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WEAK CONVERGENCE OF A PRIMAL-DUAL ALGORITHM FOR SPLIT
COMMON FIXED-POINT PROBLEMS IN HILBERT SPACES

DINGFANG HOU, JING ZHAO*, XINGLONG WANG

College of Science, Civil Aviation University of China, Tianjin 300300, China

Abstract. In this paper, we use the dual variable to propose a new iterative algorithm for solving the split com-
mon fixed-point problem of quasi-nonexpansive mappings in real Hilbert spaces. Under suitable conditions, we
establish a weak convergence theorem of the proposed algorithm and obtain a related result for the split common
fixed-point problem of firmly quasi-nonexpansive mappings. Some numerical experiments are given to illustrate
the efficiency of the proposed iterative algorithm.
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1. INTRODUCTION

Let Hy and H, be two real Hilbert spaces. The problem under consideration in this paper is
formulated as finding
x* € F(U) such that Ax™ € F(T), (1.1)

where A : H — H, is a bounded linear operator, F(U) and F(T) stand for the fixed point
sets of U : H — Hy and T : Hy — H,, respectively. Problem (1.1) is called the split common
fixed point problem (shortly, SCFP), which was introduced by Censor and Segal [5] in finite
dimensional Hilbert spaces. In recent years, there has been growing interest in the SCFP due
to its applications in the inverse problem of intensity-modulated radiation therapy and in the
dynamic emission tomographic image reconstruction [2, 6, 10].

In particular, if U and T are projection operators, then the SCFP is reduced to the well-known
split feasibility problem (SFP) [2, 7], which consists in finding

x* € C such that Ax" € Q, (1.2)

where C and Q are nonempty closed convex subsets of H; and H», respectively. Such problems
arise in the field of intensity-modulated radiation therapy when one attempts to describe phys-
ical dose constraints and equivalent uniform dose constraints within a single model (see [6]).
Since the SFP in finite dimensional Hilbert spaces is introduced first by Censor and Elfving
[7], many algorithms have been proposed to solve the SFP (see [3, 4, 8, 13, 14, 16, 18, 21] and
references therein).
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For solving the SFP (1.2), Censor and Elfving [7] used multidistance method to obtain iter-
ative algorithms, which involved matrix inverses at each step. In order to avoid usage of the
inverse, Byrne [2] proposed an iterative method called CQ algorithm that involves only the
orthogonal projections onto C and Q. The CQ algorithm is defined as follows:

X1 = Pc<1 — ’)/14>‘< (I — PQ)A)xk (1.3)

for each k € N, where Fc and Py are the (orthogonal) projection onto C and Q, respectively, and
y € (0, %) with A being the spectral radius of the operator A*A.

Note that, if split feasibility problem (1.2) is consistent (i.e., (1.2) has a solution), then it is
no hard to see that x* solves the SFP (1.2) if and only if it solves the fixed point equation:

Pc(l — ’}/A*(l — PQ)A)X* = X*,
where ¥ > 0 and A* denotes the adjoint of A. This implies that we can use fixed point algorithms
(see [1, 15, 19, 22, 23]) to solve the SFP.
For solving the SCFP (1.1) of directed operators (i.e. firmly quasi-nonexpansive mapping),

Censor and Segal [5] proposed and proved, in finite dimensional spaces, the convergence of the
following iterative scheme:

Xk+1 = U(xk — YA*(I— T)Axk), (1.4)

where ¥ is chosen in the interval (0, %) with A being the spectral radius of the operator A’A(A’
stands for matrix transposition). Many authors have introduced various algorithms to solve the
SCFP (1.1) (see [9, 12, 17, 20, 24, 25]).

For solving the SCFP (1.1) of quasi-nonexpansive mappings, Moudafi [17] introduced the
following relaxed algorithm:

X1 = (1= og)up + U (wi), k€N, (1.5)

where u, = x; + YBA*(T —I)Axy, B € (0,1), oy € (0,1) and y € (O,%) with 1 being the
spectral radius of the operator A*A. Moudafi proved the weak convergence of the algorithm in
Hilbert spaces.

In [11], Chen, Huang and Zhang considered to minimize the sum of two proper lower semi-
continuous convex functions, i.e.,

x" = argmin fi(x) + f2(x), (1.6)
xeR"

where f1, f> € To(R") (all proper lower semi-continuous convex functions from R” to (—oo, +co])
and f; is differentiable on R” with 1/B-Lipschitz continuous gradient for some f§ € (0,+oo).
To solve convex separable problem (1.6), they obtained the following fixed point formulation:
the point x* is a solution of (1.6) if and only if there exists v* € R such that

V= (I—prox%fl)(x* —YVihHE)+ (1=A)v),
X =x*—yVHh(x)—Av*,

where A and 7y are two positive numbers. They introduced the following Picard iterative se-
quence:

{Vk+1 = (I =proxy ) =YV o) + (1 = A)wi),

X1 =Xk — YV o (xk) — Avigr.
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It was shown [11] that, under appropriate conditions, the sequence {x;} converges to a solution
of problem (1.6). Since x is the primal variable related to (1.6), it is very natural to ask what role
the variable v plays in above algorithm. Indeed, v is actually the dual variable of the primal-dual
form related to (1.6).

Inspired and motivated by the works mentioned above, we use the dual variable to propose
a new iterative algorithm for the SCFP governed by quasi-nonexpansive mappings. The or-
ganization of this paper is as follows. Some useful definitions and results are listed for the
convergence analysis of the proposed iterative algorithms in Section 2. In Section 3, we intro-
duce new iterative algorithm by the primal-dual method and the weak convergence theorem of
the proposed iterative algorithm is obtained. We give a corollary for the SCFP (1.1) governed by
firmly quasi-nonexpansive mappings. In Section 4, we also give some numerical experiments
to illustrate the efficiency of the proposed iterative method.

2. PRELIMINARIES

In this paper, we denote the inner product by (-,-) and the norm by || - ||. We use — and —
to denote the strong convergence and weak convergence, respectively. We use @, (x;) = {x:
Fxg; — x} to stand for the weak @-limit set of {x;}. We use — and — to denote the strong
convergence and weak convergence, respectively.

Definition 2.1. A mapping 7 : H — H is said to be
(1) nonexpansive if
1T = Tyl| < [lx—yll

for all x,y € H;

(i1) firmly nonexpansive if 27" — I is nonexpansive or, equivalently,
(x=y,Tx—=Ty) > |Tx—Ty|?

for all x,y € H. Alternatively, a mapping T : H — H is firmly nonexpansive if and only if 7 can
be expressed as

1
where I denotes the identity mapping on H and S : H — H is a nonexpansive mapping;
(iii) quasi-nonexpansive if F(T) # 0 and
ITx—qll < llx—4qll
forallx e Hand g € F(T);

(iv) firmly quasi-nonexpansive (also called directed operator) if F(7T') # @ and
ITx—ql* < [lx—ql* = [|x— x|
forallx € H and g € F(T).

Definition 2.2. A mapping 7 : H — H is said to be demiclosed at the origin if, for any sequence
{x,} which converges weakly to x, the sequence {7T'x, } converges strongly to 0, then Tx = 0.
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Lemma 2.1. [17] Let H be a real Hilbert space, and let T : H — H be a quasi-nonexpansive
mapping. Set Ty, = (1 — o)+ aT for o € [0, 1). Then the following properties are reached, for
all (x,q) e Hx F(T),

(i) (x=Tx,x—q) > 3llx = Tx[|* and {x = Tx,q — Tx) < 5]x—Tx||;
(ii) | Tax — ql* < [lx—ql* = oe(1 — o) [ Tx — x]|%;

(iii) (x — Tgx,x — q) > $|lx— Tx|*.
Remark 2.1. If Ty, = (1 — a)l + oT, where T : H — H is a quasi-nonexpansive mapping
and a € (0,1), then F(Ty) = F(T) and ||Tgx — x||*> = o?||Tx — x||>. It follows from (ii) of
Lemma 2.1 that || Tox — g||? < ||lx— g||? — 15% || Tox — x||?, which implies that T, is firmly quasi-
nonexpansive when o = % On the other hand, if 7" is a firmly quasi-nonexpansive mapping, we
can easily obtain 7' = %I + %T, where T is quasi-nonexpansive.

It follows from (iii) of Lemma 2.1 that the following result is easily obtained.

Proposition 2.1. Let T be a quasi-nonexpansive mapping and o € [0,1). If Ty = (1— )+ aT,
then
1(7 = Ta)xl|* < 20t{x — ¢, (I — T )x)

forall (x,q) € HxF(T).
Lemma 2.2. [22] Let K be a nonempty convex closed subset of real Hilbert space H. Let {x; }
be a bounded sequence which satisfies the following properties:

(a) every weak limit point of {x; } lies in K;

(b) limy_, ||xx — x|| exists for every x € K.

Then {x;} converges weakly to a point in K.

3. WEAK CONVERGENCE RESULTS

In this section, we assume that the SCFP (1.1) is always consistent and its solution set is

denoted by I’ 1.e.,
I'={xeF{U):Axe F(T)}.

We always assume the H; and H, are two real Hilbert spaces and A : Hy — H; is a bounded
linear operator. Assume U : Hy — H; and T : H, — H; be quasi-nonexpansive mappings and
let Uy, = (1— o)+ oqU and Ty, = (1 — o)l + T, where oy, 0 € (0,1).

Now, we use the dual variable to propose the new iterative algorithm for the SCFP (1.1)
governed by quasi-nonexpansive mapping.

Algorithm 3.1. Let xo,vog € H| be arbitrarily chosen, and A € (0, 1]. For k > 1, let
Vi = X — WA (I — T, ) Ay,
Virt = (= Uoy) (ye+ (1 = A)wg),
X1 = Yk — AV,

where the stepsize ¥, satisfies

1
0 <liminfy <limsupy < ———5-
ke ko a|All?
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Theorem 3.1. Let o € (0, %] and I —U and I — T be demiclosed at origin. Let {(vi,x;)} be
the sequence generated by Algorithm 3.1. Then {x;} converges weakly to a solution x* € I" and
the sequence {(vi,x;)} weakly converges to (0,x*).

Proof. First, we show that limy_, [|x; —x*|| exists for any x* € I'. Taking x* € I", we have
x* € F(U) and Ax* € F(T). By Algorithm 3.1 and Proposition 2.1, we have

el = 110~ U ) O+ (1= Al
= 1~ Ve o+ (1= A)vi) — (1 — U o P
<200 (V1,06 — X+ (1= A)wg)
and
s =2 = [~ Avigs —°|
= [y —x* 1> = 22y — 5% V1) + A2 v |12
It follows that
s =224 A 2
3= 1P = 22— v )+ A2 v [ A i P
= =P = 2205 = )+ o Al P = A (5 = 1= 2) e
< =[P =22 (3 =" Vi) 22 (e ="+ (1= AJvi, Vi) G-b
2y = 1-2) Il
— =" P+ 2200 = D) weoveen) =2 (5 — 1 =2 e P

Observe that
2kt k) = it 1P + [1vell® = [[veer — vl > (3.2)
From (3.1) and (3.2), we obtain
k1 = X7+ A it 1P < e =257+ 2 (1= A)[[ve|?

1
~ A=) e =l = A (o= 2) e

In view of
(xp —x* A" (I — To, ) Axg) = (Axy — AX™, (I — T, )Axy — (I — Ty )AX™)
1
> o[ (1= Ton ) A — (1 = T ) AX"|?
%)

1 2
= 5o 10~ T,
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we have
lyk = x> =l — %A (I — T, JAxg — x|
< o =21 = 29 O =" A (1 = T )Ax) + AP (1 — Ty ) A |

sy 1
< o — ¥ — o M= Ton)Axi || >+ RNAIP (I — To ) Axi |1

§ 1
= =1 =~ AP )10 Ta) o P
It follows that

ot =1 4+ A v |12

) 1
< e =117 = 1 (- = AN ) 1 = Ta) Al 4+ A (1 = 2) e
2
1
~A= Al =l =4 (5 =2) e (3.3)
. 1
= e =" P 2 el = o = WAL )1~ T ) = A2 e P

1
A=) |eg —vk||2—z(a—1—2)uvk+1uz.

Let
sk = lxe — x>+ Alvel >

By the assumptions on y, A, @, 0 and (3.3), we obtain that 53| < sz, which implies that
sequence {s;} is non-increasing. Since {s;} is lower bounded by 0, we have that limy_ . s¢
exists. Thus it follows that {s;} is bounded. Hence {x;} is bounded.

Moreover, from (3.3), we also have

1
(e~ IR 1~ T AP+ 22 < s,

which implies that
Jim || (7 = Tog ) Axel| = 0 (3.4)

and
lim [|v|| = 0.
k—yo0

So, we obtain that limy_. ||xx — x*||> = limy_ye (sx — A ||ve]|?) = limg_,.. s exists. In view of

1 = Yill = || = A" (I — Ty ) A,
we obtain from (3.4) that limy_. ||x¢ — yx|| = 0. This shows that
lim [|lx; — (e + (1 = A)v) [ = 0. (3.5)
k—>o0

Next, we prove that @, (x;) C I'. Taking X € @,,(x;), i.e., there exists a subsequence {x;;} of
{xi} such that x;;, — X, we have Ax;, — AX as j — oo. Using (3.5), we have yy, + (1 —A)vy, =X
as j — oo, Moreover,

im [ve || = lim [[(7 = Ug, ) (vk + (1 = 4)ve) || = 0. (3.6)
k—o0 k—>o0
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Note that / — U and [ — T are demiclosed at 0. From I — Uy, = (1 —0)({ —U) and I — Ty, =
(1—a)(I—T), we have that I — Uy, and I — Ty, are also demiclosed at 0. Using (3.4) and (3.6),
we have X € F(Uy,) = F(U) and AX € F(Ty,) = F(T), which imply thatx € I'. So w,,(x;) C T’
is proved.

Finally, by using Lemma 2.2, we have x; — x*, where x* is a solution of the SCFP (1.1). It
follows from vy — O that (vg,x;) — (0,x*). This completes the proof. O

Remark 3.1. For the particular case, “A = 17, Algorithm 3.1 becomes the following iterative
algorithm for solving the SCFP (1.1) of quasi-nonexpansive mappings:

X1 = Uay (k= WA (I — Ty )3%), (3.7)
where @ € (0, 5] and the stepsize 7 satisfies
0< li]gi;lf}’k < h?LSSP Ye < m.
Algorithm 3.7 can be rewritten as
X1 = (1= o)+ oy U) (xp — Yo A™ (I —T)xy),
which becomes algorithm (1.5) proposed by Moudafi [17] for solving the SCFP (1.1) of quasi-

nonexpansive mappings.

We now turn our attention to the application of the proposed algorithm to the SCFP (1.1)
governed by firmly quasi-nonexpansive mappings. Since any firmly quasi-nonexpansive map-
ping is quasi-nonexpansive, we can straightly obtain Algorithm 3.1 for solving the SCFP (1.1)
of firmly quasi-nonexpansive mappings. From Remark 2.1, we know that any firmly quasi-
nonexpansive mapping can be expressed be the %—relaxed operator of quasi-nonexpansive map-
ping. Algorithm 3.1 takes the following equivalent form for solving the SECFP (1.1) of firmly
quasi-nonexpansive mappings U and T'.

Algorithm 3.2. Let xo,vo € H| be arbitrarily chosen, and A € (0, 1]. For k > 1, let
Yk = X — %A (I = T)Axy,
Vgl = ([ =U) (i + (1= A)wr),
Xip1 = Yk — AVist,

where the stepsize ¥, satisfies

0 < liminfy, <limsupy, < ——-.
ke ko 1112

Corollary 3.1. Let U : Hl — Hy and T : Hy — H, be firmly quasi-nonexpansive mappings. As-
sume that [ —U and I —T are demiclosed at origin. Let the sequence {(vy,xi)} be generated by
Algorithm 3.2. Then the sequence {x;} converges weakly to a solution x* € I and the sequence
{(vk,xx) } weakly converges to (0,x*).

Remark 3.2. For the particular case, “A = 17, Algorithm 3.2 becomes the following iterative
algorithm for solving the SCFP (1.1) of firmly quasi-nonexpansive mappings:

X1 = U(xe — A" (1= T)xy), (3.8)
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where the stepsize ¥, satisfies

0 <liminfy, <limsupy, < ——.
ke ko 14112

Algorithm (3.8) becomes algorithm (1.4) which was introduced by Censor and Segal [5] for
solving the SCFP (1.1) of firmly quasi-nonexpansive mappings.

4. NUMERICAL EXPERIMENTS

In this section, we provide some numerical experiments and show the performance of the
proposed primal-dual iterative Algorithm 3.1 for solving the SCFP (1.1). All the codes are writ-
ten in MATLAB and are performed on a personal Lenovo computer with Intel(R) Core(TM)i7-
6500U CPU @ 2.5GHz and RAM 8.00GB.

Example 4.1. Let R? be the two dimensional Euclidean space with inner product

and the norm |Jx|| = /(x(1)2 + (x®))2 for all x = (x(V, x®HT, y = (y() y@NHT ¢ R?. Defined
U:R>— R’ by

U:x=(x1 x5 (D) sinx@)7T.
Obviously, U is quasi-nonexpansive mapping and the set of fixed points of U, denoted by
F(U) = {(xD,0)|x!)) € R}, is not empty. Let the nonempty closed convex set Q) = {y =
(D, yPHT € R? 1 <y;<2,j= 1,2} and QO = {y € R?||ly— (2,1.5)7|| < 1}. Let the matrix

2 —1
A= ( 2 ) |
We consider the following problem:
finding x* € F(U) such that Ax" € O, ﬂQZ. 4.1)

We know the metric projections onto the sets Q1 and Q5 have closed-form expressions. We can
compute the projection onto the set Q; with

Py, (x) = {z= (21,270 = max{l,min{x(i),2}},i = 1,2}, x= (M x@HT e R%.
Since the set O is a closed ball, the projection onto the set O, can be computed with

Py, (x) = C+W(X—C), [x—cl| >,
Q) X, lx—c|| <r

where ¢ = (2,1.5)T and r = 1. Taking T = Pp,Pp,, we have T is quasi-nonexpansive mapping
and
F(T) = F(Po,)(\F(Pg,) = 21102,
where F(T) is the nonempty set of fixed points of 7. The problem (4.1) becomes the following
SCFP:
finding x* € F(U) such that Ax* € F(T). 4.2)

Now we turn to realizing primal-dual iterative Algorithm 3.1 for approximating a solution of

problem (4.2) by using Theorem 3.1. We take o = 0 = % and

Pie = |k — Uxe|| + ||Axp — TAxy || < € = 1072
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TABLE 1. Numerical results for solving Example 4.1 with different A.

xo=(=5,—4T, vy =(0,0)7

A k t Pk

0.1 13 0.0001 9.5973 x 10~°
0.2 13 0.0001 7.5569 x 1077
0.6 12 0.0001 5.9308 x 107

1(algorithm (3.7)) 2756 0.2500 9.9974 x 10~°

TABLE 2. Numerical results for solving Example 4.1 with different A.

x0 = (=5,0)7, vo = (1,0)T

A k t Pk

0.6 10 0.0001 2.7678 x 10~°
0.7 10 0.0001 2.3466 x 107
0.8 1827 0.1719 9.9978 x 10~°

1(algorithm (3.7)) 3581 0.2656 9.9981 x 10~°

TABLE 3. Numerical results for solving Example 4.1 with different A.

xo = (10,0)7, vy = (0,0)7

A k t Dk

0.3 14 0.0001 2.0679 x 10~°
0.6 13 0.0001 1.7704 x 10~°
0.9 2184 0.1406 9.9973 x 10~°

1(algorithm (3.7)) 2682 0.2188 9.9973 x 10~°

(1) (2) (1) (2)

as the stopping criterion. We take xo = (x; ', xy )7 and vo = (v ', v, )7 as initial points.
In all the tables below, ‘k’ and ‘¢’denote the number of iterations and the total computing time
1.95

in seconds. We take y, = AL and

Pi = [l — U] + [|Ax — TAx |

as error estimation of our algorithm. We take different values of A, xo and vq for solving
this example in Table 1-3. When the parameter A = 1, the Algorithm 3.1 becomes algorithm
(3.7) which was proposed by Moudafi [17] for solving the SCFP (1.1) of quasi-nonexpansive
mappings. We take xo = (—5,—4), vo = (0,0); xo = (—5,0), vo = (1,0); xo = (10,0), vo = (0,0)
in numerical experiments. We compare our proposed Algorithm 3.1 with algorithm (3.7).

We can see from Table 1-3 that Algorithm 3.1 is efficient and behaved better than algorithm
(3.7) if we choose a suitable parameter A for solving Example 4.1. So, the proper choice of the
parameter A € (0, 1] may accelerate the convergence.
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5. THE CONCLUSION

In this paper, we may take parameter A € (0,1]. If A = 1, then Algorithm 3.1 is reduced
to algorithm (3.7), which was proposed by Moudafi [17] for solving the SCFP (1.1) of quasi-
nonexpansive mappings. Similarly, if A = 1, then Algorithm 3.1 is reduced to algorithm (3.8)
(i.e. (1.4)), which was introduced by Censor and Segal [5] for solving the SCFP (1.1) of firmly
quasi-nonexpansive mappings.
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