal monotone operator in a Banach space. We apply this result to get well-known and new weak convergence theorems which are connected with relatively non-expansive mappings and maximal monotone operators in Hilbert spaces and in Banach spaces

2. PRELIMINARIES

We denote by \mathbb{N} the set of positive integers and by \mathbb{R} the set of real numbers. Let *H* be a real Hilbert space with inner product $\langle \cdot, \cdot \rangle$ and norm $\|\cdot\|$, respectively. Let *C* be a nonempty, closed and convex subset of a Hilbert space *H*. The nearest point projection of *H* onto *C* is denoted by P_C , that is, $\|x - P_C x\| \le \|x - y\|$ for all $x \in H$ and $y \in C$. Such P_C is called the metric projection of *H* onto *C*. We know that the metric projection P_C is firmly nonexpansive, i.e.,

$$\|P_C x - P_C y\|^2 \le \langle P_C x - P_C y, x - y \rangle$$
(2.1)

for all $x, y \in H$. Furthermore, $\langle x - P_C x, y - P_C x \rangle \leq 0$ holds for all $x \in H$ and $y \in C$; see [5].

Let *E* be a real Banach space with norm $\|\cdot\|$ and let E^* be the dual space of *E*. We denote the value of $y^* \in E^*$ at $x \in E$ by $\langle x, y^* \rangle$. When $\{x_n\}$ is a sequence in *E*, we denote the strong convergence of $\{x_n\}$ to $x \in E$ by $x_n \to x$ and the weak convergence by $x_n \rightharpoonup x$. The modulus δ_E of convexity of *E* is defined by

$$\delta_E(\varepsilon) = \inf\left\{1 - \frac{\|x+y\|}{2} : \|x\| \le 1, \|y\| \le 1, \|x-y\| \ge \varepsilon\right\}$$

for every ε with $0 \le \varepsilon \le 2$. A Banach space *E* is said to be uniformly convex if $\delta_E(\varepsilon) > 0$ for every $\varepsilon > 0$. A uniformly convex Banach space is strictly convex and reflexive. The duality mapping J_E from *E* into 2^{E^*} is defined by

$$J_E x = \{x^* \in E^* : \langle x, x^* \rangle = \|x\|^2 = \|x^*\|^2\}$$

for every $x \in E$. We also denote J_E by J simply. Let $U = \{x \in E : ||x|| = 1\}$. The norm of E is said to be Gâteaux differentiable if for each $x, y \in U$, the limit

$$\lim_{t \to 0} \frac{\|x + ty\| - \|x\|}{t} \tag{2.2}$$

exists. In this case, *E* is called smooth. We know that *E* is smooth if and only if *J* is a singlevalued mapping of *E* into E^* . The norm of *E* is said to be Fréchet differentiable if for each $x \in U$, the limit (2.2) is attained uniformly for $y \in U$. The norm of *E* is said to be uniformly smooth if the limit (2.2) is attained uniformly for $x, y \in U$. If *E* is uniformly smooth, then *J* is uniformly norm-to-norm continuous on each bounded subset of *E*. We also know that *E* is reflexive if and only if *J* is surjective, and *E* is strictly convex if and only if *J* is one-to-one. Therefore, if *E* is a smooth, strictly convex and reflexive Banach space, then *J* is a single-valued bijection and in this case, the inverse mapping J^{-1} coincides with the duality mapping J_* on E^* . For more details, see [6, 7]. We also know the following result.

Lemma 2.1 ([6]). Let *E* be a smooth Banach space and let *J* be the duality mapping on *E*. Then, $\langle x-y, Jx-Jy \rangle \ge 0$ for all $x, y \in E$. Furthermore, if *E* is strictly convex and $\langle x-y, Jx-Jy \rangle = 0$, then x = y.

Let *E* be a smooth Banach space. The function $\phi : E \times E \to (-\infty, \infty)$ is defined by

$$\phi(x, y) = \|x\|^2 - 2\langle x, Jy \rangle + \|y\|^2$$
(2.3)

for $x, y \in E$, where J is the duality mapping of E; see [8, 9]. We have from the definition of ϕ that

$$\phi(x,y) = \phi(x,z) + \phi(z,y) + 2\langle x - z, Jz - Jy \rangle$$
(2.4)

for all $x, y, z \in E$. From $(||x|| - ||y||)^2 \le \phi(x, y)$ for all $x, y \in E$, we can see that $\phi(x, y) \ge 0$. Furthermore, we can obtain the following equality:

$$2\langle x-y,Jz-Jw\rangle = \phi(x,w) + \phi(y,z) - \phi(x,z) - \phi(y,w)$$
(2.5)

for $x, y, z, w \in E$. If *E* is additionally assumed to be strictly convex, then from Lemma 2.1 we have

$$\phi(x, y) = 0 \Longleftrightarrow x = y. \tag{2.6}$$

Let *E* be a smooth, strictly convex and reflexive Banach space. Let $\phi_* : E^* \times E^* \to (-\infty, \infty)$ be the function defined by

$$\phi_*(x^*, y^*) = \|x^*\|^2 - 2\langle J^{-1}y^*, x^* \rangle + \|y^*\|^2$$

for all $x^*, y^* \in E^*$, where J is the duality mapping of E. It is easy to see that

$$\phi_*(Jy, Jx) = \phi(x, y) \tag{2.7}$$

for all $x, y \in E$. The following lemma which was by Kamimura and Takahashi [9] is well-known.

Lemma 2.2 ([9]). Let *E* be a smooth and uniformly convex Banach space. Let $\{x_n\}$ and $\{y_n\}$ be two sequences in space *E* such that either sequence $\{x_n\}$ or sequence $\{y_n\}$ is bounded. If $\lim_{n\to\infty} \phi(x_n, y_n) = 0$, then $\lim_{n\to\infty} ||x_n - y_n|| = 0$.

The following lemmas are in Xu [10] and Kamimura and Takahashi [9].

Lemma 2.3 ([10]). Let *E* be a uniformly convex Banach space and let r > 0. Then there exists a strictly increasing, continuous and convex function $g : [0, \infty) \to [0, \infty)$ such that g(0) = 0 and

$$\|\lambda x + (1-\lambda)y\|^2 \le \lambda \|x\|^2 + (1-\lambda)\|y\|^2 - \lambda(1-\lambda)g(\|x-y\|)$$

for all $x, y \in B_r$ and λ with $0 \le \lambda \le 1$, where $B_r = \{z \in E : ||z|| \le r\}$.

Lemma 2.4 ([9]). Let *E* be a smooth and uniformly convex Banach space and let r > 0. Then there exists a strictly increasing, continuous and convex function $g: [0, 2r] \rightarrow \mathbb{R}$ such that g(0) = 0 and

$$g(\|x-y\|) \le \phi(x,y)$$

for all $x, y \in B_r$, where $B_r = \{z \in E : ||z|| \le r\}$.

Let *C* be a nonempty, closed and convex subset of a strictly convex and reflexive Banach space *E*. For any $x \in E$, we also know that there exists a unique element $z \in C$ such that

$$\phi(z,x) = \min_{y \in C} \phi(y,x).$$

The mapping $\Pi_C : E \to C$ defined by $z = \Pi_C x$ is called the generalized projection of *E* onto *C*. We know the following result.

Lemma 2.5 ([8, 9]). Let *E* be a smooth, strictly convex and reflexive Banach space. Let *C* be a nonempty, closed and convex subset of *E* and let $x \in E$ and $z \in C$. Then, the following conditions are equivalent:

(1)
$$z = \Pi_C x;$$

(2) $\langle z - y, Jx - Jz \rangle \ge 0, \quad \forall y \in C.$

Let *E* be a Banach space and let *B* be a mapping of of *E* into 2^{E^*} . A multi-valued mapping *B* on *E* is said to be monotone if $\langle x - y, u^* - v^* \rangle \ge 0$ for all $u^* \in Bx$, and $v^* \in By$. A monotone operator *B* on *E* is said to be maximal if its graph is not properly contained in the graph of any other monotone operator on *E*. The following theorem is due to Browder [11]; see also [7, Theorem 3.5.4].

Theorem 2.1 ([11]). Let *E* be a uniformly convex and smooth Banach space and let *J* be the duality mapping of *E* into E^* . Let *B* be a monotone operator of *E* into 2^{E^*} . Then *B* is maximal if and only if, for any r > 0,

$$R(J+rB)=E^*,$$

where R(J+rB) is the range of J+rB.

Let *E* be a uniformly convex Banach space with a Gâteaux differentiable norm and let *B* be a maximal monotone operator of *E* into 2^{E^*} . The set of null points of a maximal monotone operator *B* is defined by $B^{-1}0 = \{z \in E : 0 \in Bz\}$. We know that $B^{-1}0$ is closed and convex; see [7].

For all $x \in E$ and r > 0, we also consider the following equation

$$Jx \in Jx_r + rBx_r$$
.

This equation has a unique solution x_r ; see [12]. We define Q_r by $x_r = Q_r x$. Such a Q_r is called the generalized resolvent of B. For r > 0, the Yosida approximation $B_r : E \to E^*$ is defined by

$$B_r x = \frac{J x - J Q_r x}{r}, \quad \forall x \in E.$$

When the Banach space is a Hilbert space, we have that the generalized resolvent Q_r is called the resolvent of *B* simply. We know the following result.

Lemma 2.6 ([12]). Let *E* be a uniformly convex and smooth Banach space and let $B \subset E \times E^*$ be a maximal monotone operator. Let r > 0 and let Q_r and B_r be the generalized resolvent and the Yosida approximation of *B*, respectively. Then, the following hold:

(1) $\phi(u, Q_r x) + \phi(Q_r x, x) \le \phi(u, x), \quad \forall x \in E, u \in B^{-1}0;$ (2) $(Q_r x, B_r x) \in B, \quad \forall x \in E;$ (3) $F(Q_r) = B^{-1}0.$

3. WEAK CONVERGENCE THEOREM

In this section, we prove a weak convergence theorem of Mann's type iteration for two relatively nonexpansive mappings and maximal monotone operators in a Banach space. The following lemma was proved by Matsushita and Takahashi [1]. **Lemma 3.1** ([1]). *Let E* be a smooth, strictly convex and reflexive Banach space and let *C* be a nonempty, closed and convex subset of *E*. *Let* $T : C \to E$ be a mapping satisfying the following;

$$\phi(z,Tx) \le \phi(z,x), \quad \forall x \in C, \ z \in F(T).$$

Then F(T) is closed and convex.

The following is our main result.

Theorem 3.1. Let *E* be a uniformly convex and uniformly smooth Banach space which the duality mapping J_E is weakly sequentially continuous. Let *C* be a nonempty, closed and convex subset of *E* such that J_EC is closed and convex. Let $A \subset E \times E^*$ be a maximal monotone operator satisfying $D(A) \subset C$ and let Q_{μ} be a generalized resolvent of *A*, i.e., $Q_{\mu} = (J_E + \mu A)^{-1} J_E$ for all $\mu > 0$. Let *T* and *U* be relatively nonexpansive mappings of *C* into itself. Suppose that

$$\Omega = F(T) \cap F(U) \cap A^{-1}0 \neq \emptyset.$$

For any $x_1 = x \in C$, define $\{x_n\}$ as follows:

$$\begin{cases} y_n = J_E^{-1} ((1 - r_n) J_E x_n + r_n J_E U Q_{\mu_n} x_n), \\ x_{n+1} = J_E^{-1} ((1 - \beta_n) J_E x_n + \beta_n J_E T y_n), & \forall n \in \mathbb{N}, \end{cases}$$

where $\{\mu_n\} \subset (0,\infty)$, $\{\beta_n\} \subset (0,1)$, $a, b, \delta, \gamma \in \mathbb{R}$ and $\{r_n\} \subset (0,1)$ satisfy the following:

$$0 < a \leq \beta_n \leq b < 1, \ 0 < \delta \leq r_n \leq \gamma < 1 \ and \ 0 < c \leq \mu_n, \quad \forall n \in \mathbb{N}$$

Then the sequence $\{x_n\}$ converges weakly to an element $z_0 \in \Omega$, where $z_0 = \lim_{n \to \infty} \prod_{\Omega} x_n$.

Proof. Since *T* and *U* are relatively nonexpansive, we have that F(T) and F(U) are closed and convex. Since *A* is a maximal monotone operator, we have that $A^{-1}0$ is closed and convex. It follows that $\Omega = F(T) \cap F(U) \cap A^{-1}0$ is closed and convex. Let $z \in \Omega$. Then $z = Q_{\mu_n} z$, z = Tz and z = Uz. Put

$$y_n = J_E^{-1} ((1 - r_n) J_E x_n + r_n J_E U Q_{\mu_n} x_n)$$

and $z_n = Q_{\mu_n} x_n$ for all $n \in \mathbb{N}$. We have

$$\begin{split} \phi(z, y_n) &= \phi\left(z, J_E^{-1}((1 - r_n)J_Ex_n + r_nJ_EUz_n)\right) \\ &= \|z\|^2 - 2\langle z, (1 - r_n)J_Ex_n + r_nJ_EUz_n \rangle \\ &+ \|(1 - r_n)J_Ex_n + r_nJ_EUz_n\|^2 \\ &\leq \|z\|^2 - 2(1 - r_n)\langle z, J_Ex_n \rangle - 2r_n\langle z, J_EUz_n \rangle \\ &+ (1 - r_n)\|x_n\|^2 + r_n\|Uz_n\|^2 \\ &= (1 - r_n)\phi(z, x_n) + r_n\phi(z, Uz_n) \\ &\leq (1 - r_n)\phi(z, x_n) + r_n\phi(z, x_n) \\ &\leq (1 - r_n)\phi(z, x_n) + r_n\phi(z, x_n) \\ &= \phi(z, x_n). \end{split}$$
(3.1)

Similarly, we also have

$$\begin{split} \phi(z, x_{n+1}) &= \phi\left(z, J_E^{-1}((1 - \beta_n)J_E x_n + \beta_n J_E T y_n)\right) \\ &\leq (1 - \beta_n)\phi(z, x_n) + \beta_n\phi(z, T y_n) \\ &\leq (1 - \beta_n)\phi(z, x_n) + \beta_n\phi(z, y_n) \\ &\leq (1 - \beta_n)\phi(z, x_n) + \beta_n\phi(z, x_n) \\ &= \phi(z, x_n). \end{split}$$
(3.2)

Then $\lim_{n\to\infty} \phi(z, x_n)$ exists. Thus, $\{x_n\}$, $\{Uz_n\}$, $\{y_n\}$ and $\{Ty_n\}$ are bounded. Putting

$$r = \max\left\{\sup_{n\in\mathbb{N}}\|J_E x_n\|, \sup_{n\in\mathbb{N}}\|J_E U z_n\|, \sup_{n\in\mathbb{N}}\|J_E T y_n\|\right\},\$$

we have from Lemma 2.3 that there exists a strictly increasing, continuous and convex function $g:[0,\infty) \to [0,\infty)$ such that g(0) = 0 and

$$\|\lambda x + (1 - \lambda)y\|^{2} \le \lambda \|x\|^{2} + (1 - \lambda)\|y\|^{2} - \lambda(1 - \lambda)g(\|x - y\|)$$

for all $x, y \in B_r$ and λ with $0 \le \lambda \le 1$, where $B_r = \{z \in E^* : ||z|| \le r\}$. Using this, we have that, for $n \in \mathbb{N}$ and $z \in \Omega$,

$$\begin{split} \phi(z, y_n) &= \phi\left(z, J_E^{-1}((1-r_n)J_Ex_n + r_nJ_EUz_n)\right) \\ &= \|z\|^2 - 2\langle z, (1-r_n)J_Ex_n + r_nJ_EUz_n \rangle + \|(1-r_n)J_Ex_n + r_nJ_EUz_n\|^2 \\ &\leq \|z\|^2 - 2\langle z, (1-r_n)J_Ex_n + r_nJ_EUz_n \rangle \\ &+ (1-r_n)\|x_n\|^2 + r_n\|Uz_n\|^2 - r_n(1-r_n)g(\|J_Ex_n - J_EUz_n\|) \\ &= (1-r_n)\phi(z, x_n) + r_n\phi(z, Uz_n) - r_n(1-r_n)g(\|J_Ex_n - J_EUz_n\|) \\ &\leq (1-r_n)\phi(z, x_n) + r_n\phi(z, z_n) - r_n(1-r_n)g(\|J_Ex_n - J_EUz_n\|) \\ &\leq \phi(z, x_n) - r_n(1-r_n)g(\|J_Ex_n - J_EUz_n\|). \end{split}$$

Similarly, we have that

$$\begin{split} \phi(z, x_{n+1}) &= \phi(z, J_E^{-1}((1-\beta_n)J_Ex_n + \beta_n J_E Ty_n)) \\ &= \|z\|^2 - 2\langle z, (1-\beta_n)J_Ex_n + \beta_n J_E Ty_n \rangle + \|(1-\beta_n)J_Ex_n + \beta_n J_E Ty_n\|^2 \\ &\leq \|z\|^2 - 2\langle z, (1-\beta_n)J_Ex_n + \beta_n J_E Ty_n \rangle \\ &+ (1-\beta_n)\|x_n\|^2 + \beta_n\|Ty_n\|^2 - \beta_n(1-\beta_n)g(\|J_Ex_n - J_E Ty_n\|) \\ &= (1-\beta_n)\phi(z, x_n) + \beta_n\phi(z, Ty_n) - \beta_n(1-\beta_n)g(\|J_Ex_n - J_E Ty_n\|) \\ &\leq (1-\beta_n)\phi(z, x_n) + \beta_n\phi(z, y_n) - \beta_n(1-\beta_n)g(\|J_Ex_n - J_E Ty_n\|) \\ &\leq (1-\beta_n)\phi(z, x_n) + \beta_n(\phi(z, x_n) - r_n(1-r_n)g(\|J_Ex_n - J_E Uz_n\|)) \\ &- \beta_n(1-\beta_n)g(\|J_Ex_n - J_E Ty_n\|) \\ &= \phi(z, x_n) - \beta_n r_n(1-r_n)g(\|J_Ex_n - J_E Uz_n\|) - \beta_n(1-\beta_n)g(\|J_Ex_n - J_E Ty_n\|). \end{split}$$

Therefore, we have that

$$\beta_n(1-\beta_n)g(\|J_Ex_n-J_ETy_n\|) \le \phi(z,x_n)-\phi(z,x_{n+1})$$

and

$$\beta_n r_n (1 - r_n) g(\|J_E x_n - J_E U z_n\|) \le \phi(z, x_n) - \phi(z, x_{n+1}).$$

202

We have from $0 < a \le \beta_n \le b < 1$ and $0 < \delta \le r_n \le \gamma < 1$ that

$$\lim_{n \to \infty} g(\|J_E x_n - J_E T y_n\|) = \lim_{n \to \infty} g(\|J_E x_n - J_E U z_n\|) = 0.$$
(3.3)

From the properties of *g*, we have that

$$\lim_{n \to \infty} \|J_E x_n - J_E T y_n\| = \lim_{n \to \infty} \|J_E x_n - J_E U z_n\| = 0.$$
(3.4)

From the definition of y_n , we also have that

$$|J_E x_n - J_E y_n|| \leq r_n ||J_E x_n - J_E U z_n||.$$

Since $\lim_{n\to\infty} ||J_E x_n - J_E U z_n|| = 0$, we have $||J_E x_n - J_E y_n|| \to 0$ and hence $||J_E y_n - J_E T y_n|| \to 0$. Since E^* is uniformly smooth, we have that

$$||y_n - Ty_n|| \to 0 \text{ and } ||x_n - Uz_n|| \to 0$$
 (3.5)

as $n \to \infty$. Using $z_n = Q_{\mu_n} x_n$ and Lemma 2.6, we have that, for $z \in \Omega$,

$$\phi(z_n, x_n) = \phi(Q_{\mu_n} x_n, x_n) \le \phi(z, x_n) - \phi(z, Q_{\mu_n} x_n) = \phi(z, x_n) - \phi(z, z_n).$$

It follows from (3.1) that

$$\begin{split} \phi(z_n, x_n) &\leq \phi(z, x_n) - \phi(z, z_n) \\ &\leq \phi(z, x_n) - \frac{1}{r_n} \big(\phi(z, y_n) - (1 - r_n) \phi(z, x_n) \big) \\ &= \frac{1}{r_n} \big(\phi(z, x_n) - \phi(z, y_n) \big) \\ &= \frac{1}{r_n} \big(||x_n||^2 - ||y_n||^2 - 2\langle z, Jx_n - Jy_n \rangle \big) \\ &\leq \frac{1}{r_n} \big(||x_n||^2 - ||y_n||^2 |+ 2|\langle z, Jx_n - Jy_n \rangle || \big) \\ &\leq \frac{1}{r_n} \big(||x_n|| - ||y_n|| |(||x_n|| + ||y_n||) + 2||z|| ||Jx_n - Jy_n|| \big) \\ &\leq \frac{1}{r_n} \big(||x_n - y_n|| (||x_n|| + ||y_n||) + 2||z|| ||Jx_n - Jy_n|| \big). \end{split}$$

This implies that $\lim_{n\to\infty} \phi(z_n, x_n) = 0$. Since *E* is uniformly convex and smooth, we have from Lemma 2.2 that

$$\lim_{n \to \infty} \|z_n - x_n\| = 0.$$
(3.6)

Since

 $||z_n - Uz_n|| \le ||z_n - x_n|| + ||x_n - Uz_n||,$

we obtain that

$$\lim_{n \to \infty} \|z_n - U z_n\| = 0.$$
 (3.7)

Since $\{x_n\}$ is bounded, there exists a subsequence $\{x_{n_i}\}$ of $\{x_n\}$ such that $x_{n_i} \rightarrow w$. From $\lim_{n \to \infty} ||x_n - y_n|| = 0$ and $\lim_{n \to \infty} ||x_n - z_n|| = 0$, we have $y_{n_i} \rightarrow w$ and $z_{n_i} \rightarrow w$. Using $\lim_{n \to \infty} ||z_n - Uz_n|| = 0$ and the fact that U is relatively nonexpansive, we have that w = Uw and hence $w \in F(U)$. Since T is relatively nonexpansive, we have from $y_{n_i} \rightarrow w$ and $||y_n - Ty_n|| \rightarrow 0$ that $w \in F(T)$. This implies $w \in F(T) \cap F(U)$.

Next, we show $w \in A^{-1}0$. Since J_E is uniformly norm-to-norm continuous on bounded sets, we conclude from (3.6)

$$\lim_{n\to\infty}\|J_Ex_n-J_Ez_n\|=0.$$

From $\mu_n \ge c$, we have

$$\lim_{n\to\infty}\frac{1}{\mu_n}\|J_E x_n - J_E z_n\| = 0.$$

Therefore,

$$\lim_{n\to\infty} \|B_{\mu_n}x_n\| = \lim_{n\to\infty} \frac{1}{\mu_n} \|J_Ex_n - J_Ez_n\| = 0.$$

For $(p, p^*) \in A$, from the monotonicity of A, we have $\langle p - z_n, p^* - B_{\mu_n} x_n \rangle \ge 0$ for all $n \ge 0$. Replacing n by n_i and letting $i \to \infty$, we get $\langle p - w, p^* \rangle \ge 0$. From the maximallity of A, we have $w \in A^{-1}0$. Therefore, $w \in \Omega$.

We next show that if $x_{n_i} \rightharpoonup u$ and $x_{n_j} \rightharpoonup v$, then u = v. In fact, we have that $u, v \in \Omega$. Put $a = \lim_{n \to \infty} (\phi(u, x_n) - \phi(v, x_n))$. Since

$$\phi(u, x_n) - \phi(v, x_n) = 2\langle v - u, J_E x_n \rangle + ||u||^2 - ||v||^2$$

and the duality mapping J_E of E is weakly sequentially continuous, we have $a = 2\langle v - u, J_E u \rangle + ||u||^2 - ||v||^2$ and $a = 2\langle v - u, J_E v \rangle + ||u||^2 - ||v||^2$. From these equalities, we obtain $2\langle v - u, Ju - Jv \rangle = 0$ and hence $\langle u - v, Ju - Jv \rangle = 0$. From Lemma 2.1, it follows that u = v. Therefore, $\{x_n\}$ converges weakly to an element $z_0 \in \Omega$.

Put $P = \Pi_{\Omega}$. We have from Lemma 2.5 and (3.2) that

$$\phi(Px_{n+1}, x_{n+1}) \le \phi(Px_{n+1}, x_{n+1}) + \phi(Px_n, Px_{n+1})$$
$$\le \phi(Px_n, x_{n+1})$$
$$\le \phi(Px_n, x_n)$$

for all $n \in \mathbb{N}$. Hence $\lim_{n\to\infty} \phi(Px_n, x_n)$ exists. It follows from Lemma 2.5 that, for $k \in \mathbb{N}$,

$$\phi(Px_n, x_{n+k}) = \phi(Px_n, Px_{n+k}) + \phi(Px_{n+k}, x_{n+k})$$

+ 2\langle Px_n - Px_{n+k}, J_E Px_{n+k} - J_E x_{n+k} \rangle
\ge \phi(Px_n, Px_{n+k}) + \phi(Px_{n+k}, x_{n+k})

and hence

$$\phi(Px_n, Px_{n+k}) \le \phi(Px_n, x_{n+k}) - \phi(Px_{n+k}, x_{n+k})$$
$$\le \phi(Px_n, x_n) - \phi(Px_{n+k}, x_{n+k}).$$

We also have from Lemma 2.5 that, for $p \in \Omega$,

$$\phi(p, Px_n) \le \phi(p, Px_n) + \phi(Px_n, x_n) \le \phi(p, x_n) \le \phi(p, x)$$

and hence $\{Px_n\}$ is bounded. Using Lemma 2.4, we have that, for $m, n \in \mathbb{N}$ with m > n,

$$g'(\|Px_n - Px_m\|) \le \phi(Px_n, Px_m) \le \phi(Px_n, x_n) - \phi(Px_m, x_m)$$

where g' is a strictly increasing, continuous and convex function such that g'(0) = 0. The the properties of g' yield that $\{Px_n\}$ is a Cauchy sequence. Since E is complete, $\{Px_n\}$ converges strongly to a point $u \in \Omega$. Furthermore, we have from Lemma 2.5 that

$$\langle Px_n-z_0, J_Ex_n-J_EPx_n\rangle \geq 0.$$

204

Since $x_n \rightarrow z_0$ and the duality mapping J_E on E is weakly sequentially continuous, we have that

$$\langle u-z_0, J_E z_0 - J_E u \rangle \geq 0$$

and hence $\phi(u, z_0) + \phi((z_0, u) \le 0$. This implies that $\phi(u, z_0) = \phi(z_0, u) = 0$ and hence $u = z_0$. Therefore, $z_0 = \lim_{n \to \infty} Px_n = \lim_{n \to \infty} \prod_{\Omega} x_n$. This completes the proof.

4. APPLICATIONS

In this section, using Theorem 3.1, we get well-known and new weak convergence theorems which are connected with relatively nonexpansive mappings and maximal monotone operators in Hilbert spaces and in Banach spaces. We first prove a weak convergence theorem for finding a zero point of a maximal monotone operator in a Banach space.

Theorem 4.1. Let *E* be a uniformly convex and uniformly smooth Banach space which the duality mapping J_E is weakly sequentially continuous. Let $A \subset E \times E^*$ be a maximal monotone operator and let Q_{μ} be a generalized resolvent of *A*, i.e., $Q_{\mu} = (J_E + \mu A)^{-1} J_E$ for all $\mu > 0$. Suppose that $A^{-1}0 \neq \emptyset$. For any $x_1 = x \in E$, define $\{x_n\}$ as follows:

$$x_{n+1} = J_E^{-1} ((1 - r_n) J_E x_n + r_n J_E Q_{\mu_n} x_n),$$

for all $n \in \mathbb{N}$, where $\{\mu_n\} \subset (0,\infty)$, $\delta, \gamma \in \mathbb{R}$ and $\{r_n\} \subset (0,1)$ satisfy the following:

$$0 < \delta \leq r_n \leq \gamma < 1$$
 and $0 < c \leq \mu_n$, $\forall n \in \mathbb{N}$.

Then the sequence $\{x_n\}$ converges weakly to an element $z_0 \in A^{-1}0$, where $z_0 = \lim_{n \to \infty} \prod_{A^{-1}0} x_n$.

Proof. Putting C = E and T = U = I in Theorem 3.1, we obtain the desired result from Theorem 3.1.

Let *E* be a Banach space and let $f : E \to (-\infty, \infty]$ be a proper, lower semicontinuous and convex function. Define the subdifferential of *f* as follows:

$$\partial f(x) = \{x^* \in E^* : f(y) \ge \langle y - x, x^* \rangle + f(x), \, \forall y \in E\}$$

for all $x \in E$. Then we know that ∂f is a maximal monotone operator; see [13] for more details. Let *E* be a smooth, strictly convex and reflexive Banach space. Let *C* be a nonempty, closed and convex subset of *E*. We have that there exists the generalized projection Π_C of *E* onto *C*. We also have that, for the indicator function i_C , that is,

$$i_C x = \begin{cases} 0, & x \in C, \\ \infty, & x \notin C, \end{cases}$$

the subdifferential $\partial i_C \subset E \times E^*$ is a maximal monotone operator and the generalized resolvent $Q_r = \prod_C$ of ∂i_C for every r > 0. In fact, for any $x \in E$ and r > 0, we have that

$$z = Q_{r}x \Leftrightarrow J_{E}z + r\partial i_{C}z \ni J_{E}x$$

$$\Leftrightarrow J_{E}x - J_{E}z \in r\partial i_{C}z$$

$$\Leftrightarrow i_{C}y \ge \left\langle y - z, \frac{J_{E}x - J_{E}z}{r} \right\rangle + i_{C}z, \forall y \in E$$

$$\Leftrightarrow 0 \ge \left\langle y - z, J_{E}x - J_{E}z \right\rangle, \forall y \in C$$

$$\Leftrightarrow z = \arg\min_{y \in C} \phi(y, x)$$

$$\Leftrightarrow z = \Pi_{C}x.$$
(4.1)

Using (4.1) and Theorem 3.1, we get the following weak convergence theorem for two relatively nonexpansive mappings in a Banach space.

Theorem 4.2. Let *E* be a uniformly convex and uniformly smooth Banach space which the duality mapping J_E is weakly sequentially continuous. Let *C* be a nonempty, closed and convex subset of *E* such that J_EC is closed and convex. Let *T* and *U* be relatively nonexpansive mappings of *C* into itself such that

$$\Omega = F(T) \cap F(U) \neq \emptyset.$$

For any $x_1 = x \in C$, define $\{x_n\}$ as follows:

$$\begin{cases} y_n = J_E^{-1} \big((1 - r_n) J_E x_n + r_n J_E U x_n \big), \\ x_{n+1} = J_E^{-1} \big((1 - \beta_n) J_E x_n + \beta_n J_E T y_n \big), & \forall n \in \mathbb{N}, \end{cases}$$

where $\{\beta_n\} \subset (0,1)$, $a, b, \delta, \gamma \in \mathbb{R}$ and $\{r_n\} \subset (0,1)$ satisfy the following:

$$0 < a \le \beta_n \le b < 1$$
 and $0 < \delta \le r_n \le \gamma < 1$, $\forall n \in \mathbb{N}$

Then the sequence $\{x_n\}$ converges weakly to an element $z_0 \in \Omega$, where $z_0 = \lim_{n \to \infty} \prod_{\Omega} x_n$.

Proof. Putting $A = \partial i_C$ in Theorem 3.1, we obtain that $Q_{\mu_n} = \prod_C$ for all $\mu_n > 0$. Therefore, we obtain the desired result from Theorem 3.1.

Let *H* be a Hilbert space and let *C* be a nonempty, closed and convex subset of *H*. A mapping $U: C \to H$ is called generalized hybrid [15] if there exist $\alpha, \beta \in \mathbb{R}$ such that

$$\alpha \|Ux - Uy\|^2 + (1 - \alpha)\|x - Uy\|^2 \le \beta \|Ux - y\|^2 + (1 - \beta)\|x - y\|^2$$

for all $x, y \in C$. Such a mapping U is called (α, β) -generalized hybrid. Notice that the class of (α, β) -generalized hybrid mappings covers several well-known mappings. For example, a (1,0)-generalized hybrid mapping is nonexpansive. It is nonspreading [12, 16] for $\alpha = 2$ and $\beta = 1$, i.e.,

$$2\|Ux - Uy\|^{2} \le \|Ux - y\|^{2} + \|Uy - x\|^{2}, \quad \forall x, y \in C.$$

It is also hybrid [17] for $\alpha = \frac{3}{2}$ and $\beta = \frac{1}{2}$, i.e.,

$$3\|Ux - Uy\|^{2} \le \|x - y\|^{2} + \|Ux - y\|^{2} + \|Uy - x\|^{2}, \quad \forall x, y \in C.$$

In general, nonspreading and hybrid mappings are not continuous; see [14]. We know the following result obtained by Kocourek, Takahashi and Yao [15]; see also [18].

Lemma 4.1 ([15, 18]). Let *H* be a Hilbert space, let *C* be a nonempty, closed and convex subset of *H* and let $U : C \to H$ be generalized hybrid. If $x_n \rightharpoonup z$ and $x_n - Ux_n \to 0$, then $z \in F(U)$.

The following are two weak convergence theorems for finding a common element of the fixed point sets of two nonlinear operators and the zero point set of a maximal monotone operator in a Hilbert space.

Theorem 4.3. Let H be a Hilbert space and let C be a nonempty, closed and convex subset of H. Let $A \subset H \times H$ be a maximal monotone operator satisfying $D(A) \subset C$ and let J_{μ} be the resolvent of A, i.e., $J_{\mu} = (I + \mu A)^{-1}$ for all $\mu > 0$. Let $T : C \to C$ be a nonspreading mapping and let $U : C \to C$ be a hybrid mapping. Suppose that $\Omega = F(T) \cap F(U) \cap A^{-1}0 \neq \emptyset$. For any $x_1 = x \in C$, define $\{x_n\}$ as follows:

$$\begin{cases} y_n = (1 - r_n)x_n + r_n U J_{\mu_n} x_n, \\ x_{n+1} = (1 - \beta_n)x_n + \beta_n T y_n, \quad \forall n \in \mathbb{N}, \end{cases}$$

where $\{\mu_n\} \subset (0,\infty)$, $\{\beta_n\} \subset (0,1)$, $a, b, \delta, \gamma \in \mathbb{R}$ and $\{r_n\} \subset (0,1)$ satisfy the following:

$$0 < a \leq \beta_n \leq b < 1, \ 0 < \delta \leq r_n \leq \gamma < 1 \text{ and } 0 < c \leq \mu_n, \quad \forall n \in \mathbb{N}.$$

Then the sequence $\{x_n\}$ converges weakly to an element $z_0 \in \Omega$, where $z_0 = \lim_{n \to \infty} P_{\Omega} x_n$ and P_{Ω} is the metric projection of H onto Ω .

Proof. Since *T* is nonspreading of *C* into *C*, it satisfies the following:

$$2||Tx - Ty||^2 \le ||Tx - y||^2 + ||Ty - x||^2, \quad \forall x, y \in C.$$

Putting y = p for $p \in F(T)$, we have that

$$2||Tx - p||^2 \le ||Tx - p||^2 + ||p - x||^2, \quad \forall x \in C$$

and hence

$$|Tx-p||^2 \le ||p-x||^2, \quad \forall x \in C.$$

This implies that T is quasi-nonexpansive. Furthermore, we have from Lemma 4.1 that T is demiclosed.

Similarly, since U is a hybrid mapping of C into C such that $F(U) \neq \emptyset$, it satisfies the following:

$$3\|Ux - Uy\|^{2} \le \|x - y\|^{2} + \|Ux - y\|^{2} + \|Uy - x\|^{2}, \quad \forall x, y \in C.$$

Putting y = p for $p \in F(U)$, we have that

$$3||Ux - p||^2 \le ||x - p||^2 + ||Ux - p||^2 + ||p - x||^2, \quad \forall x \in C$$

and hence

$$||Ux - p||^2 \le ||p - x||^2, \quad \forall x \in C.$$

This implies that U is quasi-nonexpansive. Furthermore, we have from Lemma 4.1 that U is demiclosed. Therefore, we have the desired result from Theorem 3.1. \Box

Theorem 4.4. Let H be a Hilbert space and let C be a nonempty, closed and convex subset of H. Let $A \subset H \times H$ be a maximal monotone operator satisfying $D(A) \subset C$ and let J_{μ} be the resolvent of A, i.e., $J_{\mu} = (I + \mu A)^{-1}$ for all $\mu > 0$. Let $T : C \to C$ be a nonspreading mapping and let $U : C \to C$ be a generalized hybrid mapping. Suppose that

$$\Omega = F(T) \cap F(U) \cap A^{-1}0 \neq \emptyset.$$

For any $x_1 = x \in C$, define $\{x_n\}$ as follows:

$$\begin{cases} y_n = (1 - r_n)x_n + r_n U J_{\mu_n} x_n, \\ x_{n+1} = (1 - \beta_n)x_n + \beta_n T y_n, \quad \forall n \in \mathbb{N} \end{cases}$$

where $\{\mu_n\} \subset (0,\infty)$, $\{\beta_n\} \subset (0,1)$, $a, b, \delta, \gamma \in \mathbb{R}$ and $\{r_n\} \subset (0,1)$ satisfy the following:

 $0 < a \leq \beta_n \leq b < 1, \ 0 < \delta \leq r_n \leq \gamma < 1 \ and \ 0 < c \leq \mu_n, \quad \forall n \in \mathbb{N}.$

Then the sequence $\{x_n\}$ converges weakly to an element $z_0 \in \Omega$, where $z_0 = \lim_{n \to \infty} P_{\Omega} x_n$ and P_{Ω} is the metric projection of H onto Ω .

Proof. Since *T* is a nonexpansive mapping of *C* into *C* with $F(T) \neq \emptyset$, we have that *T* is quasinonexpansive. Furthermore, we have from Lemma 4.1 that *T* is demiclosed. Since *U* is a generalized hybrid mapping of *C* into *C* such that $F(U) \neq \emptyset$, *U* is quasi-nonexpansive. Furthermore, from Lemma 4.1, *U* is demiclosed. Therefore, we have the desired result from Theorem 3.1.

The following is a weak convergence theorems for finding a common point of three sets in a Banach space.

Theorem 4.5. Let *E* be a uniformly convex and uniformly smooth Banach space which the duality mapping J_E of *E* is weakly suquentially continuous. Let *C*, *D* and *F* be nonempty, closed and convex subsets of *E*. Let Π_C , Π_D and Π_F be the generalized projections of *E* onto *C*, *D* and *F*, respectively. Suppose that $C \cap D \cap F \neq \emptyset$. For any $x_1 = x \in E$, define

$$\begin{cases} y_n = J_E^{-1} ((1 - r_n) J_E x_n - + r_n J_E \Pi_D \Pi_F x_n)), \\ x_{n+1} = J_E^{-1} ((1 - \beta_n) J_E x_n + \beta_n J_E \Pi_C y_n), \quad \forall n \in \mathbb{N}, \end{cases}$$

where $\{\beta_n\} \subset (0,1)$ and $\{r_n\} \subset (0,1)$ satisfy the following:

$$0 < a \leq \beta_n \leq b < 1$$
 and $0 < \delta \leq r_n \leq \gamma < 1$, $\forall n \in \mathbb{N}$

for some $a, b, \delta, \gamma \in \mathbb{R}$. Then $\{x_n\}$ converges weakly to $z_0 \in C \cap D \cap F$. where $z_0 = \lim_{n \to \infty} \prod_{C \cap D \cap F} x_n$.

Proof. Take $A = \partial i_F$ in Theorem 3.1. Then we have that $Q_{\mu_n} = \Pi_F$ for all $n \in \mathbb{N}$. Furthermore, since Π_C is the genralized projection of *E* onto *C*, we have from Lemma 2.5 that

$$\phi(z, \Pi_C x) \le \phi(z, x), \quad \forall x \in E, \ z \in C.$$

We show that Π_C is demiclosed. In fact, assume that $x_n \rightharpoonup p$ and $x_n - \Pi_C x_n \rightarrow 0$. It is clear that $\Pi_C x_n \rightharpoonup p$. Since *E* is uniformly smooth, we have that $\|J_E x_n - J_E \Pi_C x_n\| \rightarrow 0$. Since Π_C is the generalized projection of *E* onto *C*, we have that

$$\langle \Pi_C x_n - \Pi_C p, J_E x_n - J_E \Pi_C x_n - (J_E p - J_E \Pi_C p) \rangle \geq 0.$$

Therefore, $\langle p - \Pi_C p, -(J_E p - J_E \Pi_C p) \rangle \ge 0$ and hence $\phi(p, \Pi_C p) + \phi(\Pi_C p, p) \le 0$. This implies that $p = \Pi_C p$ and hence Π_C is demiclosed. Similarly,

$$\phi(z, \Pi_D x) \le \phi(z, x), \quad \forall x \in E, \ z \in D$$

and Π_D is demiclosed. Therefore, we have the desired result from Theorem 3.1.

The following is a weak convergence theorem for finding a common element of zero point sets of three maximal monotone operators of a Banach space.

208

Theorem 4.6. Let *E* be a uniformly convex and uniformly smooth Banach space which the duality mapping J_E of *E* is weakly suquentially continuous. Let *A*, *B* and *G* be maximal monotone operators of *E* into E^* . Let Q_r^A be the generalized resolvent of *A* for r > 0, Q_{μ}^B be the generalized resolvent of *B* for $\mu > 0$ and let Q_{λ}^G be the generalized resolvent of *G* for $\lambda > 0$. Suppose that

$$\Omega = A^{-1}0 \cap B^{-1}0 \cap G^{-1}0 \neq \emptyset.$$

For any $x_1 = x \in E$ *, define*

$$\begin{cases} y_n = J_E^{-1} ((1 - r_n) J_E x_n + r_n Q_\lambda^G Q_r^A x_n)), \\ x_{n+1} = J_E^{-1} ((1 - \beta_n) J_E x_n + \beta_n J_E Q_\mu^B y_n), & \forall n \in \mathbb{N}. \end{cases}$$

where $\{\beta_n\} \subset (0,1)$ and $\{r_n\} \subset (0,1)$ satisfy the following:

$$0 < a \le \beta_n \le b < 1$$
 and $0 < \delta \le r_n \le \gamma < 1$, $\forall n \in \mathbb{N}$

for some $a, b, \delta, \gamma \in \mathbb{R}$. Then the sequence $\{x_n\}$ converges weakly to a point $z_0 \in \Omega$. where $z_0 = \lim_{n \to \infty} \prod_{\Omega} x_n$.

Proof. Take $\mu_n = r$ for r > 0 in Theorem 3.1. Then we have that $Q^A_{\mu_n} = Q^A_r$ for all $n \in \mathbb{N}$. Furthermore, since Q^B_{μ} is the generalized resolvent of *B*, we have from Lemma 2.6 that

$$\phi(z, Q^B_\mu x) \le \phi(z, x), \quad \forall x \in E, \ z \in B^{-1}0.$$

Next, we show that Q^B_{μ} is demiclosed. In fact, assume that $x_n \rightharpoonup p$ and $x_n - Q^B_{\mu}x_n \rightarrow 0$. It is clear that $Q^B_{\mu}x_n \rightharpoonup p$ as $n \rightarrow \infty$. Since *E* is unifrmly smooth, we have that $||J_E x_n - J_E Q^B_{\mu} x_n|| \rightarrow 0$. Since Q^B_{μ} is the generalized resolvent of *B*, we have from [19] that

$$\langle Q^B_\mu x_n - Q^B_\mu p, J_E x_n - J_E Q^B_\mu x_n - (J_E p - J_E Q^B_\mu p) \rangle \ge 0.$$

Therefore, $\langle p - Q^B_{\mu}p, -(J_Fp - J_EQ^B_{\mu}p) \rangle \ge 0$ and hence $\phi(p, Q^B_{\mu}p) + \phi(Q^B_{\mu}p, p) \le 0$. This implies that $p = Q^B_{\mu}p$ and hence Q^B_{μ} is demiclosed.

Similarly,

$$\phi(z, Q_{\lambda}^G x) \le \phi(z, x), \quad \forall x \in E, \ z \in G^{-1}0$$

and Q_{λ}^{G} is demiclosed. Therefore, we have from Theorem 3.1 the desired result immediately.

REFERENCES

- S. Matsushita, W. Takahashi, A strong convergence theorem for relatively nonexpansive mappings in a Banach space, J. Approx. Theory 134 (2005), 257-266.
- [2] W. R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc. 4 (1953), 506-510.
- [3] S. Reich, Weak convergence theorems for nonexpansive mappings in Banach spaces, J. Math. Anal. Appl. 67 (1979), 274-276.
- [4] S. Matsushita, W. Takahashi, Weak and strong convergence theorems for relatively nonexpansive mappings in Banach spaces, Fixed Point Theory Appl. 2004 (2004), 37-47.
- [5] W. Takahashi, Introduction to Nonlinear and Convex Analysis, Yokohama Publishers, Yokohama, 2009.
- [6] W. Takahashi, Nonlinear Functional Analysis, Yokohama Publishers, Yokohama, 2000.
- [7] W. Takahashi, Convex Analysis and Approximation of Fixed Points, Yokohama Publishers, Yokohama, 2000.
- [8] Y. I. Alber, Metric and generalized projections in Banach spaces: Properties and applications, in Theory and Applications of Nonlinear Operators of Accretive and Monotone Type, A. G. Kartsatos (Ed.), Marcel Dekker, New York, 1996, pp. 15–50,

- [9] S. Kamimura, W. Takahashi, Strong convergence of a proximal-type algorithm in a Banach space, SIAM. J. Optim. 13 (2002), 938-945.
- [10] H. K. Xu, Another control condition in an iterative method for nonexpansive mappings, Bull. Austral. Math. Soc. 65 (2002), 109-113.
- [11] F. E. Browder, Nonlinear maximal monotone operators in Banach spaces, Math. Ann. 175 (1968), 89-113.
- [12] F. Kohsaka, W. Takahashi, Existence and approximation of fixed points of firmly nonexpansive-type mappings in Banach spaces, SIAM. J. Optim. 19 (2008), 824-835.
- [13] R. T. Rockafellar, On the maximal monotonicity of subdifferential mappings, Pacific J. Math. 33 (1970), 209-216.
- [14] T. Igarashi, W. Takahashi, K. Tanaka, Weak convergence theorems for nonspreading mappings and equilibrium problems, in Nonlinear Analysis and Optimization (S. Akashi, W. Takahashi and T. Tanaka Eds.), pp. 75–85, Yokohama Publishers, Yokohama, 2008.
- [15] P. Kocourek, W. Takahashi, J.-C. Yao, Fixed point theorems and weak convergence theorems for generalized hybrid mappings in Hilbert space, Taiwanese J. Math. 14 (2010), 2497-2511.
- [16] F. Kohsaka, W. Takahashi, Fixed point theorems for a class of nonlinear mappings related to maximal monotone operators in Banach spaces, Arch. Math. 91 (2008), 166-177.
- [17] W. Takahashi, Fixed point theorems for new nonlinear mappings in a Hilbert space, J. Nonlinear Convex Anal. 11 (2010), 79-88.
- [18] W. Takahashi, J.-C. Yao, P. Kocourek, Weak and strong convergence theorems for generalized hybrid nonselfmappings in Hilbert spaces, J. Nonlinear Convex Anal. 11 (2010), 567-586.
- [19] K. Aoyama, F. Kohsaka, W. Takahashi, Three generalizations of firmly nonexpansive mappings: Their relations and continuous properties, J. Nonlinear Convex Anal. 10 (2009), 131-147.