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Abstract. In this paper, using the idea of Mann’s iteration, we prove a weak convergence theorem for
finding a common element of the fixed point sets of two relatively nonexpansive mappings and the zero
point set of a maximal monotone operator in a Banach space. We apply this result to get well-known
and new weak convergence theorems which are connected with relatively nonexpansive mappings and
maximal monotone operators in Hilbert spaces and in Banach spaces.
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1. INTRODUCTION

Let E be a Banach space and let C be a nonempty, closed and convex subset of E. Let T be a
mapping of C into E. We denote the set of fixed points of 7 by F(T'). A mapping T : C — E is
called demiclosed if for a sequence {x,} in C such that {x, } converges weakly to a point p and
xp—Tx, — 0, p=Tp holds.

Assume that E is a smooth Banach space and C is a nonempty, closed and convex subset of
E. A mapping T : C — E is called relatively nonexpansive [1]if F(T) # 0, it is demiclosed and

0(z,Tx) < d(z,x), VxeC, zeF(T),

where ¢ (x,y) = ||x||> — 2{x,Jy) + ||y||* for all x,y € E and J is the duality mapping of E.

In 1953, Mann [2] introduced the following iteration process. Let T : C — C be a nonex-
pansive mapping, that is, ||7x — Ty|| < ||x —y|| for all x,y € C. For an initial guess x; € C, an
iteration process {x, } is defined recursively by

X1 = OuXy+ (1 —0,)Tx,, VYneN,

where {a,} is a sequence in [0,1]. Later, Reich [3] discussed Mann’s iteration process in
a uniformly convex Banach space with a Fréchet differentiable norm and obtained that the
sequence {x,} converges weakly to a fixed point of 7 under some conditions. On the other
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hand, Matsushita and Takahashi [4] proved a weak convergence theorem under Mann’s iteration
process for relatively nonexpansive mappings in a smooth and uniformly convex Banach space.
In this paper, using the idea of Mann’s iteration, we prove a weak convergence theorem for
finding a common element of the fixed point sets of two relatively nonexpansive mappings and
the zero point set of a maximal monotone operator in a Banach space. We apply this result to
get well-known and new weak convergence theorems which are connected with relatively non-
expansive mappings and maximal monotone operators in Hilbert spaces and in Banach spaces

2. PRELIMINARIES

We denote by N the set of positive integers and by R the set of real numbers. Let H be a real
Hilbert space with inner product (-,-) and norm || - ||, respectively. Let C be a nonempty, closed
and convex subset of a Hilbert space H. The nearest point projection of H onto C is denoted by
Pc, that is, ||x — Pex|| < ||x—y]|| forall x € H and y € C. Such F¢ is called the metric projection
of H onto C. We know that the metric projection Fc is firmly nonexpansive, i.e.,

|| Pex — Pey||* < (Pex — Py, x—) 2.1)

for all x,y € H. Furthermore, (x — Pcx,y — Pcx) < 0 holds for all x € H and y € C; see [5].

Let E be a real Banach space with norm || - | and let E* be the dual space of E. We denote
the value of y* € E* at x € E by (x,y*). When {x,} is a sequence in E, we denote the strong
convergence of {x,} tox € E by x, — x and the weak convergence by x,, — x. The modulus g
of convexity of E is defined by

Sp(e) = inf{l

for every € with 0 < & < 2. A Banach space E is said to be uniformly convex if 6z (g) > 0 for
every € > (0. A uniformly convex Banach space is strictly convex and reflexive. The duality
mapping Jg from E into 2F" is defined by

Jex={x" € E*: (x,2") = |lx|* = |x*||*}

for every x € E. We also denote Jg by J simply. Let U = {x € E : ||x|| = 1}. The norm of E is
said to be Gateaux differentiable if for each x,y € U, the limit

L ey i

t—0 t
exists. In this case, E is called smooth. We know that E is smooth if and only if J is a single-
valued mapping of E into E*. The norm of E is said to be Fréchet differentiable if for each
x € U, the limit (2.2) is attained uniformly for y € U. The norm of E is said to be uniformly
smooth if the limit (2.2) is attained uniformly for x,y € U. If E is uniformly smooth, then J
is uniformly norm-to-norm continuous on each bounded subset of E. We also know that E
is reflexive if and only if J is surjective, and E is strictly convex if and only if J is one-to-one.
Therefore, if E is a smooth, strictly convex and reflexive Banach space, then J is a single-valued
bijection and in this case, the inverse mapping J~! coincides with the duality mapping J, on
E*. For more details, see [6, 7]. We also know the following result.

eyl

wuns1ﬁwns1mx—yHZe}

(2.2)

Lemma 2.1 ([6]). Let E be a smooth Banach space and let J be the duality mapping on E. Then,
(x—y,Jx—Jy) >0 for all x,y € E. Furthermore, if E is strictly convex and (x —y,Jx—Jy) =0,
then x = y.
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Let E be a smooth Banach space. The function ¢ : E X E — (—o0, o) is defined by

O (x,y) = ||x]|* —2(x, Jy) + |Iy[|? (2.3)

for x,y € E, where J is the duality mapping of E; see [8, 9]. We have from the definition of ¢
that

¢(x,y) = (x,2) +¢(z,y) +2(x —z,Jz = Jy) (2.4)
for all x,y,z € E. From (||x|| — [|y|)*> < ¢(x,y) for all x,y € E, we can see that ¢(x,y) > 0.
Furthermore, we can obtain the following equality:

2=y, Jz—=Jw) = ¢ (x,w) + O (,2) — ¢(x,2) — O (y,w) (2.5)

for x,y,z,w € E. If E is additionally assumed to be strictly convex, then from Lemma 2.1 we
have

O(x,y) =0<=x=y. (2.6)

Let E be a smooth, strictly convex and reflexive Banach space. Let ¢,.: E* X E* — (—c0,00) be
the function defined by

0. (¥, y") = "2 =207 1y* ) + |1y
for all x*,y* € E*, where J is the duality mapping of E. It is easy to see that

forall x,y € E. The following lemma which was by Kamimura and Takahashi [9] is well-known.

Lemma 2.2 ([9]). Let E be a smooth and uniformly convex Banach space. Let {x,} and {y,}
be two sequences in space E such that either sequence {x,} or sequence {y,} is bounded. If
limy, 00 @ (X, ¥) = O, then lim,,_,o ||x, — yp|| = 0.

The following lemmas are in Xu [10] and Kamimura and Takahashi [9].

Lemma 2.3 ([10]). Let E be a uniformly convex Banach space and let r > 0. Then there exists
a strictly increasing, continuous and convex function g : [0,00) — [0,0) such that g(0) = 0 and

1Ax+ (1 =2y < Alxell*+ (1= 2) [y ]1> = 2 (1= 2)g([lx—]))
forall x,y € B, and A with0 <A <1, where B, ={z € E : ||z|]| < r}.

Lemma 2.4 ([9]). Let E be a smooth and uniformly convex Banach space and let r > 0. Then
there exists a strictly increasing, continuous and convex function g : [0,2r] — R such that g(0) =
0 and

g(llx=yll) < o (x,y)
forall x,y € By, where B, ={z € E : ||z|]| < r}.

Let C be a nonempty, closed and convex subset of a strictly convex and reflexive Banach
space E. For any x € E, we also know that there exists a unique element z € C such that

¢(z,x) =min @ (y,x).
yeC

The mapping Ilc : E — C defined by z = II¢x 1s called the generalized projection of E onto C.
We know the following result.
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Lemma 2.5 ([8, 9]). Let E be a smooth, strictly convex and reflexive Banach space. Let C be a
nonempty, closed and convex subset of E and let x € E and z € C. Then, the following conditions
are equivalent:

(I) z:HCx,'
(2) (z—y,Jx—Jz) >0, VyeC.

Let E be a Banach space and let B be a mapping of of E into 2£°. A multi-valued mapping
B on E is said to be monotone if (x —y,u* —v*) > 0 for all u* € Bx, and v* € By. A monotone
operator B on E is said to be maximal if its graph is not properly contained in the graph of
any other monotone operator on E. The following theorem is due to Browder [11]; see also [7,
Theorem 3.5.4].

Theorem 2.1 ([11]). Let E be a uniformly convex and smooth Banach space and let J be the
duality mapping of E into E*. Let B be a monotone operator of E into 2E . Then B is maximal
if and only if, for any r > 0,

R(J+rB) =E",
where R(J + rB) is the range of J + rB.

Let E be a uniformly convex Banach space with a Gateaux differentiable norm and let B be
a maximal monotone operator of E into 2", The set of null points of a maximal monotone
operator B is defined by B~10 = {z € E : 0 € Bz}. We know that B~10 is closed and convex; see
[7].

For all x € E and r > 0, we also consider the following equation
Jx € Jx, +rBx,.

This equation has a unique solution x,; see [12]. We define Q, by x, = Q,x. Such a Q, is called
the generalized resolvent of B. For r > 0, the Yosida approximation B, : E — E* is defined by
Jx—J0Ox

Bx="""X"" VxcE.
r

When the Banach space is a Hilbert space, we have that the generalized resolvent Q, is called
the resolvent of B simply. We know the following result.

Lemma 2.6 ([12]). Let E be a uniformly convex and smooth Banach space and let B C E X E*
be a maximal monotone operator. Let r > 0 and let Q, and B, be the generalized resolvent and
the Yosida approximation of B, respectively. Then, the following hold:

(1) ¢(u,0rx)+0(Qrx,x) < 9(u,x), Vxe€E,uecB'0;
(2) (Qyx,B,x) €B, Vx€E;
(3) F(Q;) =B'0.

3. WEAK CONVERGENCE THEOREM

In this section, we prove a weak convergence theorem of Mann’s type iteration for two rel-
atively nonexpansive mappings and maximal monotone operators in a Banach space. The fol-
lowing lemma was proved by Matsushita and Takahashi [1].
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Lemma 3.1 ([1]). Let E be a smooth, strictly convex and reflexive Banach space and let C be a
nonempty, closed and convex subset of E. Let T : C — E be a mapping satisfying the following;

0(z,Tx) < d(z,x), VxeC, zeF(T).
Then F (T) is closed and convex.
The following is our main result.

Theorem 3.1. Let E be a uniformly convex and uniformly smooth Banach space which the
duality mapping Jg is weakly sequentially continuous. Let C be a nonempty, closed and convex
subset of E such that JgC is closed and convex. Let A C E X E* be a maximal monotone operator
satisfying D(A) C C and let Qy be a generalized resolvent of A, i.e., Oy = (JE + uA)~ g for
all u > 0. Let T and U be relatively nonexpansive mappings of C into itself. Suppose that

Q=F(T)NFU)NAT10+#0.

For any x| = x € C, define {x,} as follows:

p— JE—l ((1 — rn)JExn + rnJEUQunxn),
Xn+1 :JEI((1_ﬁn)JExn+BnJETyn)a Vn e N,

where {U,} C (0,00), {B,} C (0,1), a,b,8,y € Rand {r,} C (0,1) satisfy the following:
0<a<PB,<b<1,0<6<rm<y<land 0<c<u,, VneN.
Then the sequence {x,} converges weakly to an elementt zy € Q, where zp = lim,_. [Tox;,.

Proof. Since T and U are relatively nonexpansive, we have that F(T') and F(U) are closed and
convex. Since A is a maximal monotone operator, we have that A~10 is closed and convex. It
follows that Q@ = F(T)NF(U)NA~'0 is closed and convex. Let z € Q. Thenz=Qy,z, 2 =Tz
and z = Uz. Put

Yn = ‘]1::1 ((1 — rn)JEXn + rnJEUQu,,xn)
and z, = Qy,x, for all n € N. We have

0(z,n) = ¢ (2.5 ' (1 = ru)Jgxn+ radeUzn))
= ll2ll* = 2{z, (1 = ra)JExn + radEUzn)
+11(1 = 1) Jgxn + rudgUzal|?
< lzll> = 2(1 = rn)(z, Jexn) — 21 (2, JEUZn)
+ (1= r)lxall> + rall Uzal 2 (3.1)
= (1 =rn)9(z,%0) + 120 (2,Uzn)
(1 =7n)9(2,%0) + a9 (2, 20)
(1= 70) 9 (2,2%0) + ra@ (2, %)
).

O (2,%n

IAINA
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Similarly, we also have

¢(Z7xn+1>

(2.5 (1 = Bu)JEXn + BudeTyn))
= Bn)¢(2,%) + Bn§ (2, Tyn)
— Bn)9(2,%n) + Br9 (2,3n) (3.2)
(1= Bn)(z.xn) + Bud (2, xn)
= (2, Xp)-
Then lim,,_,e ¢ (z,x,) exists. Thus, {x,}, {Uz,}, {y»} and {Ty,} are bounded. Putting

=

VAN VAR VAN

r=max { sup g, |, sup [JpUzll, sup |J6Tyall }.

neN neN neN

we have from Lemma 2.3 that there exists a strictly increasing, continuous and convex function
g :[0,00) — [0,00) such that g(0) = 0 and

|Ax+(1=2A)y)1> < Allx*+ (1= A)[IyI* = A1 = 2)g(llx—yl)
for all x,y € B, and A with 0 < A < 1, where B, = {z € E*: ||z|]| < r}. Using this, we have that,
forne Nandz € Q,

0(z,y0) = 0 (2,95 (1 = ra)JExn + 1aJEU 1))
= 12]|* = 2(z, (1 = ru )0 + 1 pU i) + | (1 = 1) X0 + rnd Uz |
< |lzll* =2z, (1 = ra)Jgxa + raleUzn)
+(1- ’"n)Hanz +rn||UZn||2 —ra(L—r)g([VExn —JEU )
= (1 =ra)9(z,xn) + 129 (2,Uzn) — ra(1 = ra)g(|lJExn — JEU Z4 )
< (L=rn)(2,%n) + 1@ (2,2n) — rn(1 = rn)g([[VEXn — JEUZ )
< ¢(z,xn) — ra(1 = rn)g(VEXn — JEUZA|]).-
Similarly, we have that
9 (2xni1) = 9 (2T (1= Bu)Jexn + BrleTyn))
= [lz1> = 2{z, (1 = Bu)Jgn + BudeTva) + || (1 = Bu)JExn + Bade Tynl?
< lzl* = 2(z, (1 = Bu)exa + Bule Tya)
+ (1= B x|+ Ball Tyl > = Ba(1 = Bu)g (/2w —JETall)
= (1= Ba)¢(2,%0) + Bn9 (2, Tyn) — Bu(1 = Ba)&(|[JEXn — JETynl|)
< (1= PBa)@ (2 x0) + B (2 yn) — Bu(1 = Bn) g ([|JEXn — JETl|)
< (1= Bu)9(z,xn) +ﬁn<¢(zvxn) — (1 — 1) g(||[JEXn _JEUZnH))
= Bn(1 = Ba)&([[JExn — JETynl|)
= 0(z,xn) = Burn(1 = ra)g([[VEXn — JEUzZA||) — Bu(1 = Bu)8([[JEXn — JET )

Therefore, we have that

Bn(1 = Bn)g(IVeXn — JETYnl)- < 0(2,%0) — O(2,%0+1)

~— —

and
Burn(1 = 1) g([Jexn — JEUzn|) < 9(2,%0) — @ (2,%n+1)-
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We have from0<a<fB,<b<land0< 6 <r, <y<1 that
lim g(||Jgxn, — JETYnl||) = lim g(||Jexn —JEUz4||) = 0. (3.3)
n—oo n—yoco
From the properties of g, we have that
lim ||JEx,, —JETynH = lim HJExn _JEUZnH =0. (34)
n—oo n—oo
From the definition of y,,, we also have that
VX0 = JEYAll < rullJEXn —JEU -

Since limy, e [|[JEX, — JEU z,|| = 0, we have ||Jgx, — Jgyn|| — 0 and hence ||Jgy, —JETyn|| — O.
Since E* is uniformly smooth, we have that

yn = Tya|l = 0 and ||x, — Uz|| — 0 (3.5)
as n — oo, Using z, = Qy, X, and Lemma 2.6, we have that, for z € Q,

O (2n,Xn) = ¢(Qunxnaxn> < O(z,xn) — ‘P(ZaQunxn) = 0(2,X) — 0(2,2n)-
It follows from (3.1) that

O (zn,%n) < O(2,%0) — (2,20)
< ¢(Z,xn) - rl(¢(z,yn) —(1=r)¢(z.x0))

n

. (¢ Z,Xn) — O(z, yn))

ln(uxnuz—\lynll2 2(2. 050 — Jyn))
< ln(|||xn||2 [yall?] +21{z, Jx0 — Jyn) )
<in(r|rxnu—uyn|u ol lyall) + 211219 — Tyl
<ln(||x,, yall (1l Iyl + 202015 = Iyal)-

This implies that lim,, . ¢ (z,,X,) = 0. Since E is uniformly convex and smooth, we have from
Lemma 2.2 that

lim ||zn — xa|| = 0. (3.6)
n—soo

Since
|20 — Uznl| < |20 —Xull + [IXn — Uzl
we obtain that
,}i_{EOHZn_UZn” =0. (3.7)

Since {x,} is bounded, there exists a subsequence {x,,} of {x,} such that x,, — w. From
1limy,—ye0 ||, — yp|| = 0 and lim,,_ye0 ||, — 24 || = 0, we have y,, — w and z,,, = w. Using lim,, . ||z, —
Uz,y|| = 0 and the fact that U is relatively nonexpansive, we have that w = Uw and hence
w € F(U). Since T is relatively nonexpansive, we have from y,, — w and |y, — Ty,|| — 0
that w € F(T). This impliesw € F(T)NF(U).
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Next, we show w € A~10. Since Jg is uniformly norm-to-norm continuous on bounded sets,
we conclude from (3.6)

lim ||JExn _JEZnH =0.
n—oo
From u, > c, we have
1
lim — ||Jgx, — JEza|| = 0.
n—yo0 .u'n
Therefore,

tim [|By, x| = Tim — [T — Jpzal = O.
n—oo n—eo Uy,
For (p,p*) € A, from the monotonicity of A, we have (p — z,, p* — By, x,) > 0 for all n > 0.
Replacing n by n; and letting i — oo, we get (p —w, p*) > 0. From the maximallity of A, we
have w € A~10. Therefore, w € Q.
We next show that if x,, — u and x, P then u = v. In fact, we have that u,v € Q. Put

a = limy,_yeo (P (1, x,) — §(v,x,)). Since

0 (14,) — @ (v,x0) = 2(v — ut, Jpxa) + [|u]|* — [|v]|>
and the duality mapping Jg of E is weakly sequentially continuous, we have a = 2(v — u, Jgu) +
|w|> = ||v||? and @ = 2(v — u, Jgv) + ||u]|* — ||v||>. From these equalities, we obtain 2(v — u, Ju —
Jv) =0 and hence (u —v,Ju—Jv) = 0. From Lemma 2.1, it follows that u = v. Therefore, {x,}

converges weakly to an element zg € Q.
Put P =1I1n. We have from Lemma 2.5 and (3.2) that

O (Pxpr1,Xn+1) < (Pxny1,Xnt1) + O (Pxn, PXpi1)
< ¢(Pxn;xn+l)
< O (Pxp,Xn)
for all n € N. Hence limy,_,co @ (Pxy,,xp,) exists. It follows from Lemma 2.5 that, for k € N,
O (P, Xpic) = O (Pxn, Pxpic) + @ (P Xn-vkc)
+2(Pxy — PXpy i, JEPXp ko — JEXn k)
> @ (Pxp, PXpik) + @ (PXnks Xt k)

and hence

¢(Pxnann+k) < ¢(Pxnaxn+k) — O (PXpik; Xnik)
S (P(Pxnaxi’l) - ¢(Pxn+k7xn+k)-

We also have from Lemma 2.5 that, for p € Q,
¢(p,PXn) S ¢<p7Pxﬂ) +¢<Pxﬂ7xn) S ¢(p>xn) S ¢(p7x)

and hence {Px,} is bounded. Using Lemma 2.4, we have that, for m,n € N with m > n,

& (|1Pxn — Pxyl|) < 0 (Pxn, Pxin) < @ (P, X)) — O (P, Xim )

where g’ is a strictly increasing, continuous and convex function such that g’(0) = 0. The the
properties of g’ yieeld that {Px, } ia a Cauchy sequence. Since E is complete, {Px,} converges
strongly to a point u € Q. Furthermore, we have from Lemma 2.5 that

(Pxp — z0,JgxXn — JEPx,) > 0.
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Since x,, — z¢ and the duality mapping Jg on E is weakly sequentially continuous, we have that
(u—2z0,Jpz0 —JEu) >0

and hence ¢ (u,z0) + ¢ ((zo,u) < 0. This implies that ¢ («,z9) = ¢(z0,u) = 0 and hence u = z.
Therefore, zg = lim;,_yo Px, = lim;_,. [1Igx,. This completes the proof. O

4. APPLICATIONS

In this section, using Theorem 3.1, we get well-known and new weak convergence theorems
which are connected with relatively nonexpansive mappings and maximal monotone operators
in Hilbert spaces and in Banach spaces. We first prove a weak convergence theorem for finding
a zero point of a maximal monotone operator in a Banach space.

Theorem 4.1. Let E be a uniformly convex and uniformly smooth Banach space which the
duality mapping Jg is weakly sequentially continuous. Let A C E X E* be a maximal monotone

operator and let Qy be a generalized resolvent of A, i.e., Qu = (JE + uA)~ Vg for all u > 0.
Suppose that A='0 # 0. For any x| = x € E, define {x,} as follows:

Xpil = ng ((1 — )Xy + rnJEQunxn),
foralln € N, where {y,} C (0,0), 6,y € Rand {r,} C (0,1) satisfy the following:
0<o0<rm<y<land 0<c<u, VneN.

Then the sequence {x,} converges weakly to an element zy € A~10, where 7o = limy,_seo [14 -1y

Proof. Putting C =FE and T = U =1 in Theorem 3.1, we obtain the desired result from Theorem
3.1 O

Let E be a Banach space and let f : E — (—o0,o0| be a proper, lower semicontinuous and
convex function. Define the subdifferential of f as follows:

If(x) ={x" € E": f(y) = (y—x,x") + f(x), Vy € E}

for all x € E. Then we know that d f is a maximal monotone operator; see [13] for more details.
Let E be a smooth, strictly convex and reflexive Banach space. Let C be a nonempty, closed
and convex subset of E. We have that there exists the generalized projection Il of E onto C.
We also have that, for the indicator function ic, that is,

. 0, xecC,
lcx:
oo, x¢&C,
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the subdifferential dic C E x E* is a maximal monotone operator and the generalized resolvent
0O, =Tl¢ of di¢ for every r > 0. In fact, for any x € E and r > 0, we have that

72=0x < Jpz+rdicz > Jpx
& Jpx—Jgz € rdicz

) Jex—JEZ i
& icy > <y—z,u>+lcz, VyeE 4.1)

0> (y—z,Jpx—Jgz), VyeC
& z=argmin@(y,x)

yeC
= 7= ch.

Using (4.1) and Theorem 3.1, we get the following weak convergence theorem for two rela-
tively nonexpansive mappings in a Banach space.

Theorem 4.2. Let E be a uniformly convex and uniformly smooth Banach space which the
duality mapping Jg is weakly sequentially continuous. Let C be a nonempty, closed and con-
vex subset of E such that JgC is closed and convex. Let T and U be relatively nonexpansive
mappings of C into itself such that

Q=F(T)NF(U) #0.
For any x| = x € C, define {x,} as follows:
{yn = bel ((1 — rn)JEX, + r,,JEUx,,),
Xnr1 =I5 (1= Ba)Jexn + BueTyn), VYneN,
where {B,} C (0,1), a,b,8,y € R and {r,} C (0,1) satisfy the following:
0<a<pPB,<b<land 0<6<r,<y<l1, VneN.
Then the sequence {x,} converges weakly to an element zo € Q, where 7o = lim,_,e [1o Xy,

Proof. Putting A = dic in Theorem 3.1, we obtain that Q,, = Il¢ for all u, > 0. Therefore, we
obtain the desired result from Theorem 3.1. [

Let H be a Hilbert space and let C be a nonempty, closed and convex subset of H. A mapping
U : C — H is called generalized hybrid [15] if there exist o, B € R such that

o[ Ux = Uy|[* + (1= @) |lx = Uy|* < BUx = y[* + (1 = B) x =y

for all x,y € C. Such a mapping U is called (&, B)-generalized hybrid. Notice that the class
of (&, B)-generalized hybrid mappings covers several well-known mappings. For example, a
(1,0)-generalized hybrid mapping is nonexpansive. It is nonspreading [12, 16] for & = 2 and
B=1,ie,

2|Ux—Uy|? < [[Ux—y|* + Uy —x|>, ¥x,yeC.
It is also hybrid [17] for @ = % and B = % ie.,

3|Ux = Uy|l* < [lx =y >+ [[Ux =yl + [[Uy =], ¥x,yeC.

In general, nonspreading and hybrid mappings are not continuous; see [14]. We know the
following result obtained by Kocourek, Takahashi and Yao [15]; see also [18].
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Lemma 4.1 ([15, 18]). Let H be a Hilbert space, let C be a nonempty, closed and convex subset
of H and let U : C — H be generalized hybrid. If x, — z and x, —Ux, — 0, then z € F(U).

The following are two weak convergence theorems for finding a common element of the fixed
point sets of two nonlinear operators and the zero point set of a maximal monotone operator in
a Hilbert space.

Theorem 4.3. Let H bea Hilbert space and let C be a nonempty, closed and convex subset of
H. Let A C H x H be a maximal monotone operator satisfying D(A) C C and let Jy, be the
resolvent of A, i.e., J, = (I—HLA)_1 forall u > 0. Let T : C — C be a nonspreading mapping
and let U : C — C be a hybrid mapping. Suppose that Q = F(T)NF(U)NA~'0 # 0. For any
x1 = x € C, define {x,} as follows:

Y = (1 = rp)xn +raUJy, Xn,
{xn+1 — (1= B+ BuTye, VneEN,
where {U,} C (0,00), {B,} C (0,1), a,b, 8,y € R and {r,} C (0,1) satisfy the following:
0<a<B,<b<1,0<0<r,<y<land 0<c<u,, VneN.

Then the sequence {x,} converges weakly to an element zo € Q, where zo = lim,_,. Pox, anf
Pq is the metric projection of H onto Q.

Proof. Since T is nonspreading of C into C, it satisfies the following:
2| Tx—Tyl* < | Tx—y|* + || Ty —x|?, Wx,yeC.
Putting y = p for p € F(T), we have that
2||Tx—pl* < ITx—p|* +|lp—x[?, WxeC

and hence

ITx—p|* <lp—x|?, WxeC.
This implies that 7' is quasi-nonexpansive. Furthermore, we have from Lemma 4.1 that T is
demiclosed.

Similarly, since U is a hybrid mapping of C into C such that F(U) # 0, it satisfies the follow-
ing:
3| Ux—Uy[|* < [lx=y|* + [lUx =y >+ [[Uy —x|*,  ¥x,y €C.
Putting y = p for p € F(U), we have that
3|Ux—pl? < = pl?+ |Ux—=plPP+|p—x|?, VxeC

and hence

lUx=pl*> <lp—x|?, vxecC.
This implies that U is quasi-nonexpansive. Furthermore, we have from Lemma 4.1 that U is
demiclosed. Therefore, we have the desired result from Theorem 3.1. ]

Theorem 4.4. Let H bea Hilbert space and let C be a nonempty, closed and convex subset of
H. Let A C H x H be a maximal monotone operator satisfying D(A) C C and let J, be the
resolvent of A, i.e., J, = (I—l—/.LA)_] forall u > 0. Let T : C — C be a nonspreading mapping
and let U : C — C be a generalized hybrid mapping. Suppose that

Q=F(T)NFU)NA"'0#0.
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For any x| = x € C, define {x,} as follows:
{yn = (1 =rn)xn + 1, Udp,xn,
Xnr1 = (1= Bn)xn + BuTyn, VneN,
where {l,} C (0,00), {Bn} C(0,1), a,b,8,y € Rand {r,} C (0,1) satisfy the following:
0<a<PB,<b<1,0<6<rm<y<land 0<c<u,, VneN.

Then the sequence {x,} converges weakly to an element zog € Q, where zo = lim,_,. Pox, anf
Pq is the metric projection of H onto Q.

Proof. Since T is a nonexpansive mapping of C into C with F(T) # 0, we have that T is quasi-
nonexpansive. Furthermore, we have from Lemma 4.1 that 7 is demiclosed. Since U is a
generalized hybrid mapping of C into C such that F(U) # 0, U is quasi-nonexpansive. Further-
more, from Lemma 4.1, U is demiclosed. Therefore, we have the desired result from Theorem
3.1. O

The following is a weak convergence theorems for finding a common point of three sets in a
Banach space.

Theorem 4.5. Let E be a uniformly convex and uniformly smooth Banach space which the
duality mapping Jg of E is weakly suquentially continuous. Let C, D and F be nonempty,
closed and convex subsets of E. Let Il¢, Ilp and g be the generalized projections of E onto
C, D and F, respectively. Suppose that CNDNF # (0. For any x| = x € E, define

Yn = JE_] ((1 — rp)JEXy — +rnJEHDHFxn))7
{xn+1 = Jg (1= Bu)Jexn+ BuJellcys), VneN,
where {B,} C (0,1) and {r,} C (0,1) satisfy the following:
0<a<B,<b<land 0<6<r,<y<l1, VneN

forsome a,b,8,y€R. Then {x,} converges weakly to zo € CNDNF. where zog = lim,,_,ee [lcnpnrXn-

Proof. Take A = dir in Theorem 3.1. Then we have that Oy, = I for all n € N. Furthermore,
since Il¢ is the genralized projection of E onto C, we have from Lemma 2.5 that

(P(Z,HCX)S(P(Z,X), VXGE, zeC.

We show that I'l¢ is demiclosed. In fact, assume that x,, — p and x,, — I1cx,, — 0. It is clear that
[ex, — p. Since E is uniformly smooth, we have that ||Jgx, — JEIIcx,|| — 0. Since I¢ is the
generalized projection of E onto C, we have that

(Hexy —ep, Jexy — Jellex, — (JEp — JEIIcp)) > 0.

Therefore, (p —cp, —(Jep —JEIIcp)) > 0 and hence ¢ (p,I1cp) + ¢ (Iep, p) < 0. This im-
plies that p = II¢p and hence Il¢ is demiclosed. Similarly,

¢(z,1Ipx) < ¢(z,x), Vx€E,z€D
and I1pis demiclosed. Therefore, we have the desired result from Theorem 3.1. O

The following is a weak convergence theorem for finding a common element of zero point
sets of three maximal monotone operators of a Banach space.
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Theorem 4.6. Let E be a uniformly convex and uniformly smooth Banach space which the du-
ality mapping Jg of E is weakly suquentially continuous. Let A, B and G be maximal monotone
operators of E into E*. Let Q% be the generalized resolvent of A for r > 0, Qﬁ be the generalized

resolvent of B for u > 0 and let Q)GL be the generalized resolvent of G for A > 0. Suppose that
Q=a"'onBlonG o +#0.
For any x| = x € E, define

yn=J5 ' (1= ru)Jgxn + ra Q5 Q%))
Xns1 =Jg (1= Bu)Jexn+ BuleQByn), Vn €N,
where {B,} C (0,1) and {r,} C (0,1) satisfy the following:
0<a<B,<b<land 0<6<r,<y<l1, VneN

for some a,b,8,y € R. Then the sequence {x,} converges weakly to a point 7y € Q. where
20 = limy, o0 Il

Proof. Take fi, = r for r > 0 in Theorem 3.1. Then we have that Q) = Q% for all n € N.
Furthermore, since Qﬁ is the generalized resolvent of B, we have from Lemma 2.6 that

0(z,05x) < ¢(z,x), Vx€E, zeB0.

Next, we show that O} is demiclosed. In fact, assume that x, — p and x, — Qfix, — 0. It is
clear that Qﬁxn — p as n — oo. Since E is unifrmly smooth, we have that ||Jgx, —Jg Qﬁan —0.
Since Qﬁ is the generalized resolvent of B, we have from [19] that

(0ixn — 01 p, JExXn — JEQ Xy — (JEp — JEQLp)) > 0.

Therefore, (p — Qﬁp, —(JFrp —JEQﬁp)> > 0 and hence (])(p,Qﬁp) + (])(Qﬁp,p) < 0. This im-
plies that p = Qf p and hence Qf; is demiclosed.
Similarly,
$(2,05x) < ¢(z,x), Vx€E,zeG 0

and Qf is demiclosed. Therefore, we have from Theorem 3.1 the desired result immediately.
O
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