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Abstract. In this paper, using the idea of Mann’s iteration, we prove a weak convergence theorem for
finding a common element of the fixed point sets of two relatively nonexpansive mappings and the zero
point set of a maximal monotone operator in a Banach space. We apply this result to get well-known
and new weak convergence theorems which are connected with relatively nonexpansive mappings and
maximal monotone operators in Hilbert spaces and in Banach spaces.
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1. INTRODUCTION

Let E be a Banach space and let C be a nonempty, closed and convex subset of E. Let T be a
mapping of C into E. We denote the set of fixed points of T by F(T ). A mapping T : C→ E is
called demiclosed if for a sequence {xn} in C such that {xn} converges weakly to a point p and
xn−T xn→ 0, p = T p holds.

Assume that E is a smooth Banach space and C is a nonempty, closed and convex subset of
E. A mapping T : C→ E is called relatively nonexpansive [1] if F(T ) 6= /0, it is demiclosed and

φ(z,T x)≤ φ(z,x), ∀x ∈C, z ∈ F(T ),

where φ(x,y) = ‖x‖2−2〈x,Jy〉+‖y‖2 for all x,y ∈ E and J is the duality mapping of E.
In 1953, Mann [2] introduced the following iteration process. Let T : C→ C be a nonex-

pansive mapping, that is, ‖T x−Ty‖ ≤ ‖x− y‖ for all x,y ∈C. For an initial guess x1 ∈C, an
iteration process {xn} is defined recursively by

xn+1 = αnxn +(1−αn)T xn, ∀n ∈ N,

where {αn} is a sequence in [0,1]. Later, Reich [3] discussed Mann’s iteration process in
a uniformly convex Banach space with a Fréchet differentiable norm and obtained that the
sequence {xn} converges weakly to a fixed point of T under some conditions. On the other

E-mail addresses: wataru@is.titech.ac.jp; wataru@a00.itscom.net.
Received September 4, 2020; Accepted October 20, 2020.

c©2021 Journal of Applied and Numerical Optimization

197



198 WATARU TAKAHASHI

hand, Matsushita and Takahashi [4] proved a weak convergence theorem under Mann’s iteration
process for relatively nonexpansive mappings in a smooth and uniformly convex Banach space.

In this paper, using the idea of Mann’s iteration, we prove a weak convergence theorem for
finding a common element of the fixed point sets of two relatively nonexpansive mappings and
the zero point set of a maximal monotone operator in a Banach space. We apply this result to
get well-known and new weak convergence theorems which are connected with relatively non-
expansive mappings and maximal monotone operators in Hilbert spaces and in Banach spaces

2. PRELIMINARIES

We denote by N the set of positive integers and by R the set of real numbers. Let H be a real
Hilbert space with inner product 〈·, ·〉 and norm ‖·‖, respectively. Let C be a nonempty, closed
and convex subset of a Hilbert space H. The nearest point projection of H onto C is denoted by
PC, that is, ‖x−PCx‖ ≤ ‖x− y‖ for all x ∈ H and y ∈C. Such PC is called the metric projection
of H onto C. We know that the metric projection PC is firmly nonexpansive, i.e.,

‖PCx−PCy‖2 ≤ 〈PCx−PCy,x− y〉 (2.1)

for all x,y ∈ H. Furthermore, 〈x−PCx,y−PCx〉 ≤ 0 holds for all x ∈ H and y ∈C; see [5].
Let E be a real Banach space with norm ‖ · ‖ and let E∗ be the dual space of E. We denote

the value of y∗ ∈ E∗ at x ∈ E by 〈x,y∗〉. When {xn} is a sequence in E, we denote the strong
convergence of {xn} to x ∈ E by xn→ x and the weak convergence by xn ⇀ x. The modulus δE
of convexity of E is defined by

δE(ε) = inf
{

1− ‖x+ y‖
2

: ‖x‖ ≤ 1,‖y‖ ≤ 1,‖x− y‖ ≥ ε

}
for every ε with 0 ≤ ε ≤ 2. A Banach space E is said to be uniformly convex if δE(ε)> 0 for
every ε > 0. A uniformly convex Banach space is strictly convex and reflexive. The duality
mapping JE from E into 2E∗ is defined by

JEx = {x∗ ∈ E∗ : 〈x,x∗〉= ‖x‖2 = ‖x∗‖2}
for every x ∈ E. We also denote JE by J simply. Let U = {x ∈ E : ‖x‖= 1}. The norm of E is
said to be Gâteaux differentiable if for each x,y ∈U , the limit

lim
t→0

‖x+ ty‖−‖x‖
t

(2.2)

exists. In this case, E is called smooth. We know that E is smooth if and only if J is a single-
valued mapping of E into E∗. The norm of E is said to be Fréchet differentiable if for each
x ∈U , the limit (2.2) is attained uniformly for y ∈U . The norm of E is said to be uniformly
smooth if the limit (2.2) is attained uniformly for x,y ∈U . If E is uniformly smooth, then J
is uniformly norm-to-norm continuous on each bounded subset of E. We also know that E
is reflexive if and only if J is surjective, and E is strictly convex if and only if J is one-to-one.
Therefore, if E is a smooth, strictly convex and reflexive Banach space, then J is a single-valued
bijection and in this case, the inverse mapping J−1 coincides with the duality mapping J∗ on
E∗. For more details, see [6, 7]. We also know the following result.

Lemma 2.1 ([6]). Let E be a smooth Banach space and let J be the duality mapping on E. Then,
〈x−y,Jx−Jy〉 ≥ 0 for all x,y ∈ E. Furthermore, if E is strictly convex and 〈x−y,Jx−Jy〉= 0,
then x = y.
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Let E be a smooth Banach space. The function φ : E×E→ (−∞,∞) is defined by

φ(x,y) = ‖x‖2−2〈x,Jy〉+‖y‖2 (2.3)

for x,y ∈ E, where J is the duality mapping of E; see [8, 9]. We have from the definition of φ

that
φ(x,y) = φ(x,z)+φ(z,y)+2〈x− z,Jz− Jy〉 (2.4)

for all x,y,z ∈ E. From (‖x‖− ‖y‖)2 ≤ φ(x,y) for all x,y ∈ E, we can see that φ(x,y) ≥ 0.
Furthermore, we can obtain the following equality:

2〈x− y,Jz− Jw〉= φ(x,w)+φ(y,z)−φ(x,z)−φ(y,w) (2.5)

for x,y,z,w ∈ E. If E is additionally assumed to be strictly convex, then from Lemma 2.1 we
have

φ(x,y) = 0⇐⇒ x = y. (2.6)

Let E be a smooth, strictly convex and reflexive Banach space. Let φ∗ : E∗×E∗→ (−∞,∞) be
the function defined by

φ∗(x∗,y∗) = ‖x∗‖2−2〈J−1y∗,x∗〉+‖y∗‖2

for all x∗,y∗ ∈ E∗, where J is the duality mapping of E. It is easy to see that

φ∗(Jy,Jx) = φ(x,y) (2.7)

for all x,y∈E. The following lemma which was by Kamimura and Takahashi [9] is well-known.

Lemma 2.2 ([9]). Let E be a smooth and uniformly convex Banach space. Let {xn} and {yn}
be two sequences in space E such that either sequence {xn} or sequence {yn} is bounded. If
limn→∞ φ(xn,yn) = 0, then limn→∞ ‖xn− yn‖= 0.

The following lemmas are in Xu [10] and Kamimura and Takahashi [9].

Lemma 2.3 ([10]). Let E be a uniformly convex Banach space and let r > 0. Then there exists
a strictly increasing, continuous and convex function g : [0,∞)→ [0,∞) such that g(0) = 0 and

‖λx+(1−λ )y‖2 ≤ λ‖x‖2 +(1−λ )‖y‖2−λ (1−λ )g(‖x− y‖)

for all x,y ∈ Br and λ with 0≤ λ ≤ 1, where Br = {z ∈ E : ‖z‖ ≤ r}.

Lemma 2.4 ([9]). Let E be a smooth and uniformly convex Banach space and let r > 0. Then
there exists a strictly increasing, continuous and convex function g : [0,2r]→R such that g(0) =
0 and

g(‖x− y‖)≤ φ(x,y)

for all x,y ∈ Br, where Br = {z ∈ E : ‖z‖ ≤ r}.

Let C be a nonempty, closed and convex subset of a strictly convex and reflexive Banach
space E. For any x ∈ E, we also know that there exists a unique element z ∈C such that

φ(z,x) = min
y∈C

φ(y,x).

The mapping ΠC : E →C defined by z = ΠCx is called the generalized projection of E onto C.
We know the following result.
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Lemma 2.5 ([8, 9]). Let E be a smooth, strictly convex and reflexive Banach space. Let C be a
nonempty, closed and convex subset of E and let x∈E and z∈C. Then, the following conditions
are equivalent:

(1) z = ΠCx;
(2) 〈z− y, Jx− Jz〉 ≥ 0, ∀y ∈C.

Let E be a Banach space and let B be a mapping of of E into 2E∗ . A multi-valued mapping
B on E is said to be monotone if 〈x− y,u∗− v∗〉 ≥ 0 for all u∗ ∈ Bx, and v∗ ∈ By. A monotone
operator B on E is said to be maximal if its graph is not properly contained in the graph of
any other monotone operator on E. The following theorem is due to Browder [11]; see also [7,
Theorem 3.5.4].

Theorem 2.1 ([11]). Let E be a uniformly convex and smooth Banach space and let J be the
duality mapping of E into E∗. Let B be a monotone operator of E into 2E∗. Then B is maximal
if and only if, for any r > 0,

R(J+ rB) = E∗,

where R(J+ rB) is the range of J+ rB.

Let E be a uniformly convex Banach space with a Gâteaux differentiable norm and let B be
a maximal monotone operator of E into 2E∗ . The set of null points of a maximal monotone
operator B is defined by B−10 = {z ∈ E : 0 ∈ Bz}. We know that B−10 is closed and convex; see
[7].

For all x ∈ E and r > 0, we also consider the following equation

Jx ∈ Jxr + rBxr.

This equation has a unique solution xr; see [12]. We define Qr by xr = Qrx. Such a Qr is called
the generalized resolvent of B. For r > 0, the Yosida approximation Br : E→ E∗ is defined by

Brx =
Jx− JQrx

r
, ∀x ∈ E.

When the Banach space is a Hilbert space, we have that the generalized resolvent Qr is called
the resolvent of B simply. We know the following result.

Lemma 2.6 ([12]). Let E be a uniformly convex and smooth Banach space and let B⊂ E×E∗

be a maximal monotone operator. Let r > 0 and let Qr and Br be the generalized resolvent and
the Yosida approximation of B, respectively. Then, the following hold:

(1) φ(u,Qrx)+φ(Qrx,x)≤ φ(u,x), ∀x ∈ E, u ∈ B−10;
(2) (Qrx, Brx) ∈ B, ∀x ∈ E;
(3) F(Qr) = B−10.

3. WEAK CONVERGENCE THEOREM

In this section, we prove a weak convergence theorem of Mann’s type iteration for two rel-
atively nonexpansive mappings and maximal monotone operators in a Banach space. The fol-
lowing lemma was proved by Matsushita and Takahashi [1].
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Lemma 3.1 ([1]). Let E be a smooth, strictly convex and reflexive Banach space and let C be a
nonempty, closed and convex subset of E. Let T : C→ E be a mapping satisfying the following;

φ(z,T x)≤ φ(z,x), ∀x ∈C, z ∈ F(T ).

Then F(T ) is closed and convex.

The following is our main result.

Theorem 3.1. Let E be a uniformly convex and uniformly smooth Banach space which the
duality mapping JE is weakly sequentially continuous. Let C be a nonempty, closed and convex
subset of E such that JEC is closed and convex. Let A⊂E×E∗ be a maximal monotone operator
satisfying D(A) ⊂C and let Qµ be a generalized resolvent of A, i.e., Qµ = (JE + µA)−1JE for
all µ > 0. Let T and U be relatively nonexpansive mappings of C into itself. Suppose that

Ω = F(T )∩F(U)∩A−10 6= /0.

For any x1 = x ∈C, define {xn} as follows:{
yn = J−1

E
(
(1− rn)JExn + rnJEUQµnxn

)
,

xn+1 = J−1
E
(
(1−βn)JExn +βnJETyn

)
, ∀n ∈ N,

where {µn} ⊂ (0,∞), {βn} ⊂ (0,1), a,b,δ ,γ ∈ R and {rn} ⊂ (0,1) satisfy the following:

0 < a≤ βn ≤ b < 1, 0 < δ ≤ rn ≤ γ < 1 and 0 < c≤ µn, ∀n ∈ N.

Then the sequence {xn} converges weakly to an elementt z0 ∈Ω, where z0 = limn→∞ ΠΩxn.

Proof. Since T and U are relatively nonexpansive, we have that F(T ) and F(U) are closed and
convex. Since A is a maximal monotone operator, we have that A−10 is closed and convex. It
follows that Ω = F(T )∩F(U)∩A−10 is closed and convex. Let z ∈Ω. Then z = Qµnz, z = T z
and z =Uz. Put

yn = J−1
E
(
(1− rn)JExn + rnJEUQµnxn

)
and zn = Qµnxn for all n ∈ N. We have

φ(z,yn) = φ
(
z,J−1

E ((1− rn)JExn + rnJEUzn)
)

= ‖z‖2−2〈z,(1− rn)JExn + rnJEUzn〉

+‖(1− rn)JExn + rnJEUzn‖2

≤ ‖z‖2−2(1− rn)〈z, JExn〉−2rn〈z,JEUzn〉

+(1− rn)‖xn‖2 + rn‖Uzn‖2 (3.1)

= (1− rn)φ(z,xn)+ rnφ(z,Uzn)

≤ (1− rn)φ(z,xn)+ rnφ(z,zn)

≤ (1− rn)φ(z,xn)+ rnφ(z,xn)

= φ(z,xn).
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Similarly, we also have

φ(z,xn+1) = φ
(
z,J−1

E ((1−βn)JExn +βnJETyn)
)

≤ (1−βn)φ(z,xn)+βnφ(z,Tyn)

≤ (1−βn)φ(z,xn)+βnφ(z,yn) (3.2)

≤ (1−βn)φ(z,xn)+βnφ(z,xn)

= φ(z, xn).

Then limn→∞ φ(z,xn) exists. Thus, {xn}, {Uzn}, {yn} and {Tyn} are bounded. Putting

r = max
{

sup
n∈N
‖JExn‖, sup

n∈N
‖JEUzn‖, sup

n∈N
‖JETyn‖

}
,

we have from Lemma 2.3 that there exists a strictly increasing, continuous and convex function
g : [0,∞)→ [0,∞) such that g(0) = 0 and

‖λx+(1−λ )y‖2 ≤ λ‖x‖2 +(1−λ )‖y‖2−λ (1−λ )g(‖x− y‖)
for all x,y ∈ Br and λ with 0≤ λ ≤ 1, where Br = {z ∈ E∗ : ‖z‖ ≤ r}. Using this, we have that,
for n ∈ N and z ∈Ω,

φ(z,yn) = φ
(
z,J−1

E ((1− rn)JExn + rnJEUzn)
)

= ‖z‖2−2〈z,(1− rn)JExn + rnJEUzn〉+‖(1− rn)JExn + rnJEUzn‖2

≤ ‖z‖2−2〈z,(1− rn)JExn + rnJEUzn〉

+(1− rn)‖xn‖2 + rn‖Uzn‖2− rn(1− rn)g(‖JExn− JEUzn‖)
= (1− rn)φ(z,xn)+ rnφ(z,Uzn)− rn(1− rn)g(‖JExn− JEUzn‖)
≤ (1− rn)φ(z,xn)+ rnφ(z,zn)− rn(1− rn)g(‖JExn− JEUzn‖)
≤ φ(z,xn)− rn(1− rn)g(‖JExn− JEUzn‖).

Similarly, we have that

φ(z,xn+1) = φ(z,J−1
E ((1−βn)JExn +βnJETyn))

= ‖z‖2−2〈z,(1−βn)JExn +βnJETyn〉+‖(1−βn)JExn +βnJETyn‖2

≤ ‖z‖2−2〈z,(1−βn)JExn +βnJETyn〉

+(1−βn)‖xn‖2 +βn‖Tyn‖2−βn(1−βn)g(‖JExn− JETyn‖)
= (1−βn)φ(z,xn)+βnφ(z,Tyn)−βn(1−βn)g(‖JExn− JETyn‖)
≤ (1−βn)φ(z,xn)+βnφ(z,yn)−βn(1−βn)g(‖JExn− JETyn‖)
≤ (1−βn)φ(z,xn)+βn

(
φ(z,xn)− rn(1− rn)g(‖JExn− JEUzn‖)

)
−βn(1−βn)g(‖JExn− JETyn‖)

= φ(z,xn)−βnrn(1− rn)g(‖JExn− JEUzn‖)−βn(1−βn)g(‖JExn− JETyn‖).
Therefore, we have that

βn(1−βn)g(‖JExn− JETyn‖).≤ φ(z,xn)−φ(z,xn+1)

and
βnrn(1− rn)g(‖JExn− JEUzn‖)≤ φ(z,xn)−φ(z,xn+1).
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We have from 0 < a≤ βn ≤ b < 1 and 0 < δ ≤ rn ≤ γ < 1 that

lim
n→∞

g(‖JExn− JETyn‖) = lim
n→∞

g(‖JExn− JEUzn‖) = 0. (3.3)

From the properties of g, we have that

lim
n→∞
‖JExn− JETyn‖= lim

n→∞
‖JExn− JEUzn‖= 0. (3.4)

From the definition of yn, we also have that

‖JExn− JEyn‖ ≤ rn‖JExn− JEUzn‖.

Since limn→∞ ‖JExn−JEUzn‖= 0, we have ‖JExn−JEyn‖→ 0 and hence ‖JEyn−JETyn‖→ 0.
Since E∗ is uniformly smooth, we have that

‖yn−Tyn‖→ 0 and ‖xn−Uzn‖→ 0 (3.5)

as n→ ∞. Using zn = Qµnxn and Lemma 2.6, we have that, for z ∈Ω,

φ(zn,xn) = φ(Qµnxn,xn)≤ φ(z,xn)−φ(z,Qµnxn) = φ(z,xn)−φ(z,zn).

It follows from (3.1) that

φ(zn,xn)≤ φ(z,xn)−φ(z,zn)

≤ φ(z,xn)−
1
rn

(
φ(z,yn)− (1− rn)φ(z,xn)

)
=

1
rn

(
φ(z,xn)−φ(z,yn)

)
=

1
rn

(
‖xn‖2−‖yn‖2−2〈z,Jxn− Jyn〉

)
≤ 1

rn

(
|‖xn‖2−‖yn‖2|+2|〈z,Jxn− Jyn〉|

)
≤ 1

rn

(
|‖xn‖−‖yn‖|(‖xn‖+‖yn‖)+2‖z‖‖Jxn− Jyn‖

)
≤ 1

rn

(
‖xn− yn‖(‖xn‖+‖yn‖)+2‖z‖‖Jxn− Jyn‖

)
.

This implies that limn→∞ φ(zn,xn) = 0. Since E is uniformly convex and smooth, we have from
Lemma 2.2 that

lim
n→∞
‖zn− xn‖= 0. (3.6)

Since
‖zn−Uzn‖ ≤ ‖zn− xn‖+‖xn−Uzn‖,

we obtain that
lim
n→∞
‖zn−Uzn‖= 0. (3.7)

Since {xn} is bounded, there exists a subsequence {xni} of {xn} such that xni ⇀ w. From
limn→∞ ‖xn−yn‖= 0 and limn→∞ ‖xn−zn‖= 0, we have yni ⇀w and zni ⇀w. Using limn→∞ ‖zn−
Uzn‖ = 0 and the fact that U is relatively nonexpansive, we have that w = Uw and hence
w ∈ F(U). Since T is relatively nonexpansive, we have from yni ⇀ w and ‖yn− Tyn‖ → 0
that w ∈ F(T ). This implies w ∈ F(T )∩F(U).
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Next, we show w ∈ A−10. Since JE is uniformly norm-to-norm continuous on bounded sets,
we conclude from (3.6)

lim
n→∞
‖JExn− JEzn‖= 0.

From µn ≥ c, we have

lim
n→∞

1
µn
‖JExn− JEzn‖= 0.

Therefore,

lim
n→∞
‖Bµnxn‖= lim

n→∞

1
µn
‖JExn− JEzn‖= 0.

For (p, p∗) ∈ A, from the monotonicity of A, we have 〈p− zn, p∗−Bµnxn〉 ≥ 0 for all n ≥ 0.
Replacing n by ni and letting i→ ∞, we get 〈p−w, p∗〉 ≥ 0. From the maximallity of A, we
have w ∈ A−10. Therefore, w ∈Ω.

We next show that if xni ⇀ u and xn j ⇀ v, then u = v. In fact, we have that u,v ∈ Ω. Put
a = limn→∞(φ(u,xn)−φ(v,xn)). Since

φ(u,xn)−φ(v,xn) = 2〈v−u,JExn〉+‖u‖2−‖v‖2

and the duality mapping JE of E is weakly sequentially continuous, we have a = 2〈v−u,JEu〉+
‖u‖2−‖v‖2 and a = 2〈v−u,JEv〉+‖u‖2−‖v‖2. From these equalities, we obtain 2〈v−u,Ju−
Jv〉= 0 and hence 〈u−v,Ju−Jv〉= 0. From Lemma 2.1, it follows that u = v. Therefore, {xn}
converges weakly to an element z0 ∈Ω.

Put P = ΠΩ. We have from Lemma 2.5 and (3.2) that

φ(Pxn+1,xn+1)≤ φ(Pxn+1,xn+1)+φ(Pxn,Pxn+1)

≤ φ(Pxn,xn+1)

≤ φ(Pxn,xn)

for all n ∈ N. Hence limn→∞ φ(Pxn,xn) exists. It follows from Lemma 2.5 that, for k ∈ N,

φ(Pxn,xn+k) = φ(Pxn,Pxn+k)+φ(Pxn+k,xn+k)

+2〈Pxn−Pxn+k,JEPxn+k− JExn+k〉
≥ φ(Pxn,Pxn+k)+φ(Pxn+k,xn+k)

and hence

φ(Pxn,Pxn+k)≤ φ(Pxn,xn+k)−φ(Pxn+k,xn+k)

≤ φ(Pxn,xn)−φ(Pxn+k,xn+k).

We also have from Lemma 2.5 that, for p ∈Ω,

φ(p,Pxn)≤ φ(p,Pxn)+φ(Pxn,xn)≤ φ(p,xn)≤ φ(p,x)

and hence {Pxn} is bounded. Using Lemma 2.4, we have that, for m,n ∈ N with m > n,

g′(‖Pxn−Pxm‖)≤ φ(Pxn,Pxm)≤ φ(Pxn,xn)−φ(Pxm,xm),

where g′ is a strictly increasing, continuous and convex function such that g′(0) = 0. The the
properties of g′ yieeld that {Pxn} ia a Cauchy sequence. Since E is complete, {Pxn} converges
strongly to a point u ∈Ω. Furthermore, we have from Lemma 2.5 that

〈Pxn− z0,JExn− JEPxn〉 ≥ 0.
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Since xn ⇀ z0 and the duality mapping JE on E is weakly sequentially continuous, we have that

〈u− z0,JEz0− JEu〉 ≥ 0

and hence φ(u,z0)+φ((z0,u)≤ 0. This implies that φ(u,z0) = φ(z0,u) = 0 and hence u = z0.
Therefore, z0 = limn→∞ Pxn = limn→∞ ΠΩxn. This completes the proof. �

4. APPLICATIONS

In this section, using Theorem 3.1, we get well-known and new weak convergence theorems
which are connected with relatively nonexpansive mappings and maximal monotone operators
in Hilbert spaces and in Banach spaces. We first prove a weak convergence theorem for finding
a zero point of a maximal monotone operator in a Banach space.

Theorem 4.1. Let E be a uniformly convex and uniformly smooth Banach space which the
duality mapping JE is weakly sequentially continuous. Let A⊂ E×E∗ be a maximal monotone
operator and let Qµ be a generalized resolvent of A, i.e., Qµ = (JE + µA)−1JE for all µ > 0.
Suppose that A−10 6= /0. For any x1 = x ∈ E, define {xn} as follows:

xn+1 = J−1
E
(
(1− rn)JExn + rnJEQµnxn

)
,

for all n ∈ N, where {µn} ⊂ (0,∞), δ ,γ ∈ R and {rn} ⊂ (0,1) satisfy the following:

0 < δ ≤ rn ≤ γ < 1 and 0 < c≤ µn, ∀n ∈ N.

Then the sequence {xn} converges weakly to an element z0 ∈ A−10, where z0 = limn→∞ ΠA−10xn.

Proof. Putting C =E and T =U = I in Theorem 3.1, we obtain the desired result from Theorem
3.1. �

Let E be a Banach space and let f : E → (−∞,∞] be a proper, lower semicontinuous and
convex function. Define the subdifferential of f as follows:

∂ f (x) = {x∗ ∈ E∗ : f (y)≥ 〈y− x,x∗〉+ f (x), ∀y ∈ E}

for all x ∈ E. Then we know that ∂ f is a maximal monotone operator; see [13] for more details.
Let E be a smooth, strictly convex and reflexive Banach space. Let C be a nonempty, closed
and convex subset of E. We have that there exists the generalized projection ΠC of E onto C.
We also have that, for the indicator function iC, that is,

iCx =

{
0, x ∈C,

∞, x /∈C,
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the subdifferential ∂ iC ⊂ E×E∗ is a maximal monotone operator and the generalized resolvent
Qr = ΠC of ∂ iC for every r > 0. In fact, for any x ∈ E and r > 0, we have that

z = Qrx⇔ JEz+ r∂ iCz 3 JEx

⇔ JEx− JEz ∈ r∂ iCz

⇔ iCy≥
〈

y− z,
JEx− JEz

r

〉
+ iCz, ∀y ∈ E (4.1)

⇔ 0≥ 〈y− z,JEx− JEz〉, ∀y ∈C

⇔ z = argmin
y∈C

φ(y,x)

⇔ z = ΠCx.

Using (4.1) and Theorem 3.1, we get the following weak convergence theorem for two rela-
tively nonexpansive mappings in a Banach space.

Theorem 4.2. Let E be a uniformly convex and uniformly smooth Banach space which the
duality mapping JE is weakly sequentially continuous. Let C be a nonempty, closed and con-
vex subset of E such that JEC is closed and convex. Let T and U be relatively nonexpansive
mappings of C into itself such that

Ω = F(T )∩F(U) 6= /0.

For any x1 = x ∈C, define {xn} as follows:{
yn = J−1

E
(
(1− rn)JExn + rnJEUxn

)
,

xn+1 = J−1
E
(
(1−βn)JExn +βnJETyn

)
, ∀n ∈ N,

where {βn} ⊂ (0,1), a,b,δ ,γ ∈ R and {rn} ⊂ (0,1) satisfy the following:

0 < a≤ βn ≤ b < 1 and 0 < δ ≤ rn ≤ γ < 1, ∀n ∈ N.

Then the sequence {xn} converges weakly to an element z0 ∈Ω, where z0 = limn→∞ ΠΩxn.

Proof. Putting A = ∂ iC in Theorem 3.1, we obtain that Qµn = ΠC for all µn > 0. Therefore, we
obtain the desired result from Theorem 3.1. �

Let H be a Hilbert space and let C be a nonempty, closed and convex subset of H. A mapping
U : C→ H is called generalized hybrid [15] if there exist α,β ∈ R such that

α‖Ux−Uy‖2 +(1−α)‖x−Uy‖2 ≤ β‖Ux− y‖2 +(1−β )‖x− y‖2

for all x,y ∈ C. Such a mapping U is called (α , β )-generalized hybrid. Notice that the class
of (α , β )-generalized hybrid mappings covers several well-known mappings. For example, a
(1,0)-generalized hybrid mapping is nonexpansive. It is nonspreading [12, 16] for α = 2 and
β = 1, i.e.,

2‖Ux−Uy‖2 ≤ ‖Ux− y‖2 +‖Uy− x‖2, ∀x,y ∈C.

It is also hybrid [17] for α = 3
2 and β = 1

2 , i.e.,

3‖Ux−Uy‖2 ≤ ‖x− y‖2 +‖Ux− y‖2 +‖Uy− x‖2, ∀x,y ∈C.

In general, nonspreading and hybrid mappings are not continuous; see [14]. We know the
following result obtained by Kocourek, Takahashi and Yao [15]; see also [18].
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Lemma 4.1 ([15, 18]). Let H be a Hilbert space, let C be a nonempty, closed and convex subset
of H and let U : C→ H be generalized hybrid. If xn ⇀ z and xn−Uxn→ 0, then z ∈ F(U).

The following are two weak convergence theorems for finding a common element of the fixed
point sets of two nonlinear operators and the zero point set of a maximal monotone operator in
a Hilbert space.

Theorem 4.3. Let H bea Hilbert space and let C be a nonempty, closed and convex subset of
H. Let A ⊂ H ×H be a maximal monotone operator satisfying D(A) ⊂ C and let Jµ be the
resolvent of A, i.e., Jµ = (I +µA)−1 for all µ > 0. Let T : C→C be a nonspreading mapping
and let U : C→C be a hybrid mapping. Suppose that Ω = F(T )∩F(U)∩A−10 6= /0. For any
x1 = x ∈C, define {xn} as follows:{

yn = (1− rn)xn + rnUJµnxn,

xn+1 = (1−βn)xn +βnTyn, ∀n ∈ N,

where {µn} ⊂ (0,∞), {βn} ⊂ (0,1), a,b,δ ,γ ∈ R and {rn} ⊂ (0,1) satisfy the following:

0 < a≤ βn ≤ b < 1, 0 < δ ≤ rn ≤ γ < 1 and 0 < c≤ µn, ∀n ∈ N.
Then the sequence {xn} converges weakly to an element z0 ∈ Ω, where z0 = limn→∞ PΩxn anf
PΩ is the metric projection of H onto Ω.

Proof. Since T is nonspreading of C into C, it satisfies the following:

2‖T x−Ty‖2 ≤ ‖T x− y‖2 +‖Ty− x‖2, ∀x,y ∈C.

Putting y = p for p ∈ F(T ), we have that

2‖T x− p‖2 ≤ ‖T x− p‖2 +‖p− x‖2, ∀x ∈C

and hence
‖T x− p‖2 ≤ ‖p− x‖2, ∀x ∈C.

This implies that T is quasi-nonexpansive. Furthermore, we have from Lemma 4.1 that T is
demiclosed.

Similarly, since U is a hybrid mapping of C into C such that F(U) 6= /0, it satisfies the follow-
ing:

3‖Ux−Uy‖2 ≤ ‖x− y‖2 +‖Ux− y‖2 +‖Uy− x‖2, ∀x,y ∈C.

Putting y = p for p ∈ F(U), we have that

3‖Ux− p‖2 ≤ ‖x− p‖2 +‖Ux− p‖2 +‖p− x‖2, ∀x ∈C

and hence
‖Ux− p‖2 ≤ ‖p− x‖2, ∀x ∈C.

This implies that U is quasi-nonexpansive. Furthermore, we have from Lemma 4.1 that U is
demiclosed. Therefore, we have the desired result from Theorem 3.1. �

Theorem 4.4. Let H bea Hilbert space and let C be a nonempty, closed and convex subset of
H. Let A ⊂ H ×H be a maximal monotone operator satisfying D(A) ⊂ C and let Jµ be the
resolvent of A, i.e., Jµ = (I +µA)−1 for all µ > 0. Let T : C→C be a nonspreading mapping
and let U : C→C be a generalized hybrid mapping. Suppose that

Ω = F(T )∩F(U)∩A−10 6= /0.
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For any x1 = x ∈C, define {xn} as follows:{
yn = (1− rn)xn + rnUJµnxn,

xn+1 = (1−βn)xn +βnTyn, ∀n ∈ N,

where {µn} ⊂ (0,∞), {βn} ⊂ (0,1), a,b,δ ,γ ∈ R and {rn} ⊂ (0,1) satisfy the following:

0 < a≤ βn ≤ b < 1, 0 < δ ≤ rn ≤ γ < 1 and 0 < c≤ µn, ∀n ∈ N.

Then the sequence {xn} converges weakly to an element z0 ∈ Ω, where z0 = limn→∞ PΩxn anf
PΩ is the metric projection of H onto Ω.

Proof. Since T is a nonexpansive mapping of C into C with F(T ) 6= /0, we have that T is quasi-
nonexpansive. Furthermore, we have from Lemma 4.1 that T is demiclosed. Since U is a
generalized hybrid mapping of C into C such that F(U) 6= /0, U is quasi-nonexpansive. Further-
more, from Lemma 4.1, U is demiclosed. Therefore, we have the desired result from Theorem
3.1. �

The following is a weak convergence theorems for finding a common point of three sets in a
Banach space.

Theorem 4.5. Let E be a uniformly convex and uniformly smooth Banach space which the
duality mapping JE of E is weakly suquentially continuous. Let C, D and F be nonempty,
closed and convex subsets of E. Let ΠC, ΠD and ΠF be the generalized projections of E onto
C, D and F, respectively. Suppose that C∩D∩F 6= /0. For any x1 = x ∈ E, define{

yn = J−1
E
(
(1− rn)JExn−+rnJEΠDΠFxn)

)
,

xn+1 = J−1
E ((1−βn)JExn +βnJEΠCyn), ∀n ∈ N,

where {βn} ⊂ (0,1) and {rn} ⊂ (0,1) satisfy the following:

0 < a≤ βn ≤ b < 1 and 0 < δ ≤ rn ≤ γ < 1, ∀n ∈ N

for some a,b,δ ,γ ∈R. Then {xn} converges weakly to z0 ∈C∩D∩F. where z0 = limn→∞ ΠC∩D∩Fxn.

Proof. Take A = ∂ iF in Theorem 3.1. Then we have that Qµn = ΠF for all n ∈ N. Furthermore,
since ΠC is the genralized projection of E onto C, we have from Lemma 2.5 that

φ(z,ΠCx)≤ φ(z,x), ∀x ∈ E, z ∈C.

We show that ΠC is demiclosed. In fact, assume that xn ⇀ p and xn−ΠCxn→ 0. It is clear that
ΠCxn ⇀ p. Since E is uniformly smooth, we have that ‖JExn− JEΠCxn‖ → 0. Since ΠC is the
generalized projection of E onto C, we have that

〈ΠCxn−ΠC p,JExn− JEΠCxn− (JE p− JEΠC p)〉 ≥ 0.

Therefore, 〈p−ΠC p,−(JE p− JEΠC p)〉 ≥ 0 and hence φ(p,ΠC p)+φ(ΠC p, p) ≤ 0. This im-
plies that p = ΠC p and hence ΠC is demiclosed. Similarly,

φ(z,ΠDx)≤ φ(z,x), ∀x ∈ E, z ∈ D

and ΠDis demiclosed. Therefore, we have the desired result from Theorem 3.1. �

The following is a weak convergence theorem for finding a common element of zero point
sets of three maximal monotone operators of a Banach space.
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Theorem 4.6. Let E be a uniformly convex and uniformly smooth Banach space which the du-
ality mapping JE of E is weakly suquentially continuous. Let A, B and G be maximal monotone
operators of E into E∗. Let QA

r be the generalized resolvent of A for r > 0, QB
µ be the generalized

resolvent of B for µ > 0 and let QG
λ

be the generalized resolvent of G for λ > 0. Suppose that

Ω = A−10∩B−10∩G−10 6= /0.

For any x1 = x ∈ E, define{
yn = J−1

E
(
(1− rn)JExn + rnQG

λ
QA

r xn)
)
,

xn+1 = J−1
E ((1−βn)JExn +βnJEQB

µyn), ∀n ∈ N,

where {βn} ⊂ (0,1) and {rn} ⊂ (0,1) satisfy the following:

0 < a≤ βn ≤ b < 1 and 0 < δ ≤ rn ≤ γ < 1, ∀n ∈ N

for some a,b,δ ,γ ∈ R. Then the sequence {xn} converges weakly to a point z0 ∈ Ω. where
z0 = limn→∞ ΠΩxn.

Proof. Take µn = r for r > 0 in Theorem 3.1. Then we have that QA
µn

= QA
r for all n ∈ N.

Furthermore, since QB
µ is the generalized resolvent of B, we have from Lemma 2.6 that

φ(z,QB
µx)≤ φ(z,x), ∀x ∈ E, z ∈ B−10.

Next, we show that QB
µ is demiclosed. In fact, assume that xn ⇀ p and xn−QB

µxn→ 0. It is
clear that QB

µxn ⇀ p as n→∞. Since E is unifrmly smooth, we have that ‖JExn−JEQB
µxn‖→ 0.

Since QB
µ is the generalized resolvent of B, we have from [19] that

〈QB
µxn−QB

µ p,JExn− JEQB
µxn− (JE p− JEQB

µ p)〉 ≥ 0.

Therefore, 〈p−QB
µ p,−(JF p− JEQB

µ p)〉 ≥ 0 and hence φ(p,QB
µ p)+φ(QB

µ p, p) ≤ 0. This im-
plies that p = QB

µ p and hence QB
µ is demiclosed.

Similarly,
φ(z,QG

λ
x)≤ φ(z,x), ∀x ∈ E, z ∈ G−10

and QG
λ

is demiclosed. Therefore, we have from Theorem 3.1 the desired result immediately.
�
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